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Candida albicans is among the most prevalent fungal species of the human 

microbiota and asymptomatically colonizes healthy individuals. However, it is 

also an opportunistic pathogen that can cause severe, and often fatal, 

bloodstream infections. The medical impact of C. albicans typically depends on 

its ability to form biofilms, which are closely packed communities of cells that 

attach to surfaces, such as tissues and implanted medical devices. In this Review, 

we provide an overview of the processes involved in the formation of C. albicans

biofilms and discuss the core transcriptional network that regulates biofilm 

development. We also consider some of the advantages that biofilms provide to 
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C. albicans in comparison with planktonic growth and explore polymicrobial 

biofilms that are formed by C. albicans and certain bacterial species.
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Glossary

Page 23 of 26Development and regulation of single- and multi-species Candida albicans biofilms | N...

1/21/2018http://www.nature.com/articles/nrmicro.2017.107



Spherical fungal cells that form daughter cells, which bud off from the parent 

cell.

Pseudohyphal cells

Ovoid chains of fungal cells that contain constrictions (rather than septa) at 

the cell junctions.

Hyphal cells

Elongated, cylindrical fungal cells that contain complete septa at the cell 

junctions.

Extracellular matrix

A protective physical barrier that surrounds cells in a biofilm and is 

composed of proteins, carbohydrates, lipids and nucleic acids.

Persister cells

Non-dividing fungal cells with decreased metabolic activity that are resistant 

to antimicrobial agents.

White–opaque switching

The ability for Candida albicans cells to switch between the 'white' and 

'opaque' phenotypic cell types. The switch occurs epigenetically; that is, 

without a change in the primary DNA sequence of the genome.

Horizontal gene transfer

The process through which genetic material is transferred between 

microorganisms through mechanisms such as transformation, conjugation 

and transduction. This process is distinct from vertical gene transfer, in 

which genetic material is transferred from mother cells to daughter cells.

Quorum sensing
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A method of communication that allows microorganisms to sense cell density 

and microbial community composition and respond as a group. The process 

involves the production and detection of soluble quorum sensing molecules.

Glycosylphosphatidylinositol (GPI) anchors

Post-translational modifications of proteins in which a glycolipid is 

covalently attached and anchors the protein in the plasma membrane.

Flow cell

A light microscopy method for observing biofilm formation in vitro under 

laminar flow conditions.

Glucoamylase

An enzyme that catalyses the hydrolysis of glucosidic linkages in starch, 

which releases glucose.

Glucan synthase

A glucosyltransferase enzyme that catalyses the synthesis of glucans, which 

are critical polysaccharide components of the fungal cell wall and the 

extracellular matrix.

Chromatin-modifying complex

A protein complex that alters the chromatin structure.

Complement system

A group of proteins that, when activated, mediate the innate immune 

response and inflammatory response to a pathogen.

Mucin

A glycosylated protein that is the major component of mucus.
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Ergosterol

A sterol component of the fungal cell membrane necessary for membrane 

fluidity.

Bacteriocin

A pore-forming peptide produced by some bacterial and archaeal species 

that is toxic to other microorganisms.
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