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Abstract
Helicobacter pylori  (H. pylori ) are resistant to hostile 
gastric environments and antibiotic therapy, reflecting 
the possibility that they are protected by an ecological 
niche, such as inside the vacuoles of human epithelial 
and immune cells. Candida  yeast may also provide such 
an alternative niche, as fluorescently labeled H. pylori  
were observed as fast-moving and viable bacterium-like 
bodies inside the vacuoles of gastric, oral, vaginal and 
foodborne Candida  yeasts. In addition, H. pylori -specific 
genes and proteins were detected in samples extracted 
from these yeasts. The H. pylori  present within these 
yeasts produce peroxiredoxin and thiol peroxidase, pro-
viding the ability to detoxify oxygen metabolites formed 
in immune cells. Furthermore, these bacteria produce 
urease and VacA, two virulence determinants of H. py-
lori  that influence phago-lysosome fusion and bacterial 
survival in macrophages. Microscopic observations of H. 
pylori  cells in new generations of yeasts along with am-
plification of H. pylori -specific genes from consecutive 
generations indicate that new yeasts can inherit the 
intracellular H. pylori  as part of their vacuolar content. 
Accordingly, it is proposed that yeast vacuoles serve as 
a sophisticated niche that protects H. pylori  against the 
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environmental stresses and provides essential nutrients, 
including ergosterol, for its growth and multiplication. 
This intracellular establishment inside the yeast vacuole 
likely occurred long ago, leading to the adaptation of 
H. pylori  to persist in phagocytic cells. The presence 
of these bacteria within yeasts, including foodborne 
yeasts, along with the vertical transmission of yeasts 
from mother to neonate, provide explanations for the 
persistence and propagation of H. pylori  in the human 
population. This Topic Highlight reviews and discusses 
recent evidence regarding the evolutionary adaptation 
of H. pylori  to thrive in host cell vacuoles.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Helicobacter pylori  (H. pylori ) have been ob-
served within yeast vacuoles by light and fluorescence 
microscopy, and their presence has been confirmed by 
the detection of H. pylori -specific genes and proteins in 
yeast extracts, such as VacA subunits, UreA, peroxire-
doxin and thiol peroxidase. Moreover, non-culturable H. 
pylori  cells have been found in subsequent generations 
of yeasts, indicating the generational transmission of 
the bacteria is part of the transfer of vacuolar content. 
H. pylori  are therefore well-equipped to establish in the 
vacuoles of yeast, which provide them with essential 
nutrients such as ergosterol for multiplication, as a pre-
adaptation for invasion of human cells. 
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INTRODUCTION
It is currently unknown how Helicobacter pylori (H. pylori) 
persist in the environment and food supply. Moreover, 
the factors facilitating their entry to human gastric epithe-
lium and the mechanism of  their transmission from per-
son to person are equally unclear. The ability to trace H. 
pylori from environmental sources to the human stomach 
is hampered by the fastidiousness of  the bacterium, the 
chronic nature of  bacterial infection, lack of  outbreaks 
and a high prevalence of  asymptomatic infected individu-
als. The failure to isolate H. pylori from environmental 
sources indicates the bacteria require a habitat that offers 
protection from environmental stresses, such as lack of  
nutrients and presence of  biocides, for survival outside of  
the human stomach. Thus, the presence of  an unknown 
environmental reservoir has been proposed, which could 
play a crucial role in the survival and spread of  H. pylori[1]. 
Many bacteria, including pathogenic species, persist de-
spite stressful conditions by establishing inside eukaryotic 
microorganisms. The intracellular life of  prokaryotes 
inside eukaryotes is considered a significant evolutionary 
phenomenon that led to the adaptation of  prokaryotes to 
a wide range of  environmental niches, though details of  
this relationship have not been elucidated, largely due to 
the non-culturability of  these intracellular bacteria[2].

Human gastric epithelial and immune cells have been 
recognized as the sole specialized eukaryotic cells that 
host H. pylori[3,4], with microscopic observations of  H. 
pylori in the vacuoles of  epithelial cells[5-7], macrophages[8] 
and dendritic cells[9]. Thus, H. pylori have been described 
as facultative intracellular bacteria, which have evolved 
to utilize the vacuoles of  eukaryotic cells as a protective 
niche, allowing the bacteria to multiply and persist for a 
long time[3,4,6]. However, there are no reports document-
ing a stable intracellular association of  H. pylori with 
a eukaryotic microorganism. This review presents the 
research works concerning H. pylori inside Candida yeast. 
As Candida yeast are remarkably resistant to stressful 
conditions[10], they could serve as an alternative host to 
shelter H. pylori against stressful conditions outside the 
human stomach, provide nutrients for its multiplication 
and act as a mediator for the spread of  the bacterium in 
the environment and within human populations. In this 
regard, it is proposed that the yeast vacuole provides a 
unique and sophisticated niche for H. pylori that evolved 
when eukaryotic cells began to phagocytose prokaryotes 
as prey[11].

EVOLUTION OF INTRACELLULAR 
BACTERIUM
The intracellular establishment of  bacteria inside fungi 
is regarded as an unusual evolutionary phenomenon, as 
the cell wall of  fungi restricts endocytosis and bacterial 
uptake[12]. In contrast to other eukaryotes, such as proto-
zoa, bivalves and insects[13], there are a limited number of  
examples of  fungi harboring intracellular bacteria[14]. The 

most well-studied example involves the early evolutionary 
establishment of  endobacteria in arbuscular mycorrhizal 
(AM) fungi[15], a plant root-associated fungus that dates 
back to 300-400 million years ago[16]. Fungal endobacteria 
have been localized inside membrane-bound vacuoles us-
ing light, electron[17,18], and confocal[15] microscopy, similar 
to other prokaryotic-eukaryotic endosymbioses[19]. The 
endosymbiotic bacteria of  AM fungi have been identified 
as a new taxon based on ribosomal sequences, Candidatus 
Glomeribacter gigasporarum[17], which is related to Burk-
hoderia cepacia, a species of  free-living bacteria with the 
potential to behave as saprophytes or pathogens. Similar 
to many other pathogenic bacteria, such as Legionella[20], 
Pseudomonas[21], and Mycobacteria[22], B. cepacia could survive 
in the vacuoles of  eukaryotic cells, ranging from free-
living amoebae[23], to macrophages[24], epithelial cells[25], 
and pneumocytes[26]. It is believed that this intracellular 
establishment protects the pathogenic bacteria against en-
vironmental stresses or the immune system of  the host, 
and facilitates the transmission to a new host[27]. While the 
basis for the interaction between bacteria and AM fungi 
is not clear[16], it is proposed that fungal vacuoles provide 
a nourishing and protective niche for the endosymbiotic 
bacterium, facilitating its replication and transmission to 
the next generation[28].

VACUOLES
The fungal vacuole is an acidic storage compartment 
with certain similarities to plant vacuoles and mammalian 
lysosomes. The various functions of  vacuoles include 
glycoprotein turnover and hydrolysis, storage of  Ca2+, 
phosphate and amino acids, pH and osmotic regulation, 
ion homeostasis and cytoplasmic detoxification[29,30]. 
Vacuoles also incorporate membranes from biosynthetic, 
endocytotic and autophagic cellular pathways[31]. Ergos-
terol in unicellular invertebrates, akin to cholesterol in 
vertebrates, is an important constituent of  membrane 
lipids, and is implicated in several fungal cell processes, 
including plasma membrane fusion during mating and 
endocytosis[32]. Accordingly, a considerable amount of  
ergosterol is found in the membranes of  vacuoles and 
other intracellular organelles[33]. Interestingly, a unique 
property of  members of  the genus Helicobacter is the in-
corporation of  a large amount of  ergosterol in their cell 
membrane. Ergosterol comprises up to 70% of  cellular 
neutral lipids in H. pylori, much higher than in Escherichia 
coli (E. coli) (17%), which may have developed as a con-
sequence of  the symbiotic association with eukaryotic 
hosts[34]. The incorporation of  cholesterol is important 
for H. pylori colonization of  the host[35], pathogenicity[36] 
and antibiotic resistance[37].

H. PYLORI AND CANDIDA
The relationship between bacteria and yeast has largely 
been focused on extracellular associations, such as those 
occurring in food materials[38] and human mucosal sur-

5264 May 14, 2014|Volume 20|Issue 18|WJG|www.wjgnet.com

Siavoshi F et al . Yeast vacuole niche for H. pylori



faces[39,40]. Although bacteria and yeast have co-existed 
for billions of  years, the biological relevance of  this inter-
domain microbial interaction remains largely unknown[41]. 
The most well-studied interactions are in polymicrobial 
biofilms of  Candida albicans (C. albicans) and bacterial 
species within the human host environment that exhibit 
resistance to the immune system and antimicrobials[42]. 
Shedding light on the details of  such interactions could 
provide important information for the management of  
infectious diseases, especially those that exhibit resistance 
to antimicrobial therapy[43].

Yeasts are highly sophisticated microorganisms with 
a remarkable ability for rapid change and adaptation to 
environmental stresses[44], including antimicrobials, the 
host immune system and a change in body location or 
host physiology[45]. C. albicans mostly occur in association 
with humans, thriving on the mucosal surfaces of  the gas-
trointestinal (GI) and genitourinary tracts and skin[39,40,45]. 
H. pylori are also found in the human GI tract, indicating 
that both microorganisms are well-adapted to this unique 
niche[46,47]. The interaction between these two microorgan-
isms may have begun long ago and led to the intracellular 
establishment of  H. pylori inside the yeast vacuole, as a 
pre-adaptation for the invasion of  and persistence within 
human epithelial and immune cells. The resistance of  in-
tracellular bacteria to destruction in the phagosome may 
have originally occurred as a adaptation for survival with-
in free-living amoebae[20], reflecting a long co-evolutionary 
process that began more than one billion years ago[48].

An association between H. pylori and Candida was 
first proposed in 1998 when yeast colonies were found 
as contaminants in gastric biopsy cultures on blood agar 
plates. Light microscopy revealed the presence of  fast-
moving bacterium-like bodies (BLBs) inside the vacuoles 
of  18 gastric yeasts cells that were purified and identi-
fied as Candida species based on their morphology and 
formation of  blastoconidia on Sabouraud dextrose agar. 
The recruited yeasts were sub-cultured on yeast extract-
glucose agar containing chloramphenicol several times 
to ensure the absence of  bacterial contamination. Since 
BLBs from disrupted yeasts were not culturable, poly-
merase chain reaction (PCR) was used to reveal their 
bacterial nature. The H. pylori-specific ureA gene product, 
similar in size to control H. pylori, was amplified from 
12/18 (67%) gastric yeast extracts. Furthermore, yeasts 
and pure cultures of  control H. pylori were tested for tol-
erance to elevated temperatures, desiccation, acidic pH 
and biocides. The control H. pylori were inactivated upon 
exposure to stresses, however, yeasts were not inactivated 
and the intracellular H. pylori showed active movement[49]. 
There are many reports that indicate the tolerance of  
yeasts to stressful conditions[50,51]. Accordingly, it was 
proposed that concurrence of  H. pylori and Candida in 
the human GI tract indicates the existence of  a more 
intimate relationship, with the yeast serving to protect H. 
pylori from environmental stresses[49].

H. PYLORI IN THE ORAL CAVITY
There are discrepancies concerning the permanence 
or transience of  H. pylori in the oral cavity, and it is not 
clear whether the oral cavity creates sufficiently favorable 
conditions for H. pylori growth[52]. Bacterial DNA has 
been detected in the oral cavity[53,54], dental plaque[55] and 
saliva[56], thus implicating oral-oral and fecal-oral trans-
mission modes of  H. pylori[57]. However, the failure to cul-
tivate H. pylori from the oral cavity and feces[58,59] indicates 
unfavorable survival conditions, likely due to antagonistic 
materials secreted by the microfloras of  the oral cavity[60] 
and intestine[58]. On the other hand, persistence of  H. 
pylori in the oral cavity after eradication therapy for gas-
tric infection[61], as well as the resistance of  the bacteria 
against antimicrobial products of  oral microflora, sug-
gest that H. pylori must somehow be protected in the oral 
cavity[62]. Accordingly, it remains unclear whether the oral 
cavity serves as a potent reservoir for H. pylori gastric re-
inoculation[63].

Candida spp. yeasts isolated from oral samples of  dys-
peptic patients were shown to contain fast-moving and 
non-culturable BLBs inside their vacuoles (Figure 1)[64]. H. 
pylori-specific 16S rRNA and cagA[64], as well as vacuolat-
ing cytotoxin A (vacA) and ureAB[65], were amplified from 
these yeasts, showing 98% homology with those of  the 
control H. pylori. These findings indicated that H. pylori 
are accommodated within the vacuoles of  the Candida 
that thrive on the mucosa of  the human oral cavity, and 
may explain the persistence of  H. pylori in the oral cav-
ity, increased risk for reinoculation of  the stomach and 
spread of  the bacterium from person-to-person. Accord-
ingly, oral hygiene was suggested as a way to effectively 
reduce the yeast content in the oral cavity and control H. 
pylori transmission[64,65].

H. PYLORI IN FOOD SOURCES
Although it is well known that H. pylori are gastric colo-
nizers that likely enter the human GI tract through intake 
of  contaminated water or food[66], culturable forms of  H. 
pylori have not been recovered from water[56] or food[67,68] 
sources. There is no indication for long-term survival 
or growth of  H. pylori in water[69] or food materials such 
as beef[70], raw chicken, lettuce, milk[71] and yogurt[71,72], 
due to the presence of  oxidation and desiccation[71,73], 
acidic pH[72], unfavorable temperatures[74] and H. pylori-
inhibitory products secreted by food microbiota[71]. Fur-
thermore, it is not known whether the coccoid or non-
culturable forms of  H. pylori remain viable in food[75] or 
are able to infect humans[73,76]. Thus, the presence of  H. 
pylori DNA in food and water sources has been thought 
to result from contamination with either naked DNA or 
dead bacteria[74,77]. However, reports have indicated that 
certain pathogenic bacteria, such as L. pneumophila[48], Vib-
rio cholera[78], Listeria monocytogenes[79], E. coli[80], Campylobacter 
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of  H. pylori. Foodborne yeasts that occur in a variety 
of  food materials such as dairy products[89], fermented 
foods[90,91] and fruits[92] are able to withstand the stressful 
treatments applied in food processing, such as high tem-
peratures, desiccation, acidic pH, high salt concentration 
and sanitization[10,93]. Accordingly, it was proposed that 
the intracellular establishment of  H. pylori in the vacuoles 
of  foodborne yeasts could protect the bacteria against 
these stressful conditions and play a crucial role in bacte-
rial survival in food[87]. Indeed, H. pylori-specific genes 
ureAB and babAB were detected in Candida yeasts from 
Iranian traditional breads (Sangak, Taftoon and Barbary), 
yogurt, banana skin, grape juice and quince jam, which 
carried vacuolar fast-moving and non-culturable BLBs 
(Figure 2)[87]. Thus, foodborne yeasts originating from the 
environment, which were once considered as harmless 

jejuni[81] and H. pylori[82], have evolved to establish in the 
vacuoles of  free-living amoebae, the inhabitants of  water, 
soil and air, which resist environmental stresses by encyst-
ing[83]. Amoebae can protect bacteria against the stress-
ful conditions, provide them with nutrients and serve as 
mediators for their spread in the environment and within 
hosts[84,85]. Accordingly, the presence of  amoebae in water 
or the environment could be an important marker of  
contamination with these pathogenic bacteria[48].

Yeast, another free-living microorganism that exhibits 
a remarkable resistance to environmental stresses[10,86], 
can similarly accommodate pathogenic bacteria within 
vacuoles[87]. In this regard, foodborne yeasts, which are 
frequently recruited as primary tools for preparation of  
fermented foods or enter food as environmental con-
taminants[88,89], may play a crucial role in the transmission 
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Figure 1  Bacterial movement within yeast vacuoles. Light micrographs taken at four time intervals (A, B, C and D) show fast-moving bacterium-like bodies (BLB) 
inside the vacuoles (V) of Candida yeast cells (magnification × 1250)[64].
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Figure 2  Visualization of bacterium within yeast vacuoles. Fluorescence micrographs of Candida yeast stained by a live/dead-BacLight kit show live (green) 
bacterium-like bodies (BLB) inside the vacuoles (V) of (A) yeast cells and (B) hyphae (N: Nucleus; M: Mitochondrion) (magnification × 1000)[87].
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microorganisms when ingested through fermented foods 
such as dairy products[38,89], including kefir and kumis[94,95], 
could now be pinpointed as a public health problem 
source. In this regard, occurrence of  yeast in food and 
environment can be considered as an important indica-
tor of  contamination with H. pylori and other pathogenic 
bacteria. Therefore, a key approach for the control of  
H. pylori infection may be to reduce the yeast content 
of  foods through proper hygienic practice, especially by 
food handlers and during food processing[87].

MATERNAL TRANSMISSION OF H. 
PYLORI
Vertical transmission from mother to neonate during 

vaginal delivery has been considered to be one important 
mechanism for H. pylori transmission. Although there 
are no published reports to show vaginal isolation of  H. 
pylori[96], it is plausible to propose that since H. pylori can 
inhabit the squamous epithelium of  the oral cavity, it may 
therefore be able to survive on the vaginal mucosa[97]. The 
vagina supports the growth of  a number of  microaero-
philic organisms, suggesting that a coexisting infection 
could provide conditions favorable for the growth of  
H. pylori[98-100]. In this regard, a mother’s oral and vaginal 
yeasts were proposed to play a crucial role in the trans-
mission of  H. pylori to the neonate[101].

The mucosal surfaces of  the human oral cavity and 
vulva-vagina are the areas that are the first and second 
most frequently colonized with yeasts, respectively[46]. A 
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Figure 3  Helicobacter pylori movement in dividing yeast. Fluorescence micrographs from three experiments (A, B and C) using a live/dead-BacLight kit showing 
live (green) fast-moving Helicobacter pylori (HP) cells (arrows and arrowhead) inside the vacuoles (V) of mother (M) and daughter (D) Candida cells taken at 0, 2 and 
4 s (magnification × 1000)[108].
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yeast oral carriage rate of  up to 75% has been reported 
in healthy individuals[102], and a considerable proportion 
(5%-35%) of  asymptomatic healthy women have posi-
tive vaginal cultures for C. albicans[103], with the highest 
level of  colonization in the vagina compared to other 
body sites[104]. As the incidence of  vaginal yeast coloniza-
tion during pregnancy can be up to 46%, Candida spp. in 
infants may be acquired vertically from the mother when 
passing through the birth canal via cutaneous contact or 
swallowing of  fungi[105,106]. When examining yeasts from 
pregnant woman, vaginal yeasts were twice as likely to 
contain the H. pylori-specific genes 16S rRNA and vacA 
s1 when compared to oral yeasts[101]. Furthermore, the 

carriage rate of  oral yeast was found to be significantly 
higher in normally delivered neonates compared to those 
from a cesarean delivery. Moreover, a significant correla-
tion was found between the frequency of  H. pylori genes 
in vaginal yeasts and in oral yeasts of  normally delivered 
neonates, indicating a common source[101].

ENDOSYMBIOTIC CHARACTERISTICS OF 
H. PYLORI
The inheritance of  vacuoles by yeast daughter cells is a 
highly regulated process[107]. Fluorescence microscopy re-
vealed the occurrence of  H. pylori cells inside the vacuoles 

A

B C

H. pylori

H. pylori
Vacuole

Figure 4  Immunolabeling of Helicobacter pylori. Immunofluorescence micrographs showing: A: Localization of Helicobacter pylori (H. pylori) (green) inside the 
Candida yeast, some of which appear red due to diffusion of the counterstain (magnification × 4000); B: Control H. pylori (green; arrows) (magnification × 1000); and C: 
Absence of bacteria in heat-killed yeast (magnification × 1000)[108].
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of  mother and daughter cells in consecutive subcultures 
of  yeasts (Figure 3)[108]. Some yeasts contained more than 
one H. pylori cell, indicating the potential for endobacte-
rial cells to multiply and transmit within the vacuole to 
the next generation of  yeast. As a hallmark of  endosym-
biosis is that both partners need to be alive[109], the mutual 
adaptation of  intracellular bacteria and their eukaryotic 
hosts would often allow both partners to survive the en-
tire lifespan with the endobacteria transmitted to the next 
generation[17,110]. Many intracellular bacteria have evolved 
to recruit certain proteins for protecting the membrane-
bound vacuole and promoting intracellular partner-
ship[111]. H. pylori-specific genes, encoding proteins such 
as VacA, urease and peroxiredoxin, have been detected 
in the extracts of  oral and gastric yeasts[112]. Furthermore, 
western blotting performed on yeast extracts with anti-
bodies raised against H. pylori revealed the presence of  
proteins with molecular weights of  56, 36, 32, 26 and 
21 kDa, corresponding to the VacA large subunit, VacA 
small subunit[113,114], urease A subunit[115], peroxiredoxin 
and thiol peroxidase[116], respectively. These proteins were 
detected with antibodies such as the IgY-Hp polyclonal 
antibody, which is used as a powerful tool for detection 
of  H. pylori immunodominant proteins, such as the ure-
ase A and B-subunits, Hsp60, peroxiredoxin and thiol 
peroxidase[116]. Peroxiredoxin and thiol peroxidase may 
allow the bacteria to detoxify oxygen metabolites formed 
during processes such as the respiratory burst of  immune 
cells[111]. The bacterial urease and VacA have been recog-
nized as the two important H. pylori virulence factors that 
influence phago-lysosome fusion and bacterial survival in 
macrophages[46,117].

The IgY-Hp antibody has also been used as a marker 
for localization of  H. pylori inside vacuoles of  yeast (Fig-
ure 4)[108]. Additionally, whole cell H. pylori and H. pylori-
immunoreactivity have been observed in lamina propria 
of  gastric biopsy specimens[118]. Furthermore, the specific 
identity and localization of  immunoreactive H. pylori 
within defined membrane-bound vacuoles has been re-
vealed with confocal[119] and ultrastructural[120] microscopy. 
The preserved ultrastructural morphology and presence 
of  H. pylori-specific mRNA, detected with fluorescence in 
situ hybridization, indicated the viability of  these intracel-
lular bacteria[119,120].

CONCLUSION
Taken together, the data suggest that H. pylori are well-
equipped for invasion of  eukaryotic cells and survival 
within their vacuoles[108,112]. The intimate relationship 
between these two organisms suggests that yeasts are the 
unknown non-human source from which H. pylori were 
able to infect humans as early as 100000 years ago[121]. Es-
tablishment of  H. pylori inside the ubiquitous yeast might 
explain why such a fastidious bacteria is able to survive 
outside the human stomach and remain highly prevalent 
in certain populations, with yeast acting as a Trojan horse, 
ferrying the potentially infectious H. pylori into the GI 

tract environment. It is possible that the unique property 
of  ergosterol dependence in H. pylori evolved as the re-
sult of  adaptation to life inside the yeast vacuole, show-
ing the crucial role of  this organelle in the evolution and 
persistence of  H. pylori. Further studies will elucidate how 
the intracellular life of  H. pylori inside yeast influenced 
its adaptation for existence in the human stomach and 
long-term colonization of  gastric epithelium, as well as 
provide insight regarding the remarkable heterogeneity 
of  virulence determinants, and resistance to antibiotics 
and the immune system. Furthermore, examination of  
individuals within a population, with consideration of  
their yeast carriage, consumption of  foods containing live 
yeast and H. pylori infection status, will guide understand-
ing of  the spread of  H. pylori among humans.
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