
Shaping the oral mycobiota: interactions of opportunistic fungi 
with oral bacteria and the host

H Xu and A Dongari-Bagtzoglou*

Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of 
Connecticut, 263 Farmington Avenue, Farmington, 06030, CT, USA.

Abstract

The oral mycobiota is an important component of the oral microbiota that has only recently 

received increased attention. The diversity and complexity of the oral mycobiota in healthy 

humans is greater than any other body site. Dysbiotic imbalance of indigenous fungal 

communities in immunosuppressed hosts has been proposed to lead to oropharyngeal fungal 

infections. As in other body sites, to survive and thrive in the oral cavity fungi have to maintain 

mutually beneficial relationships with the resident bacterial microbiota and the host. Here we 

review our current understanding of the composition of the oral mycobiota and how it may be 

influenced by oral commensal bacteria and the host environment.
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Introduction

The oral microbiota is a complex ecosystem primarily represented by the bacterial and 

fungal Kingdoms. Although not yet fully established, it has long been assumed that fungi are 

a minor component of the oral microbiota, compared to prokaryotes. Shotgun sequencing 

studies are needed to confirm this assumption. With the advent of new high-throughput 

sequencing methodologies, global analyses of the oral bacterial Kingdom received much 

more attention over the past few years compared to fungi. This is because sophisticated 16S 

rRNA gene sequencing pipelines and a comprehensive, curated sequence database that 

facilitates accurate oral bacterial taxonomic assignment have been available to investigators 

[1]. As a result, the complexity and biodiversity of the bacterial component of the oral 

microbiota in health, and community shifts in common oral diseases such as periodontitis 

and caries have been well characterized [2–6]. However, despite the possibility that bacterial 
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community shifts in these diseases may be influenced by fungal shifts, only one study 

included simultaneous analysis of fungi [6].

The mycobiota is a medically important component of the oral microbiota since 

opportunistic fungal infections commonly afflict the oral mucosa of immunocompromised 

hosts. Most infections are triggered by the genus Candida and are assumed to result from an 

overgrowth of indigenous species in a permissive host environment [7]. However, because 

only recently a universal DNA barcode was described for fungal identification [8], no 

studies have explored the role of global fungal population shifts during oral fungal infection 

and the ecological determinants of these shifts. As fungal genomic technologies are 

developing, explorations of the human mycobiome in different body sites have started to 

shed some light on the complexity and heterogeneity of fungal communities at these sites 

[9–12]. Recently, two studies describing the oral mycobiota have also emerged [13,14]. 

These studies are important because they gave new insights on the complexity of the core 

oral mycobiota in health. However, they did not contribute significantly to a deeper 

understanding of the relationships between the mycobiota and the resident bacteria or the 

host in the healthy state.

As in other mucosal sites, to survive and thrive in the oral cavity fungi have to develop 

mutualistic relationships both with the indigenous bacterial microbiota and the host. 

Mutualistic interactions of fungi with commensal bacteria involve physical binding, 

communication via signaling molecules, and metabolic exchange during co-adaptation in the 

multiple oral micro-environmental niches [15]. In addition, alterations in the host 

environment are essential in shaping the fungal microbiota composition and in the 

development of fungal diseases [15–17]. Thus, fungi, bacteria and host form complex and 

dynamic ecological relationships in the oral cavity. In this review, we summarized the 

current state in our understanding of the influence of commensal bacteria and host 

environment on colonization patterns and virulence of oral opportunistic fungi.

Core oral fungal microbiota in health

Assembling accurate information on the diversity and composition of the healthy state or 

core mycobiota is important for subsequent studies of fungal community shifts in oral 

diseases. The first insight into the diversity and composition of the oral mycobiome in health 

came from Ghannoum and colleagues [14]. This group utilized a novel multitag 

pyrosequencing approach to investigate the fungal taxa in the oral cavity of 20 healthy 

individuals. The diversity of the oral mycobiota was exemplified by the discovery of 85 

fungal genera, including 74 culturable and 11 non-culturable [14]. Compared to the fungal 

diversity in skin and other mucosal sites this represents significantly greater diversity [17]. 

Increased diversity may be due to the constant exposure to environmental fungi via food 

intake and mouth breathing, and the diverse micro-environments present in the oral cavity 

which allow different taxa with unique nutritional requirements to thrive. This study used 

oral rinse samples, thus the diversity reflects the diversity in oral ecological niches such as 

the tongue, buccal mucosa and supragingival plaque. However, it is possible that the oral 

diversity was still underestimated since fungi forming tenacious biofilms with bacteria in 

anaerobic environments within gingival sulci or in periodontal pockets [18] are not well 
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represented in rinse samples. As expected, Candida species were most frequently identified 

(sequences detected in 75% of participants) and included one or more of the following 

species: C. albicans, C. parapsilosis, C. tropicalis, C. khmerensis and C. metapsilosis. Other 

oral fungal genera included Cladosporium, Aureobasidium, Saccharomycetales, Aspergillus, 

Fusarium, and Cryptococcus. Thirteen taxa were overall identified as core components of 

the “basal” oral mycobiome found in >20% of individuals sampled [14]. Interestingly, the 

true pathogenic fungi Aspergillus, Fusarium, and Cryptococcus, were identified as healthy 

oral colonizers for the first time. It is reasonable to hypothesize that these fungi may be 

under continuous surveillance and control by healthy immune systems. In this study low 

abundance (<1%) fungal sequences were not analyzed, potentially omitting low abundance 

organisms that may overgrow in disease states. Finally, the type of taxonomic analysis used 

may have led to the identification of a large percentage of sequences (36.1%) as non-

culturable fungi [14].

More recently, the core oral mycobiota was revisited in a pyrosequencing analysis of 

internal transcribed spacer 1 amplicons in saliva samples of 6 healthy subjects [8]. In order 

to capture low abundance genera that might be present in a relatively large percentage of 

healthy individuals, this study did not apply a 1% abundance threshold for further taxonomic 

analysis. Also, although the sampling method was similar to the earlier study of the oral 

mycobiome [14], taxonomic assignments were generated using a different database that 

excludes “uncultured” reference sequences. Despite the differences in methodology between 

the two studies there was substantial overlap in defining the core oral mycobiota. Seven 

consensus members of the core oral mycobiome, Candida/Pichia, Cladosporium/Davidiella, 

Alternaria/Lewia, Aspergillus/Emericella/Eurotium, Fusarium/Gibberella, Cryptococcus/

Filobasidiella, and Aureobasidium were identified [13,14]. Five genera that were identified 

in all healthy individuals only in the second study [13], were Malassezia, Irpex, Cytospora/

Valsa, Lenzites/Trametes, and Sporobolomyces/Sporidiobolus. Although Malassezia is a 

bona fide human skin commensal and pathogen [19], it was also identified in the sputum of 

all cystic fibrosis patients sampled by Hogan and co-workers [12], suggesting that the oral 

cavity may be a portal of entry for this organism into the respiratory tract under 

compromising host conditions. The other four genera are common soil and/or plant 

pathogens, raising the possibility that they are transient and not stable colonizers of the oral 

cavity. Longitudinal sampling of the same individuals is required to resolve this issue.

Several challenges remain in interpreting and integrating data on the composition of the core 

oral mycobiota using fungal genomic or metagenomic approaches from different groups. 

First, there is lack of uniformity in the utilization of curated databases among studies. Since 

fungal taxonomic nomenclature differs in each database, and in fact is continuously evolving 

as more sequences become available, interpretation of sequence data from different groups 

becomes a formidable task [17,20]. Although further curation is needed, a recently updated 

ITS1 sequence database for use in the Visualization and Analysis of Microbial Population 

Structures website, may provide a useful tool for more standardized metagenomic analyses 

of human samples by different groups [12]. Second, a consensus abundance level in each 

sample that “qualifies” sequences for further taxonomic analysis is lacking. This may affect 

our ability to discriminate between transient environmental passers-by and low abundance 
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but stable colonizers. Thirdly, because of large subject to subject variability in sequencing 

data [13,14], the number of healthy individuals sampled may have a great impact on which 

fungal genera are identified as members of the core fungal microbiota. The identification of 

a large proportion of sequences as unculturable fungi [14] and challenge in utilizing culture 

methods to verify sequence data, sometimes even for culturable species [21], raises the 

question whether these data should be verifiable with culture approaches before new 

organisms are “fully vetted” as bona fide members of the core mycobiota.

Influence of host environment on the oral mycobiota

Several core components of the oral mycobiota are stable intra-individually over time but 

variable between healthy individuals [22]. However, virtually nothing is known about host 

factors affecting the composition of the oral mycobiota in health that could explain the inter-

individual variability. Ghannoum and co-workers suggested that such differences may be 

associated with gender or ethnicity, but evidence is weak due to limited sample size and lack 

of consistency across all gender groups and ethnicities [14].

Systemic host health alteration is associated with most oral fungal diseases, regardless of 

whether they result from overgrowth of indigenous species as in the case of candidiasis, or 

from exposure to environmental pathogens, as in the case of oral histoplasmosis. This 

underpins the universal importance of a permissive host environment in influencing 

colonization or overgrowth of fungal organisms in the oral cavity. Although alterations of 

host immunity have been hypothesized to directly impact the core oral mycobiota 

composition leading to a disease-promoting dysbiotic state, there are limited studies to date 

that have examined global oral fungal community shifts in immunosuppressed humans. A 

global analysis using 454 pyrosequencing showed a significant shift in the oral mycobiome, 

with Epicoccum and Alternaria abundantly colonizing HIV-infected patients but not healthy 

individuals, whereas Candida was abundant in both groups [16]. In pharmacologically 

immunosuppressed solid organ transplant recipients both culture and pyrosequencing studies 

showed the oral mycobiota to be dominated by Candida species [23–25]. Candida species 

load and diversity were positively correlated with the dose of mycophenolate mofetil in a 

renal transplant population, suggesting a causal link [24].

Several types of genetic disorders are also associated with Candida overgrowth and 

increased risk of infection, such as chronic mucocutaneous candidiasis and the autoimmune 

polyendocrine syndrome type I [17]. However, global changes in other members of the oral 

mycobiota have not been examined in these conditions. A common underlying link between 

all known host systemic conditions associated with oral Candida overgrowth is functional 

immunodeficiency in the Th17 CD4+ cell subset, confirming their central role in mucosal 

protection.

The innate oral epithelial fungal recognition systems and subsequent responses that drive a 

protective Th17 immunity in the oral mucosa are presently unclear. Toll-like receptors, 

NOD-like receptors, and/or C-type lectin receptors may survey fungi that come in contact 

with the superficial oral epithelial cell layers and trigger appropriate responses controlling 

the growth of certain fungal species, while sparing others, to maintain a homeostatic 
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balance. Along these lines an analysis of the intestinal mycobiota in Dectin-1 knout-out 

mice with experimentally-induced colitis showed that the proportion of opportunistic 

pathogenic fungi including Candida and Trichosporon increases, whereas nonpathogenic 

Saccharomyces decrease [26], which suggests that dectin-1 has role in maintaining a 

homeostatic fungal community balance in the gut. Whether the oral mycobiota is similarly 

affected by a functional deficiency in recognition receptors is unknown, although C-type 

lectin receptors such as CLEC6A have been proposed as suitable candidates [17]. On the 

other hand, a fungal-bacterial dysbiotic state associated with overexpression of certain oral 

epithelial pattern recognition receptors, such as TLR2, may lead to an aggravated 

inflammatory response to fungal opportunistic pathogens, that promotes neutrophil-mediated 

oral pathology [27].

Influence of oral bacteria on the mycobiota

There is a growing understanding that bacterial and fungal communities are integrally 

associated in the oral cavity, since they occupy the same micro-environmental niches. 

However, only two studies to date have examined both the bacterial and fungal component 

of the microbiota in the same oral samples using next generation sequencing [16, 23]. The 

two studies tested the hypothesis that in immunosuppressed states oral fungal community 

shifts are accompanied by shifts in bacterial communities. However, a study of HIV+ 

individuals reported that fungal community shifts occurred in the absence of significant 

bacterial shifts [16]. Despite this general observation, some data in this study suggested that 

positive associations between certain fungal and bacterial taxa identified in health, 

diminished and even became negative in the HIV+ host background [16]. A study conducted 

in lung transplant recipients showed distinct shifts in both the bacterial and fungal 

oropharyngeal communities associated with immunosuppression [23]. However this study 

did not perform statistical analyses to evaluate the strength of associations between specific 

bacterial and fungal genera. Interestingly, the vast majority of lung transplant recipients 

were co-colonized with an increased abundance of Streptococci and Candida species [23].

Because Candida species are the most amenable to isolation, identification and culture, 

culture studies have concentrated on the effects of bacteria on this genus. Changes in 

bacterial diversity or abundance by antibiotic treatments may increase oral Candida growth 

in humans, albeit with lower frequencies or intensities compared to other mucosal sites [28]. 

In immunocompromised patients on long-term prophylactic antibiotics erythematous 

candidiasis is common [29], but the combined effects of antibiotics and immunosuppression 

may be required for fungal infection. There are no high-throughput sequencing studies on 

the effect of antibiotics on the oral mycobiota in humans or animals.

Interestingly, a triple antibiotic combination treatment that significantly diminished gut 

bacterial diversity in mice, resulted in sustained, high-level GI colonization with C. 

albicans, a species not indigenous to mice. Even more interesting was the fact that high-

level C. albicans colonization in antibiotics-treated mice was associated with high 

probability of increased relative abundance of Streptococcus [21]. These results are in 

agreement with the reduced bacterial diversity and high levels of oropharyngeal colonization 

with Streptococci and Candida in lung transplant recipients receiving antibiotic prophylaxis 
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[23]. Taken together, these reports suggest that Streptococci and C. albicans may interact 

through several molecular mechanisms to promote synergistic upper and/or lower GI tract 

colonization in mammalian hosts.

Because C. albicans and viridans Streptococci are dominant oral commensals in humans, the 

molecular mechanisms of their interaction have been extensively studied and include 

physical adhesion, signaling molecules and metabiotic molecules that may influence fungal 

growth, gene expression and pathogenicity [reviewed in 15]. Early studies showed viridans 

species to form biofilm communities with C. albicans in vitro in which the hyphal biomass 

was enhanced [30,31]. Co-aggregation interactions between C. albicans and oral 

Streptococci are mediated by adhesins that are multifunctional proteins [32–34]. Co-

aggregation also requires fungal O-Mannosylation and benefits from the synthesis of 

bacterial and fungal exopolymers such as soluble α- and β-glucans [35–38]. Oral 

Streptococci can have a positive effect on hyphal growth via quorum sensing molecules, 

such as autoinducer-2, and small metabolic molecules, such as hydrogen peroxide [8,39]. 

Gene expression analysis of C. albicans forming polymicrobial biofilms with oral bacteria in 

vitro showed that known virulence genes encoding certain secreted aspartyl-proteinases 

(SAP4/SAP6) were up-regulated [40]. Altering virulence gene expression patterns as a result 

of cell-cell signaling in polymicrobial biofilms may play a significant role in disease 

development.

It is possible that positive fungal-bacterial interactions result in enhanced fungal 

colonization of sites favored by bacteria that may otherwise not be populated by fungi, as in 

the case of the mouse gut or human tooth surfaces by C. albicans [18,21]. Increased fungal 

colonization of ectopic sites combined with increased virulence gene expression may 

promote disease development in these sites. Although strong evidence of pathogenic 

synergy in humans is lacking, organotypic model and animal studies showed that certain 

oral streptococcal species display synergistic virulence with C. albicans on oral mucosal or 

tooth surfaces [27, 37, 40, 41].

Future directions

The roles that individual members of the core oral mycobiota may play in the community 

dynamics that sustain health or promote disease remain to be elucidated. Characterizing the 

interactions of newly recognized members of the core oral mycobiota with dominant 

Candida and Streptococcal species and assessing their impact on community development is 

an important first step in our understanding of the role of these fungi in health or disease. A 

reappraisal of the pathoecology of common oral fungal diseases such as oropharyngeal 

candidiasis using metagenomic sequencing is currently needed. Shotgun sequencing 

approaches may not only reveal new fungal genera associated with fungal disease but may 

also unveil previously unrecognized roles for oral bacteria or the host response in 

pathobiology. Improved statistical models to more accurately estimate the effect size of host 

and bacterial parameters have to be employed in such high-throughput surveys [21].

The representation of unculturable fungi in healthy and disease states needs to be accurately 

assessed and progress needs to be made in their culturability. Microbial loads in addition to 
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mere presence of certain species have to be assessed, as there is considerable overlap in 

species community membership in oral health and disease for both fungal and bacterial 

organisms [3,15]. However, even when coupled with qPCR quantification [12], next 

generation sequencing data cannot differentiate between live and dead organisms. Until 

these methods are optimized to prevent genomic amplification in non-viable cells, 

microscopic, culture and/or biochemical approaches will be needed for definitive species 

identification or quantification. In addition, coupling phenotypic heterogeneity with genomic 

information (reviewed by Scaduto and Bennett, this issue), as in white, opaque, or grey cell 

morphologies associated with ploidy in Candida (reviewed by Gerstein and Berman, this 

issue), holds great promise in identifying novel community-based traits associated with 

health or disease states. Finally, development of appropriate infection models to include 

fastidious fungal organisms in the study of microbial community-level interactions with the 

host, coupled with integrated systems-based approaches, are needed to improve our 

understanding of the transition to dysbiosis and loss of homeostasis in the oral mucosa.
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Highlights

The membership of the core oral mycobiota in health has been defined

Global community shifts in disease have not been identified yet

Host influences composition and pathogenic activity of the oral mycobiota

Commensal bacteria may contribute to a fungal dysbiosis
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