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From seeds of Nigella sativa L. (Ranunculaceae), an endemic plant of Uzbekistan, two novel defensins
named Ns-D1 and Ns-D2, were isolated and sequenced. The peptides differ by a single amino acid residue
and show high sequence similarity to Raphanus sativus L. defensins Rs-AFP1 and Rs-AFP2. The Ns-D1 and
Ns-D2 defensins display strong although divergent antifungal activity towards a number of phytopath-
ogenic fungi. High antifungal activity of N. sativa defensins makes them promising candidates for
engineering pathogen-resistant plants.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Antimicrobial peptides (AMPs) are the ancient and widespread
players of the defense system in all multicellular organisms [17,61].
Most of them exhibit broad-spectrum antimicrobial activity. Some
AMPs act through nonspecific interaction with cytoplasmic
membranes leading to disruption of the lipid bilayer and lysis of the
pathogen’s cells, while others exploit a more sophisticated
receptor-mediated mechanism. Intracellular targets for some plant
AMPs have also been suggested [18].

Several families of AMPs have been reported in plants on the
basis of sequence similarity and the so-called cysteine motifs [10].
Defensins represent a unique AMP family widely spread both in
animals and plants. Plant defensins are small (45—54 amino acids)
basic peptides containing 4 disulphide bridges with a single
exception of flower defensins, which possess 5 disulphide bonds
[20]. Plant defensins show structural and functional similarity to
defensins of insects [11], mammals [48], and fungi [38].

Defensins have been identified in a vast majority of plant
families including Poaceae [7,32,33], Brassicaceae [9], Fabaceae

Abbreviations: AMP, antimicrobial peptide; TFA, trifluoroacetic acid; MALDI-
TOF-MS, matrix-assisted laser desorption/ionization-time of flight-mass spec-
trometry; RP-HPLC, reversed phase high performance liquid chromatography;
EDTA, ethylenediaminetetraacetic acid; DTET, dithioerythritol.
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[19,29], Chenopodiaceae [22], Asteraceae [68], Solanaceae [14,35],
Liliaceae [16], Hippocastanaceae [43], Ginkgoaceae [50], Rosaceae
[64], Amaranthaceae [47], Cucurbitaceae [13], and even in
gymnosperms [49]. Most plant defensins were isolated from seeds
[65,66], however they were also found in other plant organs, such
as leaves [24,56], flowers [21,26], tubers [37], seedpods [4] and
fruits [35,41]. Some members of the family are induced upon
pathogen attack, while others are constitutively expressed in
particular tissues or organs [1,36].

Most plant defensins display antifungal activity [5,37,42,51,54,63],
some of they are active against bacteria [12,23,54,55]. Inhibition of
protein synthesis in cell-free systems [32,33], inhibition of alpha-
amylases [7,27,28,43,45] and proteinases [31], blockage of L-type
Ca** [52] and sodium channels [25], cytotoxic activity on human
tumor cell lines [5,44,65], and even on particular plant cells [68] have
also been reported. Dual function in defense and development has
been recently demonstrated for tomato defensins [53].

The mode of action of plant defensins has been extensively studied
[58,59,60]. They are supposed to interact with specific sphingolipids
on the fungal membranes [58,59,60]. For some members of the
family penetration through the membrane and interaction with
intracellular targets have been demonstrated [29,62].

The objective of this work was to isolate and characterize defen-
sins from blackseed, an endemic plant of the Republic of Uzbekistan.
To the best of our knowledge, defensins from plants of the Ranun-
culaceae family have not been studied so far. This work continues our
research on AMPs from wild plant species. The genus Nigella


mailto:rea21@list.ru
www.sciencedirect.com/science/journal/09819428
http://www.elsevier.com/locate/plaphy
http://dx.doi.org/10.1016/j.plaphy.2010.10.008
http://dx.doi.org/10.1016/j.plaphy.2010.10.008
http://dx.doi.org/10.1016/j.plaphy.2010.10.008

132 E.A. Rogozhin et al. / Plant Physiology and Biochemistry 49 (2011) 131-137

comprises 20 species growing in the south of Europe, North America
and South-West Asia [2]. Seeds of blackseed are traditionally used as
spices and in folk medicine [3,67]. Seed extracts of Nigella sativa
display cytotoxic and anticarcinogenic activity in vitro [30]. Only
organic compounds (alkaloids, steroids, carbohydrates, flavonoids,
fatty acids etc.) of blackseed have been characterized so far [6,34].

2. Results
2.1. Isolation of Ns-D1 and Ns-D2

Purification of defensins from N. sativa seeds included several
chromatographic procedures. At each stage the molecular masses of
the obtained fractions were measured by MALDI-TOF-MS, and
fractions containing peptides in the molecular mass range from 3 to
6 kDa were selected for peptide purification. By affinity chroma-
tography four fractions were obtained (data not shown). Fraction 2,
which eluted at 100 mM NaCl concentration, was enriched in
5—6 Da and 8—11-Da peptides. This fraction was further separated
by ion-exchange chromatography (Fig. 1A), four fractions were
recovered. Fractions 1 and 2 contained mainly proteins (11—12 kDa),
fraction 3 was enriched in peptides in the molecular mass range
from 5 to 6 kDa, fraction 4 was composed predominantly of
peptides of 7—10 kDa. The peptide-containing fraction 3 was further
fractionated by RP-HPLC (Fig. 1B). As a result, two peptides named
Ns-D1 and Ns-D2, whose molecular masses were 5476.3 Da and
5492.4 Da, respectively, were purified from N. sativa seeds.

2.2. Determination of Ns-D1 and Ns-D2 amino acid sequences

Estimation of mass differences between the reduced and alky-
lated peptides and the native peptides showed that Ns-D1 and Ns-
D2 contained 8 cysteine residues. Alkylation of native peptides
without preliminary reduction demonstrated the absence of free
sulfhydryl groups providing evidence of all 8 cysteine residues in
Ns-D1 and Ns-D2 being involved in 4 intramolecular disulphide
bonds. N-terminal sequencing allowed us to determine 30 amino
acids of both peptides, which were identical. Homology search in
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Fig. 1. Isolation of blackseed defensins: (A) ion-exchange chromatography of fraction 2
obtained by affinity chromatography; (B) RP-HPLC of fraction 3 obtained by ion-
exchange chromatography.

the UniProt database showed that Ns-D1 and Ns-D2 belong to the
defensin family. To determine the complete sequences the peptides
were cleaved with the Glu-C proteinase at Glu-4 and Glu-28, and
the resultant peptides were separated by RP-HPLC (data not
shown). For Ns-D1 the molecular masses of the major peptide
fractions were 2999.1 and 2495.8 Da, and for Ns-D2, 2999.3 and
2510.4 Da. Mass analysis allowed us to assign the masses 2999.1
and 2999.3 Da to the N-terminal region of both peptides, while the
2495.8-Da and 2510.4-Da peptides, to their C-terminal regions.
Sequencing of the C-terminal regions of Ns-D1 and Ns-D2 enabled
us to reconstruct the primary structure of Ns-D1 and Ns-D2
peptides (Fig. 2). They consist of 50 amino acid residues and differ
by a single amino acid residue at position 39: in Ns-D2 proline is
replaced by leucine. The calculated molecular masses of both
peptides (5475.4 Da for Ns-D1 and 5491.4 Da for Ns-D2) agree well
with the measured values indicating the absence of other post-
translational modifications except for disulphide bonds.

Fig. 2 shows the alignment of blackseed defensin sequences with
those of other defensins. The highest sequence identity was
observed with Raphanus sativus defensins (43 identical amino acids
including conserved substitutions), for which the three-dimen-
sional structure is available [15,46]. This structure was used as
a template to model the three-dimensional structure of N. sativa
defensins. The modeled structure of N. sativa consists of an alpha-
helix and three beta-strands connected by loops, a structure shared
by all plant defensins (Fig. 3). Variable residues are shown in cyan
color. The residues assumed to be vital for antifungal activity of R.
sativus defensins and that differ from N. sativa defensins are located
in the loop connecting beta2 and beta3: Val-39 in R. sativus
substituted for Lys-38 in both N. sativa defensins, Phe-39 in R. sativus
replaced for Pro-39/Leu-39 in Ns-D1 and Ns-D2, respectively.

2.3. Antifungal activity of Ns-D1 and Ns-D2

The results of antifungal assays of the Ns-D1 and Ns-D2 defen-
sins are shown in Table 1, indicating high antifungal activity of both
N. sativa defensins. The ICsq values for all fungi tested (except for
Botrytis cinerea) were below 10 ug/ml (Table 1). The most
pronounced effect was observed on growth of Bipolaris sorokiniana
hyphae (ICs¢ = 1.8 ug/ml). Analysis of conidia germination in the
presence of blackseed defensins by light microscopy showed that
they had no effect on spore germination, but inhibited hyphal
growth. However, we observed spore destruction in the presence of
defensins in germinated conidia as illustrated by Fig. 4. Despite
minor amino acid sequence variation, N. sativa defensins differed in
their antifungal activity. Thus, Ns-D2 was more active than Ns-D1 in
inhibiting growth of B. sorokiniana, Fusarium oxysporum and B.
cinerea. The effect of both defensins on Aspergillus niger, Fusarium
graminearum and Fusarium culmorum was similar. The minimum
inhibitory concentration producing the maximum effect (MIC) for
Fusarium species was the same for both defensins and equal to
55 pg/ml (81-86% growth inhibition against control), for B. sor-
okiniana (92% inhibition) — 27.5 (Ns-D1) and 55 (Ns-D2) pg/ml. For
other fungi, MIC was also the same for both defensins — 55—82 g/
ml (65—70% inhibition relative to the control). For both defensins an
increase in peptide concentration to 110 pug/ml did not lead to
enhanced inhibition. In addition to inhibition of hyphae elongation,
N. sativa defensins induced morphological changes in conidia of A.
niger, B. sorokiniana, F. oxysporum, F. graminearum and F. culmorum
with a similar effect on fungi belonging to the same genus, while the
effect on fungi of different genera varied. Morphological changes in
B. sorokiniana conidia after 48 h of incubation with Ns-D2 are shown
in Fig. 4. As seen from this figure, the destruction of spores corre-
lated with defensin concentration. The degree of morphological
changes in conidia caused by Ns-D1 and Ns-D2 also differed. Ns-D1
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Fig. 2. Multiple sequence alignment of selected plant defensins. Accession numbers of the presented sequences in NCBI and UniProtKB database are as follows: Ns-D1 and Ns-D2
(this work), Rs-AFP1 (AAA69541), Rs-AFP2 (AAA69540), Br-AFP1 (ADA70735), Br-AFP2 (BAH82667), Bn-AFP1 (Q39313), At-AFP1 (NP_565119), Sa-AFP1 (P30231), Sa-AFP2 (P26780),
Ah-AMP1 (AAB34970), Ct-AMP1 (AAB34971), Dm-AMP1 (AAB34972), Hs-AMP1 (AAB34974). Amino acid residues in defensins that differ from Ns-D1 and Ns-D2 are shown in dark
gray. A single substitution that distinguishes Ns-D1 from Ns-D2 is shown in light gray. Secondary structure elements (¢-helix and B-strands) in Rs-AFP1 are given below.

and Ns-D2 caused disruption of cell walls and membranes in
15—17% of B. sorokiniana conidia, however, the destructive processes
in B. sorokiniana conidia started at Ns-D2 concentration of 6.9 pg/ml,
and completed at 55 pg/ml. The concentrations of Ns-D1 required
for induction of the same morphological changes were 13.6 to
110 pg/ml, respectively. Both defensins provoked similar morpho-
logical changes in A. niger conidia, however only 5—7% of conidia
were affected at defensin concentration of 27.5 pg/ml. N. sativa
defensins induced vacuolization of germinated macro- and micro-
conidia in Fusarium species. The effect was observed in 40% of F.
oxysporum conidia and 25% of F. graminearum and F. culmorum
conidia at Ns-D1 or Ns-D2 concentration of 13.7 ug/ml.

The results of Phytophthora infestans growth inhibition on potato
tubers are shown in Table 2. The degree of inhibition was estimated
by the size of the infected area of the disc. After 96 h of incubation
the development of disease symptoms was below 10% at Ns-D1

concentration of 3.4 pug/ml and Ns-D2 concentration of 13.6 pg/ml.
After 120 h of incubation the inhibitory effect was less clear-cut and
was estimated 15—17% at defensin concentration of 13.6 pg/ml.
Persistent inhibitory effect (less than 10% of infected area) was
achieved only at Ns-D2 concentration of 55 pug/ml. After 144 h of
incubation the minimum inhibitory effect was observed at Ns-D1
concentration of 27.5 pg/ml and Ns-D2 concentration of 13.6 pg/ml
(Table 2). An increase in defensin concentration to 110 pg/ml did
not result in enhanced inhibition of Ph. infestans growth.

2.4. Antibacterial activity of Ns-D1 and Ns-D2

Antibacterial activity was evaluated by radial diffusion assay
after 48 h of incubation. The results showed that blackseed
defensins in addition to antifungal activity, inhibited growth of
Gram-positive and Gram-negative bacteria (Table 3). The degree of

Fig. 3. Three-dimensional models of blackseed defensins. 3D structure of radish defensin Rs-AFP1 is given for comparison [15]. A and D, Rs-AFP1 (accession number in PDB — 1AY]);
Band E, Ns-D1, C and F, Ns-D2. Variable residues between blackseed and radish defensins are shown in cyan color (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.).
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Table 1
Antifungal activity of Ns-D1 u Ns-D2.?
Fungus Defensin
Ns-D1 Ns-D2
A. niger 35 3.5
B. sorokiniana 3.0 1.8
F. oxysporum 9.5 53
F. graminearum 6.9 6.9
F. culmorum 6.9 6.9
B. cinerea 274 13.7

2 1Csq values in pg/ml are given.

inhibition depended on the species tested. Of the bacteria exam-
ined, Escherichia coli was the least affected. The Ns-D2 defensin
produced a more pronounced effect on growth of colonies of
Erwinia carotovora and Bacillus subtilis than Ns-D1 (Table 3).

3. Discussion

In this work, we isolated and sequenced two novel highly
homologous and biologically active defensins Ns-D1 and Ns-D2
from N. sativa seeds. For the first time defensins from the Ranun-
culaceae family have been analyzed. Blackseed defensins showed
the highest sequence similarity (73%) to earlier described defensins
Rs-AFP1 and Rs-AFP2 from R. sativus seeds belonging to the Bras-
sicaceae family [46,54,55,56,57] providing evidence for the
conservation of the defensin structure among evolutionary
diverged plant species. Less amino acid sequence homology was
revealed with defensins belonging to other plant families, such as
Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae (Fig. 2).

Structure—function relationships in AMPs remain the most
intriguing area of research. Earlier it was shown that Rs-AFP2
possesses two sites of antifungal activity. The first site comprises
the residues Tyr-38, Phe-40, Pro-41, Ala-42, Lys-44 and Ile-46. The
second site is formed by Thr-10, Ser-12, Leu-28 and Phe-49 [46].
Amino acid sequence comparison of N. sativa and radish defensins
shows that although they differ in 8 nonconserved substitutions,
the residues of the second antifungal site are well preserved taking
into account a conserved substitution of Phe in Rs-AFP2 for Tyr in
Ns-D peptides. As clearly shown for radish defensins, a substitution

of a hydrophobic residue Phe-49 for a basic residue Arg in Rs-AFP2
dramatically decreased antifungal activity against F. culmorum both
under low- and high-salt conditions [46]. However the conserved
Phe-49/Tyr substitution in Ns-D defensins seems unlikely to affect
antifungal activity. In contrast to the second site, the amino acid
residues of the first antifungal site are less conserved in blackseed
defensins. The most prominent substitution is the replacement of
Phe-40 in Rs-AFP2 for Pro and Leu in Ns-D1 and Ns-D2, respec-
tively. Mutational analysis of Rs-AFP2 showed that substitution of
Phe-40 located in the loop connecting beta2 and beta3 for Met
decreased antifungal activity of the peptide [46]. This replacement
is most likely responsible for a little bit lower antifungal activity of
blackseed defensins against B. cinerea and F. culmorum as compared
to exceptionally active radish defensins and supports the role of
this residue in antifungal activity. The significance of Val/Lys
substitution at position 39 is unclear. As shown for radish defen-
sins, the effect of Val/Arg substitution at low salt conditions
depends on the fungus tested. [46]. Our results demonstrate that
Ns-D2 is more potent in inhibiting hyphal growth of a number of
fungi (B. sorokiniana, F. oxysporum, B. cinerea), this peptide is also
a more potent inhibitor of Ph. infestans infection (Table 2). Higher
biological activity of Ns-D2 most likely arises from the substitution
of Pro for a more hydrophobic residue Leu-39, since it is a single
amino acid that discriminates two peptides, thus providing another
convincing evidence for the significant role of this residue in the
antifungal activity of the peptide.

In addition to antifungal activity of blackseed defensins, they
also inhibited growth of Gram-positive and Gram-negative bacteria
(Table 3). The effect on Gram-negative bacteria strongly depended
on the species tested, with nonpathogenic E. coli being the least
sensitive bacterium and Pseudomonas syringae, the most sensitive
one. Highly homologous radish defensins failed to inhibit growth of
the bacteria tested (B. subtilis, Micrococcus luteus, Staphylococcus
aureus and Streptococcus faecalis) at concentrations below 200 pg/
ml [43]. We suppose that the effect on bacteria of N. sativa defensins
may be associated with the substitution of Val-39 for a positively
charged Lys contributing to a higher positive charge of the active
site of the molecule interacting with the negatively charged phos-
pholipids of bacterial membranes.

In summary, two novel highly homologous defensins Ns-D1 and
Ns-D2 have been isolated from seeds of backseed N. sativa. This is

Fig. 4. Morphological changes in B. sorokiniana conidia after 48 h incubation with Ns-D2. (A) Control conidia; (B—F) Conidia at different Ns-D2 concentrations: 6.9 ug/ml (B), 13.8 pg/

ml (C), 7.5 pg/ml (D), 55 pg/ml (E), 110 pg/ml (F).
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Table 2
Inhibitory activity of blackseed defensins on disease development caused by Ph.
infestans.?

Concentration, pg/ml Incubation time, h

96 120 144
55.0 b+ [+ +++
27.5 +H4+++ ++[++ ++
13.6 A4+ +H[++ [+
6.8 [ +++ ++ —/-
34 [+ ++ /-

2 “4++” —disease development below 10% of infected area; “++” — below 20% of
infected area; “+" — below 40% of infected area; “—" — disease development above
40%. For details see “Material and methods, Section 4.10". The first number in the
column refers to Ns-D1 and the second to Ns-D2.

the first report on defensins from plants of the Ranunculaceae
family. Minor variation in amino acid sequence between the two
defensins (a single amino acid substitution) results in changes in
biological activity, with the Ns-D2 defensin being more active than
Ns-D1 indicating the importance of the residue at position 39 for
the antifungal activity of blackseed defensins. N. sativa defensins
provide another spectacular example that minor variation in amino
acid sequences can alter the biological activity of defensins. Similar
observations were made for two radish defensins Rs-AFP1 and Rs-
AFP2 [43] and Echinochloa crusgalli defensins [39]. Blackseed
defensins exhibit high antifungal activity inhibiting growth of
hyphae and causing spore destruction in a number of fungal
pathogens. In contrast to earlier described R. sativus defensins, they
show antibacterial activity as well.

The results obtained demonstrate the potential of wild plants as
valuable donors of potent AMPs expanding the list of candidate
genes for engineering pathogen-resistant crops.

4. Materials and methods
4.1. Plant material

Seeds of N. sativa L. (Ranunculaceae) collected in the Republic of
Uzbekistan in 2008 were used in this study.

4.2. Microorganisms

The pathogens used were as follows E oxysporum strain 16/10, B.
cinerea strain SGR-1 isolated from infected plants in the Timiryazev
Agricultural Academy, E graminearum strain VKM F-1668, E cul-
morum strain VKM F-2303, B. sorokiniana strain VKM F-1446, A.
niger strain VKM F-33 from the All-Russian Collection of Microor-
ganisms, Ph. infestans strain OSV 12, obtained from the Institute of
Plant Protection of the Republic of Belarus’, P. syringae strain VKM
B-1546 and E. carotovora strain VKM B-1247 from the All-Russian
Collection of Microorganisms, B. subtilis, Clavibacter michiganensis,
and E. coli were obtained from the Collection of the Institute of
General Genetics of the Russian Academy of Sciences.

Table 3
Antibacterial activity of blackseed defensins.?

4.3. Defensin isolation

Seeds of N. sativa (100 g) were ground to a fine powder in a coffee
mill. Seed flour was homogenized in 10% acetic acid (1:7, w/v) in the
presence of the inhibitor cocktail (Sigma) for 2 h at 20 °C with
constant stirring. The homogenate was centrifuged at 4500 rpm for
20 min at 4 °C. The pellet was discarded, the supernatant was
filtered through the paper filter (Whatman, USA) and concentrated
four-fold in a rotor concentrator (IKA, Germany). Proteins and
peptides were precipitated with six volumes of ice-cold acetone
overnight at 4 °C. The pellet was collected by centrifugation at
4500 rpm for 15 min and air-dried at room temperature. The
precipitate was dissolved in 48 ml 0.1% TFA (solvent A) and desalted
by RP-HPLC on an Aquapore C8 column (10 x 100 mm) (Applied
Biosystems, USA) at a flow rate of 1.2 ml at 38 °C. After washing salts
and other unadsorbed components proteins and peptides were
eluted with 75% solvent B (solvent B: 80% acetonitrile in 0.1% TFA).
The obtained fraction was concentrated using a Speedvac concen-
trator (Savant, USA) and freeze-dried on a Labconco liophilyzer
(USA). The pellet was dissolved in 48 ml of 10 mM tris—HCI, pH 7.2
and loaded onto a Heparin HiTrap-Sepharose column (5 ml, GE
Healthcare, USA). After elution of unbound fraction, proteins and
peptides were eluted with a step-wise NaCl gradient (100 mM, 500
MM and 1 M) in 10 mM tris—HCI buffer, pH 7.2 at a flow rate of 1 ml/
min and detected at 280 nm. The fraction eluted at 100 mM NacCl
concentration was further separated by cation-exchange chroma-
tography on a CM-52 column (16 x 100 mm, Whatman, USA) in
10 mM tris—HCl buffer, pH 7.2 containing 100 MM NaCl,. Proteins and
peptides were eluted with a linear NaCl gradient (100—300 mM) in
10 mM tris—HCl buffer, pH 7.2 for 90 min at a flow rate of 1 ml/min
and room temperature and detected at 280 nm. Final purification of
peptides was performed by RP-HPLC on a ReproSil-Pur 300 ODS-3
(4.6 x 250 mm, particle size 5 micron, “Dr. A. Marsch Ammerbuch”,
Germany) in a linear acetonitrile gradient (10—50% B) (solvent B as
above) for 1 h at a flow rate of 0.7 ml/min and 38 °C. Elution of
peptides was monitored at 214 nm.

4.4. MALDI-TOF-MS analysis

Molecular masses of proteins and peptides were measured on
an Ultraflex MALDI mass spectrometer (Bruker Daltonics, Germany)
in a positive ion mode. 2,5 Dihydroxybenzoic acid was used as
a matrix. Mass spectra were analyzed with Bruker DataAnalysis for
TOF software. The accuracy of mass determination was 0.015%.

4.5. Determination of peptide concentration

Peptide concentration was determined by RP-HPLC chroma-
tography on a C;g Luna column (4.6 x 150 mm, Phenomenex, USA)
calibrated with bovine insulin. The peptides were eluted with an
acetonitrile gradient (10—50% B) for 30 min at a flow rate of
0.75 ml/min at 38 °C and detected at 214 nm.

Defensin concentration (pg in 50 ul)

Inhibition zone including the sample application zone (in cm)®

Clavibacter michiganensis

Pseudomonas syringae

Erwinia carotovora Escherichia coli Bacillus subtilis

11.0 1.4/15 13/13
55 12/12 12/13
225 0.9/1.0 1.0/1.1

0.9/1.3 0.7/0.7 12/14
0.6/1.2 0.6/0.7 1.2/13
0.6/0.8 0.6/0.6 1.0/1.0

2 Sample volume 50 pl.

b Size of the peptide application zone 0.5 cm, the first number refers to Ns-D1 and the second to Ns-D2.
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4.6. Reduction and alkylation

Peptides (2 nm) were dissolved in 35 pl of 6 M guanidine
hydrochloride containing 3 mM EDTA in 0.5 M tris—HCI, pH 7.8.
Four microliters of 1 M dithioerythrol (DTET) in 2-propanol were
added to the solution. The reaction proceeded under argon for 4 h at
40 °C. For alkylation 4 pl of 50% (v/v) 4-vinylpyridine in 2-propanol
were added to the reaction mixture and incubated 20 min in the
dark. The mixture was then diluted with 40 pul of 0.1% TFA, and the
products of the reaction were separated by RP-HPLC on a Luna Cg
column (10 x 250 mm, Phenomenex, USA) in a linear acetonitrile
gradient (10—50%B) for 40 min at a flow rate of 0.75 ml/min.
Peptides were detected at 214 nm. To determine the presence of
free thiol groups peptides were alkylated without preliminary
reduction.

4.7. Amino acid sequencing

Reduced and alkylated peptides were sequenced by automated
Edman degradation on a model 492 Procise sequencer (Applied
Biosystems, USA) according to the manufacturer’s protocol.
Homology search was performed using Swiss-Prot and TrEMBL
databases with a BLAST algorithm.

4.8. Enzymatic digestion with Glu-C proteinase

Approximately 1 nm of reduced and alkylated peptide was
dissolved in 20 pl of 100 mM NH4HCO3 buffer, pH 8.0, and 1 ul of
the enzyme in water (0.1 mg/ml) was added to the reaction
mixture. Enzymatic hydrolysis was carried out for 4 h at 37 °C. The
peptides produced were purified by RP-HPLC.

4.9. 3D structure modeling

Modeling of defensin spatial structure was accomplished using
PyMol v. 0.9.3 software.

4.10. Antifungal assays

The antifungal activity of the peptides was tested against several
fungi using microtiter-plate assays essentially as described previ-
ously [8]. Wells were filled with 10 pl of twofold serial dilutions of
the peptide and mixed with 90 pl half-strength potato—glucose
broth containing 10* spores/ml. The inhibition of spore germina-
tion was evaluated by measuring the absorbance at 620 nm in
microtiterplates. ICsg values showing protein concentration
required for 50% growth inhibition were calculated. Inhibition of
hyphae elongation and morphological changes in the fungi were
examined by light microscopy. Experiments were performed at
least in three replicates.

The activity of peptides against Ph. infestans was estimated as
given in [40]. Shortly, protein samples were mixed with 50 pl of
zoosporangium suspension and incubated at 20 °C for 2 h,
whereupon the mixture was applied to the center of two potato
discs in a Petri dish. Infected potato discs were incubated at 20 °C
for 120 h. Disease symptoms were recorded 96, 120 and 144 h after
inoculation by measuring the infected area (in %) and scored from
“~" to “++++", with “++++" denoting complete inhibition of
disease symptoms, “++-+" disease development less than 10%,
“++" disease development less than 20%, “+” disease development
less than 40% and “—” denotes symptom development more than
40% (the absence of inhibition). In control discs disease symptoms
were above 40%. A total of 10 discs were assayed in each of three
independent experiments.

4.11. Antibacterial assays

The antibacterial activity of peptides was assayed against
several Gram-positive and Gram-negative bacteria using radial
diffusion assay [40]. Petri dishes with Luria—Bertani agar were
seeded with test bacteria. The peptide solutions (50 ul) were
applied to the wells (5 mm in diameter) punched into the agar, and
the Petri dishes were incubated at room temperature for 48 h. The
antibacterial activity was evaluated by the size of the inhibition
zone formed around the wells with the peptide solution.
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