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Fungi are ubiquitous transient or persistent human colonisers,

and form the mycobiome with shifts in niche specific

mycobiomes (dysbiosis) being associated with various

diseases. These complex interactions of fungal species with

the human host can be viewed as a spectrum of symbiotic

relationships (i.e. commensal, parasitic, mutualistic,

amensalistic). The host relevant outcome of the relationship is

the damage to benefit ratio, elegantly described in the damage

response framework. This review focuses on Candida albicans,

which is the most well studied human fungal symbiont

clinically and experimentally, its transition from commensalism

to parasitism within the human host, and the factors that

influence this relationship.
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Introduction
Fungi are ubiquitous within the environment. However,

only a few species are routinely found associated with

humans and are capable of causing disease. A handful of

these fungi are considered true pathogens, causing dis-

ease in healthy individuals (Histoplasma and Paracocci-
dioides), while the majority of fungi are often classified as

opportunistic pathogens (i.e. Candida and Cryptococcus),
causing disease primarily in immunosuppressed individ-

uals [1]. However, it is apparent that some opportunistic

fungal pathogens also cause disease in otherwise healthy

individuals (i.e. Candida vaginitis or Cryptococcus gattii
outbreaks) [2,3]. To understand and categorize the com-

plexity of these different interactions between host and

pathogen, Casadevall and Pirofski proposed the damage
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response framework (DRF), which defines microbial vir-

ulence as a function of host damage [4]. Within this

framework, host damage (and therefore disease) can occur

at either end of the host immune response spectrum (i.e.

weakened or hyperactive immune defences). Along this

spectrum there is a continuum between pathogen-medi-

ated and host-mediated damage, which results in disease

only when damage impairs the normal function of the

host.

Host damage also varies as a function of time, with several

possible outcomes of host–pathogen interactions. For

example, as the amount of damage increases over time

and surpasses a threshold, disease ensues [4]. Fungal

pathogens that are able to exist within the host for

extended periods of time with limited damage lead to

other outcomes, including latency (Cryptococcus) or com-

mensalism. In addition, many fungal pathogens cause

chronic (long-term) infections, and therefore could also

be classified as symbionts, albeit with different host/

microbe damage to benefit ratios. The most well studied

fungal commensal is Candida albicans, which colonises the

oral, genital and gastrointestinal tracts, but can cause host

damage and disease in the context of weakened or uncon-

trolled immune responses. An environmental reservoir

of C. albicans has not yet been identified. Therefore,

C. albicans is considered an obligate commensal fungus.

This and its ability to fit within all six classes of the DRF

[5�] have made C. albicans the model fungus for studying

the transition from commensal to pathogen and will be

the main focus of this review.

Symbiosis within the human ecosystem
Symbiosis is a type of long-term close biological relation-

ship between two or more species. These relationships

can be mutualistic (all organisms benefit), commensalistic

(one organism benefits without affecting the other), par-

asitic (one organism benefits at the expense of the other),

or amensalistic (one organism is inhibited or obliterated,

while the other is unaffected). For example, most host–

pathogen interactions are parasitic with the pathogen

causing damage to the host. However, as mentioned

above, periods of latency during an infection may be

classed as a commensal relationship as damage to the

host is minimal during this period. Interactions between

members of the microbiome may be described as amen-

salistic as the presence of some species prevent the

growth of others through nutrient depletion and the

secretion of chemical mediators. This is an important

factor as dysbiosis of the microbiome has been identified
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Transition of C. albicans from commensal to parasite. During commensal growth C. albicans grows predominately as yeast and is tolerated by the

host, and does not activate innate immune responses. Periods of dysbiosis and immune suppression permit C. albicans to proliferate, induce

hyphal formation, and activate innate immune responses. At the vaginal mucosal, epithelial cells become sensitised resulting in hyperactivation of

innate immune responses and neutrophil influx. This non-protective hyperactivation of neutrophils results in damage to the vaginal mucosa and

symptomatic vaginal candidiasis.
as a major contributor for several fungal infections (i.e.

vulvovaginal candidiasis, atopic dermatitis). Although

common for bacterial species, the idea of mutualistic

relationships between fungi and the human host is a

new concept as the potential benefit to the host of

harbouring fungi is still unknown (Figure 1).

Niche-specific fungal symbionts
Fungal symbionts vary in route of acquisition, niche/s

inhabited, and ultimately, the type of symbiotic relation-

ship formed. Some species are acquired at birth by direct

transmission, leading to colonization of the skin and

mucosal surfaces, while many fungal pathogens are ubiq-

uitous within the environment, leading to constant expo-

sure by oral or respiratory routes, as well as skin contact.

Most of these exposures are transient, due to clearance by

host immune responses or out competition for resources

by the microbiome. However, changes in immune status

or dysbiosis could lead to chronic colonisation and even-

tual host damage.

Mycobiome studies have been performed for most muco-

sal surfaces including the oral cavity [6], GI tract [7,8],
www.sciencedirect.com 
vagina [9,10], lung [11,12], and skin [13�,14]. Over 75 gen-

era of fungi have been identified in the oral cavity alone,

which can seed the respiratory or GI tract mycobiome.

The most common fungal species associated with the GI

tract are Candida, Saccharamyces and Cladosporium,
although DNA from more than 50 genera of fungi has

been detected. Stability and fluctuations in population

dynamics of the GI mycobiome is highly dependent on

diet and host immune status. For example, Saccharomyces
cerevisiae is commonly acquired from dietary sources and

is considered to be a harmless or transient commensal.

However, inflammatory bowel diseases [15] and some

autoimmune diseases [16,17] are associated with

increased levels of circulating S. cerevisiae antibodies

(ASCA), which recognise fungal cell wall components

[18]. Although it has been documented that C. albicans
is an immunogen for development of ASCA [19], dietary

S. cerevisiae can exacerbate symptoms in ASCA positive

IBD patients [20]. In this situation, S. cerevisiae may be

considered a parasitic symbiont. On the other end of the

spectrum, a related species, S. boulardii, is used clinically

as a probiotic treatment for gastroenteritis, acting as a

mutualistic symbiont [21].
Current Opinion in Microbiology 2017, 40:58–64
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The vaginal mucosa is colonised by a variety of fungi and

bacteria. Although Candida spp. are thought to be the

predominate fungal colonisers of the vaginal mucosa,

more recent microbiome studies have detected up to

20 genera of fungi in the vaginal niche, including Candida,
Aspergillus and Cladosporium [22]. In healthy women,

these fungal colonisers likely behave as commensal sym-

bionts. However, many host and environmental factors

including pregnancy, antibiotic usage and uncontrolled

diabetes influence the vaginal microbiota and can result

in dysbiosis and infection.

The dominant fungal commensal of the skin is Malassezia
spp. [23], a lipophilic genus that consists mostly of plant

pathogens. The lipid composition of the skin plays a role

in controlling fungal colonisation, with Malassezia globasa
being the predominate coloniser of the scalp and forehead

and Malassezia restricta colonising the back [24]. However,

Malassezia colonisation levels also correlate with a variety

of skin diseases including psoriasis, dandruff, atopic der-

matitis/eczema, seborrheic dermatitis, and pityriasis ver-

sicolor [25]. This suggests that above a certain threshold,

these commensals act as parasitic symbionts, possibly due

to increases in antigenic load. As evidence of this, it was

shown that M. sympodialis secretes allergen-loaded exo-

somes that induce pro-inflammatory responses [26].

Candida albicans: the ubiquitous fungal
symbiont
C. albicans is a commensal fungus of the oral, gastrointes-

tinal and genital tracts in up to 80% of healthy individuals.

Under specific host and environmental conditions,

C. albicans can transition from its commensal state to a

parasitic state causing mucosal (oral and vaginal candidi-

asis) and life-threatening systemic disease. The polymor-

phic nature of C. albicans is a key virulence factor playing

essential roles in the transition from commensalism

to parasitism [27]. Several yeast-like morphologies aid

C. albicans commensalism. For example, gastrointestin-

ally induced transition (GUT) cells promote commensal-

ism of C. albicans within the GI tract [28], grey cells enable

colonisation of the tongue [29] and opaque cells have

increased fitness on skin [30]. This repertoire of cell

morphologies demonstrates the plasticity of C. albicans
and its evolution as a human commensal.

Transition to damage-causing pathogen and disease

Commensalism of C. albicans on mucosal surfaces is

thought to occur with yeast cells. In agreement with this,

epithelial cells do not readily recognise the yeast form of

C. albicans [31]. However, under periods of immune

suppression, trauma and dysbiosis, abiotic and biotic cues

induce C. albicans morphogenesis resulting in epithelial

activation and induction of a proinflammatory response

[31]. In vulvovaginal candidiasis (VVC), the vaginal epi-

thelium becomes sensitised to C. albicans, and its activa-

tion results in significant neutrophil recruitment [2]. This
Current Opinion in Microbiology 2017, 40:58–64 
hyperactivation of the innate immune system generates a

strong non-protective immune response that drives the

immunopathology associated with VVC [2]. One question

that arises is why do healthy women maintain C. albicans
in a commensal relationship and what is the selective

pressure that promotes persistent colonisation in the

vagina? An answer to this question may lie in the location

of the vagina between the rectum and urethra. The

antagonistic relationships C. albicans exerts on many

bacterial species, including those that cause potentially

life threatening urinary tract infections, (UTIs), might

inhibit migration of these pathogens from the rectum to

the urethra, providing a selective pressure to maintain

C. albicans in the vagina as a mutualistic symbiont. The

primary etiological agent responsible for UTIs is uro-

pathogenic Escherichia coli (>80% cases) [32]. Candida
colonization of the vagina increases in puberty, coinciding

with hormonal changes that promote fungal adherence

and growth [33]. Prepubescent girls also have the highest

occurrence of Gram-negative bacteria in the vagina

(mainly E. coli), while the highest occurrence of Candida
species is in women of child-bearing age [34]. This

suggests that Candida inhibits E. coli in the vaginal

environment either directly, or via colonization resis-

tance, providing a microbiological barrier between the

anus and urethra.

Asymptomatic oral carriage of Candida in the oral cavity is

mediated via non-specific host barriers (saliva, antimicro-

bial peptides, among others) and strong immune defences.

However, the onset of AIDS or use of cancer chemotherapy

results in oropharyngeal candidiasis (OPC). The role of host

factors in the predisposition to OPC is discussed below.

Entry of C. albicans into the bloodstream, via implanted

medial devices, translocation from the gut during abdom-

inal surgery or neutropenia, results in systemic infection.

Key target organs include the kidney, spleen and liver,

where C. albicans exerts excessive damage. Device asso-

ciated infections permit the formation of drug and host

resistant biofilms, which continually seed infections if not

removed. Due to the lack of appropriate diagnostics and

non-specific symptoms, infections are often misdiagnosed

resulting in increased mortality rates.

Candidiasis and dysbiosis

Shifts in fungal populations leading to dysbiosis are

associated with various diseases [35,36�]. In this situation,

members of the mycobiome transition from commensal to

parasitic symbionts. Whether these shifts are causative or

indicative of disease is likely a sliding scale as host and

symbionts influence each other within the eco-system.

Prolonged administration of antibiotic therapy predis-

poses women to VVC, suggesting that dysbiosis of the

vaginal flora is a prerequisite for symptomatic Candida
colonisation. Initially it was suggested that antibiotic

treatment removed lactobacilli from the vaginal mucosa,
www.sciencedirect.com
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increasing vaginal pH, and promoting Candida hyphal

formation. In agreement with this, lactobacilli have been

proposed to reduce Candida colonisation [37�], and have

been explored as a potential probiotics [38]. However,

other studies suggest that vaginal pH, and the lactobacilli

population are not significantly altered in VVC [39], and

that Candida colonisation is more common in women with

a lactobacillus dominated microflora [40]. Therefore, the

role of this amensalistic relationship warrants further

investigation.

Treatment with oral antifungals perturbs the intestinal

mycobiome, reducing the populations of Candida, whilst

promoting the expansion of Aspergillus, Wallemia and

Epicoccum, and causing increased allergic airway disease

[41�]. On the other hand, the use of oral antibiotics,

depleted the bacterial composition of the GI microbiome,

promoting the expansion of Candida [42]. The conse-

quence of Candida overgrowth in the GI tract is still

controversial. However, individuals with high Candida
burdens appear to be more prone to intestinal inflamma-

tory diseases [43], although the role of Candida remains to

be determined.

Role of the host: genetic mutations

Genetic susceptibility to C. albicans infections varies

according to site of infection, and not all infections are

associated with genetic mutation. Systemic infection is

associated with defects in innate immunity (neutrophil

function) while oropharyngeal candidiasis (OPC) is asso-

ciated with defects in cellular immunity (primarily CD4+

T cells). A major focus of recent genetic linkage studies is

chronic mucocutaneous candidiasis (CMC), which is an

infectious phenotype in patients with inherited or

acquired T cell deficiency (primarily IL-17 immunity).

CMC is an extremely rare familial disorder, with a current

worldwide cohort <300 patients, and is characterized by

chronic infection of skin, nails, and oral/genital mucosa

[44��]. Defects in STAT1 result in CMC due to defects in

IL-17, IFN-g and IL-22 signalling [45]. IL-17 signalling is

essential for controlling oral carriage of Candida, with

defects in many of the signalling components resulting

in OPC [46]. OPC can also result from an autoimmune

disease where the patient generates antibodies to IL-17A,

IL-17F and IL-22 [47].

Genetic predisposition to VVC is still an emerging topic.

One study found higher frequencies in mutations associ-

ated with increased expression of mediators involved in

mucosal tolerance (IL-22 and IDO1) in controls versus

RVVC patients [48]. This study also found higher fre-

quencies of a mutation causing a premature stop codon in

the C-type lectin receptor Dectin-1 in women with

RVVC, which mediates IL-22 production [48]. Polymor-

phisms in mannose binding lectin (MBL), a component of

innate immunity that triggers complement activation, are

also found at higher frequencies in RVVC patients and are
www.sciencedirect.com 
associated with leading reduced vaginal MBL levels

[49,50]. Overall, these studies support the concept that

pathways important in mucosal tolerance that may limit

innate responsiveness to a commensal symbiont, promote

resistance to RVVC.

Fungal factors

The most studied and important virulence attribute of

C. albicans is its ability to reversibly switch morphologies,

between yeast, pseudohyphal and true hyphal growth.

Temperature, CO2, pH, serum, quorum sensing mole-

cules, nutrient availability and hypoxia all regulate mor-

phogenesis [51]. As outlined above, each of these

morphologies play distinct roles in colonisation and para-

sitism, and inhibition of morphogenesis dramatically inhi-

bits fungal virulence. Other important virulence factors

include the expression of adhesins (i.e. ALS family) and

cell wall proteins (i.e. Hwp1) that enable attachment to

host cells [52]. The Als5 adhesin is expressed during

commensal growth, but repressed during pathogenicity.

In agreement with Als5 playing a role in fungal commen-

salism, expression of C. albicans Als5 in S. cerevisiae
promotes colonisation of the nematode gastrointestinal

tract, without affecting survival [53]. Therefore, Als5 may

be a critical factor for C. albicans commensalism. Once

attached, C. albicans can actively penetrate mucosal bar-

riers. The expression of SAPs is thought to be essential to

this process, degrading proteins on host cells, and dis-

rupting the host’s protective barriers (i.e. degradation of

mucin) [54]. Due to the role of SAPs in epithelial damage

SAP expression is correlated with virulence rather and

commensalism [29]. Finally, C. albicans induces epithelial

damage through the secretion of candidalysin, a novel

pore forming peptide. Candidalysin is predominately

expressed by hyphal cells and is responsible for the

majority of host damage exerted by C. albicans [55��].
The role of candidalysin in commensalism has not been

extensively studied, but deletion of candidalysin does

reduce colonisation levels in murine models of OPC

[55��] suggesting that candidalysin may play roles in

commensalism as well as pathogenesis. In addition to

this repertoire of fungal virulence factors, C. albicans can

also modulate the structure of its cell wall to either

conceal or reveal immune stimulatory PAMPs on its

surface [56�,57�,58�]. This pliability of the cell wall archi-

tecture enables C. albicans to control the innate immune

response. Therefore, C. albicans has uniquely positioned

itself as a commensal symbiont, with a plethora of ways to

sense and respond to changes within the host that ensure

successful transition from commensalism to parasitism

and initiation of disease during periods of weakened host

defences.

Conclusion
Fungi form an important part of our microbiome, with

symbiotic relationships ranging from commensal to para-

sitic. The symbiotic relationship between humans and
Current Opinion in Microbiology 2017, 40:58–64
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fungi is greatly underappreciated and under researched.

Given that many fungi are opportunistic pathogens,

understanding the balance and transitions between these

relationships is vital for the future of medial mycology.
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