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Abstract
In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-
regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so
that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this
enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to
further morphological and functional breakdown. When iodine intake is altered, autoregulatory mechanisms outside
the thyrocytes are activated. They involve adjacent capillaries that, together with thyrocytes, form the angiofollicular
units (AFUs) that can be considered as the functional and morphological units of the thyroid. In response to iodine
shortage, a rapid expansion of the microvasculature occurs, which, in addition to nutrients and oxygen, optimizes
iodide supply. These changes are triggered by angiogenic signals released from thyrocytes via a reactive oxygen
species/hypoxia-inducible factor/vascular endothelial growth factor pathway. When intra- and extrathyrocyte
autoregulation fails, other forms of adaptation arise, such as euthyroid goiters. From onset, goiters are
morphologically and functionally heterogeneous due to the polyclonal nature of the cells, with nodules distributed
around areas of quiescent AFUs containing globules of compact thyroglobulin (Tg) and surrounded by a hypotrophic
microvasculature. Upon TSH stimulation, quiescent AFUs are activated with Tg globules undergoing fragmentation
into soluble Tg, proteins involved in TH biosynthesis being expressed and the local microvascular network extending.
Over time and depending on physiological needs, AFUs may undergo repetitive phases of high, moderate, or low cell
and tissue activity, which may ultimately culminate in multinodular goiters.
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I. Introduction
The thyroid hormones (THs) T  and T  are essential for energy metabolism and embryonic development, especially
for brain maturation. THs influence all anabolic and catabolic pathways involved in intermediary and structural
metabolism (1–3). Claiming that the main role of the thyroid gland is the synthesis and secretion of THs seems, at
first sight, a truism. Nevertheless, this task represents a continuous challenge, because the gland must not only deal
with the scarcity of a trace element, iodine, but also perform within a potentially highly toxic biochemical
environment. The goal of this review is to present the most recent and innovative data about TH synthesis and to
explain how thyrocytes, within three-dimensional structures known as angiofollicular units (AFUs), adapt to iodine
deficiency (ID). The existence of corrective mechanisms, including cross talk between epithelial and endothelial
compartments, and the role of reactive oxygen species (ROS) under physiological and pathological conditions will be
described to illustrate the continuous adaptation of thyroid cells to their ever-changing environment.

II. The Thyroid Gland: The Result of a Long Evolutionary Journey
Iodine (the 47th most abundant element in the earth's crust) is a nonmetallic element of the halogen family, which
also includes bromine, fluorine, and chlorine. It was accidentally discovered by Bernard Courtois in 1811, when he
was searching for new raw materials for explosives during the Napoleonic wars (4, 5). Over a century later, the
biological relevance of iodine was recognized when E. C. Kendall isolated and crystallized T  in 1914 (6). The name
iode, given by Gay-Lussac (thereafter anglicized to iodine), is derived from the Greek word iodes, which means
violet-colored (7). The total mass of stable iodine on Earth is estimated to be 8.6 × 10  kg (8). Although it is still
expelled from hot water sources and rift faults, iodine was mainly generated early on in the earth's formation during
the degasification of the asthenosphere. Since then, leaching from glaciation, flooding, and erosion have depleted
surface soils of iodine, which explains why it is mostly found in oceanic sediments, the largest reservoir of iodine on
Earth (8, 9).

From an evolutionary point of view, the thyroid gland in mammals is the most advanced system for storing and
producing iodocompounds from an iodine-deficient milieu (5, 10). Mother Nature first used iodine for its potent
antioxidant properties, for instance in algae, the first living cells that produced oxygen in the terrestrial milieu. Some
marine seaweeds and algae can accumulate iodine to 4,000–30,000 times its seawater concentration, which results in
levels of 0.8–4.5 mg of iodine per gram of dried material (7, 9, 11, 25). The human thyroid gland is the result of an
endless adaptation that started millions of years ago when primitive marine animals left the sea, an iodine-enriched
environment, to colonize the iodine-deficient terrestrial mainland. At that time, these organisms had to solve many
problems, including the sequestration of iodine from an iodine-deficient ecosystem. Animal species have used
different strategies to cope with this problem, from jellyfishes lacking a thyroid gland to chordates developing an
organ called the endostyle on the floor of the pharynx, which concentrates iodine and produces THs (13, 14). In early
vertebrates, such as lampreys, nonencapsulated follicles evolve from the larval endostyle during metamorphosis (15).
It is worth noting that some endostyle cells produce thyroglobulin (Tg), display peroxidase activity, and incorporate
iodine, which are all features of the thyroid gland in vertebrates (15–22). The homology between the endostyle and
the thyroid gland of higher vertebrates is supported by the results of recent comparative analyses, which demonstrated
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that genes (Pax8 and Ttf1) involved in the expression of thyroid-specific transcription factors have similar expression
patterns during the morphogenesis of the mouse thyroid and in the chordate endostyle (13, 22–24). In higher
vertebrates, the organ kept on evolving, following a process that culminated in the thyroid gland (10, 25–28).

Over millions of years, T  had no hormonal actions per se in invertebrates, but instead served to transport the ancient
antioxidant iodide (I ), the reduced form of iodine (I ), into peripheral cells, which, in more recent vertebrates,
started using the remaining T  as an active hormone to control processes such as metamorphosis in amphibians,
spawning changes in fishes, and thermogenesis. In the organs (stomach, salivary glands, and mammary tissue) of
more recent mammals, I  still acts as an antioxidant in the presence of hydrogen peroxide (H O ). In the thyroid
gland, after disposing of its electrons, I  is instead transformed into oxidized forms that immediately iodinate tyrosyl
residues of Tg, thereby neutralizing its own oxidant properties, while generating T  (10, 25, 29–31).

Thus, from this endless adaptation of iodine-concentrating cells, a highly sophisticated system emerged in mammals,
known as the follicle. Each follicle is composed of polarized cells, called thyrocytes or follicular cells, which are
perfectly adapted to achieve a task that is not only demanding, due to the scarcity of iodine, but also somewhat
perilous because it requires the production of potentially cytotoxic ROS.

III. Thyroid Hormone Synthesis: A Dangerous Process

A. Iodine: intracellular journey and transformation

The intrathyroidal journey of iodide is shown in Fig. 1. TH synthesis requires the incorporation of iodine into Tg
(iodine organification). The main sources of iodine and products containing high amounts of iodine are fish, shellfish,
kelp and seaweed, milk, iodinated salt, bakery products where iodates are used as conditioners for dough,
preservatives, therapeutics (amiodarone, vitamins, and Lugol's solution), topical antiseptics, and contrast dyes (9, 32).
Under normal conditions, dietary iodine, which is found in nature in a reduced state (I ), is nearly completely
absorbed from the gastrointestinal tract to join the inorganic I  pool in the extracellular fluid (9, 33). As for the
thyroid, the intestinal transport of I  occurs via the sodium-iodide symporter (NIS) [a 643-amino-acid, 13-
transmembrane-domain glycoprotein encoded by the soluble carrier 5A5 (SLC5A5) gene on chromosome 19] (34).
Under conditions of sufficient iodine intake, the body of a healthy adult contains 15–20 mg of iodine, of which 70–
80% is found in the thyroid. This content may fall to less than 20 μg under conditions of chronic ID (33). In the
thyroid, the local clearance of I  varies with iodine intake, ranging from 10% uptake in situations of adequate iodine
supply to 80% uptake under conditions of chronic ID (33). To balance losses and preserve TH synthesis, an adult
thyroid must trap at least 60 μg of I  per day (33). Under conditions of sufficient iodine nutrition, more than 90% of
the ingested I  is excreted in the urine (9, 33, 35). Urinary iodine can therefore be used to assess iodine intake in
human populations (33, 35).

After entering the thyroid capillaries, I  is actively taken up by the thyrocytes. The active transport of I  into
thyrocytes is mediated by NIS that is localized at the basolateral membrane and the energy required for transport is
provided by a ouabain-sensitive Na /K -ATPase (33, 36–38). NIS couples the simultaneous transport of two Na
ions with one I  ion by taking advantage of the favorable gradient concentration of Na . This pushes I  into the cell
against an electrochemical gradient, which results in intracellular concentrations that are 20–50 times higher than that
of blood plasma. Thus, this transport is electrogenic, because two Na  cations are transported for each I  anion. This
is true for all NIS substrate anions (ClO , SCN , SeCN , NO , Br , BF , IO , and BrO ), with the exception of
perchlorate (ClO , a pollutant occurring widely in food and water in the United States), whose transport is
electroneutral (39, 40). This indicates that NIS translocates different substrates with different stoichiometries (39, 40).
The side chain of the amino acid Gly at NIS position 93 is crucial in this matter, because it is used as a pivot during
the change from an outward to an inward open conformation during the transport cycle. This controls the size and
chemical characteristics of the ion cavities as well as the kinetics and the stoichiometry of transport (41). The basal
expression of NIS is up-regulated by TSH (42) and down-regulated by I  (43–45), which is most likely caused by
posttranslational modifications, including polyadenylation and mRNA destabilization (46). The significantly
decreased levels of NIS mRNA and protein have been implicated in escape from the Wolff-Chaikoff effect (44),
which corresponds to a blockade of I  organification and of TH biosynthesis and release in response to elevated I
plasma levels (47). Of note, TSH fully induces NIS expression at the basolateral membrane only when thyrocytes are
organized as follicles, suggesting that a signal (of unknown nature) resulting from specific interactions between
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thyrocytes in follicles modulates TSH-induced NIS expression (48). This again emphasizes the importance of the
follicle three-dimensional organization and of the cell polarization for a full expression and regulation of some
thyroid-specific proteins. In models of cultured thyroid cells where TSH levels are kept constant, chronic ID does not
influence NIS expression. This is in contrast to acute ID, which induces a clear up-regulation of NIS expression via a
currently unknown mechanism (49, 50). Recently, other ionic channels were reported to play an important role in
NIS-mediated I  transport. Thus, the potassium voltage-gated channel, KQT-like subfamily, member 1-potassium
voltage-gated channel, Isk-related family, member 2 (KCNQ1-KCNE2) complex, which is probably localized to the
basolateral membrane, was identified as a TSH-stimulated thyrocyte K  channel that is critical for normal I
accumulation (51). KCNQ1 and KCNE2 are two potassium channel subunits that function in repolarizing cardiac
myocytes. They have been suggested to form a constitutively active K  channel in thyrocytes, which is required for
normal TH biosynthesis (51, 52).

Because NIS mediates I  uptake in organs other than the thyroid, it is considered to be the master regulator of iodine
metabolism. Besides the intestine (34), NIS has also been identified in lactating mammary glands, gastric mucosa,
and salivary glands (reviewed in Refs. 53 and 54). In contrast to enterocytes where it is localized apically, NIS is
found exclusively in the basolateral region of cells in other organs. In the breast, it is involved in I  transport from the
bloodstream to the milk, thereby fulfilling the iodine requirement of newborn babies. In gastric mucosa and salivary
glands, NIS transports I  in the gastric juice and in saliva as an antimicrobial and antioxidant substance before being
reabsorbed by NIS located lower in the digestive tract at the apical surface of enterocytes. This reduces the loss of I
(34, 53, 54).

After entering the cell, I  crosses the apical membrane via a transporter [a candidate being the Cl /I  exchanger,
pendrin/Pendred syndrome (PDS); a 780-amino-acid, 12-transmembrane-domain, hydrophobic membrane protein
encoded by the SLC26A4 (also called the PDS) gene on chromosome 7] (55–57). Pendrin translocates to the
membrane in response to TSH and forskolin through the protein kinase A pathway in PCCL-3 rat thyroid cells (58).
However, the transport mechanism of I  through the apical membrane remains a matter of debate. Other apical
transporters, such as chloride channel protein 5 (ClC-5), a chloride/proton antiporter, and the chloride channel cystic
fibrosis transmembrane conductance regulator (CFTR), have been proposed to mediate or comediate apical I  efflux
(38, 56, 57, 59–63). Studies using heterologous systems have indicated that the product of the SLC5A8 gene, also
known as sodium monocarboxylic acid transporter (SMCT1), human apical iodide transporter (AIT), or SLC5A8, is
not involved in I  efflux (63–66), as previously held (67). After transport through the apical membrane, I  is
covalently bound to the tyrosyl residues of Tg by thyroid peroxidase (TPO).

Tg has a relative molecular mass of 660,000 Da (660 kDa) and is a homodimeric glycoprotein protein. It is the
product of a 270-kb gene with an 8.5-kb coding sequence divided into 48 exons on chromosome 8q24 (reviewed in
Ref. 68). Each chain consists of 2748 amino acids, 67 of which are tyrosines (69). Eighty percent of the molecule has
three regions (called regions I-II-III) with cysteine-rich repeat domains covalently bound by disulfide bonds. These
are followed by the cholinesterase-like carboxyl-terminal domain (∼570 residues), which has two functions: 1)
homodimerization and 2) binding to the I–II–III region to facilitate oxidative maturation required for intracellular
protein transport (70). Correctly folded Tg homodimers are glycosylated in the Golgi and are secreted into the
follicular lumen (71). It is worth noting that Tg is not only a scaffold protein for TH synthesis but also possibly a
regulator of thyroid function. One research team repeatedly reported that the accumulation of Tg acts as a feedback
suppressor of thyroid function, including the expression of important thyroid-specific transcription factors
(Titf1/Nkx2-1, Foxe1, and Pax8), thereby decreasing the expression of Tg, TPO, and NIS (reviewed in Ref. 72).
However, many questions concerning the mechanisms controlling Tg-induced negative regulation remain
unanswered.

TPO is a 933-amino-acid, transmembrane-bound glycoprotein protein of the mammalian peroxidase superfamily
(which includes lactoperoxidase and myeloperoxidase) with a short intracellular C-terminal and a large N-terminal
extracellular region. It is encoded by a 150-kb gene with 17 exons and 16 introns on chromosome 2 (73). The protein
possesses a heme-containing, extracellular catalytic domain covalently linked to the protein, which uses H O  as an
oxidizing agent for I  (74, 75). TPO exists in two isoforms, TPO1 (110 kDa), which is active, and its alternatively
spliced form, TPO2 (100 kDa). TPO2 is found only in intracellular compartments, has no prosthetic heme group, and
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is inactive (76, 77). Until recently, it was thought that only a small fraction (∼15%) of TPO was expressed in the
microvilli of the apical plasmalemma; however, this notion has been called into question, at least in FRTL-5 cells (a
rat thyroid cell line) where a large fraction of TPO is delivered to the plasma membrane (78).

The ability of the thyroid gland to produce H O  was first reported in 1971 (79, 80). Ten years later, it was
demonstrated that H O  is generated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
located in the apical plasma membrane (81, 82). Another 10 yr passed before the cloning of the two human cDNAs
encoding these NADPH oxidases [now called dual oxidase 1 (DUOX1) and DUOX2], which share 83% sequence
similarity (83, 84). DUOX proteins belong to a family of adenine dinucleotide phosphate oxidase (NOX) enzymes
and exhibit the characteristics of heme-bound NADPH oxidases, like NOX1–NOX5 (83–87). Both enzymes have a
seventh transmembrane domain and possess an extracellular NH  terminus peroxidase-like domain, also called the
TPO-like N-terminal domain (43% similarity to TPO, even though no peroxidase activity is associated with human
DUOX) (88, 89), which is able to associate with TPO (83, 84, 90). The C-terminal region contains the catalytic
NADPH oxidase core, which is common to all NOX proteins (83, 84). DUOX proteins exist in two forms depending
on their N-glycosylation states; only the fully N-glycosylated form (190 kDa) is expressed in the plasma membrane,
whereas the high-mannose glycosylated immature form (180 kDa) is expressed in the endoplasmic reticulum (ER) in
a nonfunctional state (91, 92). DUOX proteins need calcium to become fully activated (91, 93–95). Both proteins
have EF-hand calcium-binding motifs in their first intracellular loop. EF-hand involvement in H O  production was
demonstrated recently when mutations in this site were shown to block ionomycin-induced H O  production (96). In
contrast to other genes involved in TH synthesis, DUOX expression is not influenced by TSH in human and mouse
thyrocytes (84, 97). DUOX1 is responsive to cAMP and protein kinase A-mediated phosphorylation, whereas
DUOX2 is stimulated by phospholipase cascade and protein kinase C-dependent phosphorylation (96). In the thyroid,
the main source of H O  is DUOX2 (98), which, unlike other NOXs, does not produce the intermediate superoxide
(O ), although the immature partially glycosylated form of DUOX2 is thought to generate O  (94). The ability of
DUOX2 to produce H O  instead of O  depends also upon associated maturation proteins as recently suggested by
a study that showed that the NH -terminal tail of DUOX maturation factor 2 (DUOXA2) (one of the two maturation
proteins as described below) favors the dismutation of O  to generate H O  (99). Congenital hypothyroidism due to
an I  organification defect can be associated with inactivating mutations in the DUOX2 gene (100), even though
rescue mechanisms by DUOX1 remain possible (101, 102). I  plays an important role in the control of H O
production, regulating DUOX activity in a dual fashion: at low concentrations, I  is stimulatory, thereby favoring the
efficient iodination of Tg tyrosyl residues (103); however, when it is present in excess, H O  production is transiently
blocked to protect the organism from overproduced TH (Wolff-Chaikoff effect) (47). The block may depend (at least
partly) on the synthesis of iodolipids (6-iodo-δ-lactone and 2-iodo-hexadecanal) (104–107). I  must anyway be
oxidized to inhibit H O  production. This oxidized form acts at a posttranscriptional level by reducing the availability
of the mature DUOX2 protein (92). Blocking H O  production when iodine is present in excess is one of the many
iodine-induced autoregulatory mechanisms that protect the body against excessive TH release. Other mechanisms
include the inhibition of TH secretion, cAMP generation, Tg proteolysis, glucose and amino acid transport, and
protein and mRNA synthesis (108) and (reviewed in Refs. 109 and 110). In the presence of sufficient amounts of I ,
H O  generation becomes the limiting step for TH synthesis (111, 112).

In addition to I  organification, TPO also catalyzes H O -dependent head-to-tail coupling reactions of mono-
iodotyrosine (MIT) and di-iodotyrosine (DIT) to form T  (80% of TH) and T  (111, 113) (reviewed in Ref. 5). Forty
of the 140 TPO tyrosyl residues are iodinated in vivo, but only a few are involved in coupling reactions (111). Four
hormonogenic acceptor tyrosines were identified at positions 5 (the most favored one), 1291, 2554, and 2747 in
human Tg, whereas tyrosines at positions 130, 847, and 1448 were identified as potential outer ring donor sites (114).
The hormonogenic residues are located close to the extreme ends of the molecule to facilitate proteolytic cleavage
and the release of T  and T . The iodinated residues that are not involved in hormonogenesis are readily deiodinated
to a NADPH-dependent specific iodotyrosine dehalogenase 1 (DEHAL1) for recycling. DEHAL1 is a 33-kDa,
transmembrane, nitroreductase-related enzyme present in intracellular vesicles and in the apical plasma membrane,
which is located close to the organification site (115–118). Two other variant gene products (DEHAL1B and
DEHAL1C) that are probably functionally inactive were also cloned (119).
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The way in which I  oxidation, iodination and coupling reactions occur in the thyroid gland remains controversial (5,
120). Concerning iodination, three mechanisms have been proposed: one includes a free radical scheme based on a
one-electron transfer process (111, 121); the two others imply a two-electron transfer process with either iodinium
cation (I ) (122–125), or hypoiodite anion (IO ) (126–128) as the iodinating species. Under conditions of normal
iodine supply, H O  oxidizes the native ferric form (FeIII) of TPO to form compound I, a Fe(IV) porphyrin π-cation
radical species that contains two oxidation equivalents above the ferric state of the free enzyme (129). According to
the free radical model (which appears the less likely), I  and tyrosine undergo one-electron oxidation to produce the
radicals I  and Tyr , which readily combine to form MIT or DIT. In the I  hypothesis, or the IO  hypothesis (the most
widely accepted), I  is oxidized in a two-electron transfer process in which E-I  or E-OI  acts as an intermediate.
After this step, compound I reverts to its native state. As mentioned above, coupling reactions, which refer to the
reaction between two DIT residues or between one MIT residue and one DIT residue to form T  or T , respectively,
are also catalyzed by TPO (113, 130) (reviewed in Ref. 5). This reaction occurs within the Tg molecule matrix and
comprises three steps. The first involves the oxidation of iodotyrosyl residues by TPO. According to the most
accepted univalent scheme, the second step involves the oxidation of two iodotyrosine residues to free iodotyrosyl
radicals that then couple to form a quinol ether intermediate. In the third step, this unstable intermediate undergoes
fission, leading to the formation of T  or T  in the hormonogenic site, whereas the alanine side chain of the donor
tyrosyl remains in the Tg polypeptide chain as dehydroalanine.

After endocytosis, iodinated Tg is hydrolyzed by proteases in the lysosomes, which contributes to release TH from
the Tg backbone. The last enigma related to TH secretion from thyrocytes is perhaps being clarified, as this process is
mediated in the basolateral membrane by TH transporters of which the monocarboxylate transporter 8 [MCT8
(SLC16A2)], a protein with 12 predicted transmembrane domains, is an important contributor (131, 132) (reviewed in
Ref. 133). This does not exclude the possibility that other TH transporters will be discovered, as was suggested
recently (132, 133). MCT8 mutations are associated with the Allan-Herndon-Dudley syndrome (AHDS), which has
been identified in more than 45 families worldwide. The symptoms of AHDS include severe X-linked mental
retardation, disrupted locomotor development due to the hindered access of T  to target cells during development
(because MCT8 is also involved in the transport of T  in peripheral cells, as described below), and abnormal TH
levels, in particular, high serum T  levels (133–137). These anomalies are explained by the relative insensitivity of
the pituitary to T  and the associated alteration in peripheral deiodination (138–140). MCT8 is thought to play a role
in the maintenance of thyroid integrity, as recently reported in a paper describing severe thyroid morphological
alterations (hyperplastic nodules, microfollicular areas with stromal fibrosis, and nuclear features close to papillary
thyroid carcinoma) in an AHDS patient and in Mct8-deficient mice (138).

T  and T  are transported to their target tissues after binding plasma proteins (T -binding globulin, transthyretin, and
albumin) (141). It was thought initially that THs passed through the plasma membrane of their target cells by passive
transport. This simple view was challenged when it was discovered that MCT8 selectively transports T  across the
membranes of target cells (142), indicating that, in contrast with previous thoughts, THs do not cross cell membranes
passively. Other TH transporters have been discovered, and more are likely to be discovered in the near future, which
will generate new knowledge on TH peripheral actions (reviewed in Ref. 133). It is usually admitted that after T
deiodination, T , the active hormone, exerts genomic effects after binding TH receptors (TRs). In addition to this
classic nuclear TH action, THs could also influence nongenomic pathways. TH interacts with αvβ3 integrins to
induce ERK1/2 signaling-associated angiogenesis (143) and DNA synthesis (144). After binding TR, T  may engage
in nongenomic activation of the phosphatidylinositol-3 kinase/AKT/mammalian target of rapamycin pathway in
different cell types (145–150). Furthermore, T  and rT  were reported to regulate actin polymerization and
microfilament organization independently of T  (151). Although it remains meaningful to evaluate the
pathophysiological relevance of these TR-induced non-TH response element-dependent effects, the finding of
nonclassical TH actions opens up new perspectives on TH biological actions in targets cells, as reviewed recently
(152).

B. Colloid Tg: an easily accessible reserve

The colloid is not a homogeneous form of Tg storage (Fig. 2). It is rather heterogeneous with a more rapid Tg
turnover at the periphery than in the center. This is because the iodination process first affects newly synthesized,
soluble molecules at the periphery before affecting older molecules stored as compact Tg globules, as formulated in
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the last-come-first-served principle (153, 154). Thus, when Tg molecules escape rapid uptake, they proceed to the
colloid where they are stored as globules of highly concentrated, insoluble, covalently cross-linked, multimerized 19
Svedberg Tg, which is not immediately available for TH synthesis but is made available upon follicle stimulation
(155–157). Therefore, Tg globules store high amounts of Tg in follicles, while preventing osmotic injury (155, 156).
The iodine content of isolated globules is high, although hormones are not detected (155, 158). A mouse monoclonal
antibody against iodinated Tg containing T  at the N-terminal hormonogenic site (TgI) (159) failed to detect globules
(157), which could be due to the absence of TH (158) or to the limited access of the antibodies to epitopes buried in
aggregates or covered by carbohydrate chains. However, the latter possibility seems unlikely, because the treatment
of paraffin sections with neuraminidase, which breaks down the sialic acid-induced rigidity of the polysaccharide
cover, did not restore the antigenicity (157). These globules are often observed in hypofunctioning follicles, but only
very rarely during hyperactive endocytosis, as observed in Graves' disease and in autonomous adenomas (157).

TSH-stimulated thyrocytes metabolize globules in successive fragmentation steps from compact, insoluble Tg into
soluble molecules (157). The fragments are then used for TH liberation. Several mechanisms may account for globule
dissolution. Besides a first mechanism that involves protein disulfide isomerase (PDI)-induced reduction of
intermolecular disulfide bridges (156) (very unlikely because PDI requires reducing and acidic conditions) and
another involving H O -associated oxidative attacks of globule surface (158), a third mechanism involving lysosomal
enzymes has received great attention over the last 15 yr (160–164). Tg proteolysis is a highly specific process,
because Tg is resistant to proteolytic cleavage because of its size, its level of glycosylation, and the presence of many
intra- and intermolecular bonds, which probably protects the protein from early degradation. The process starts in the
colloid before endocytosis and involves the action of cysteine cathepsins in the pericellular space. These proteases are
present in the follicle lumen after being released from the endolysosomal compartment. Before endocytosis, Tg
undergoes a limited proteolysis in the follicular lumen by cathepsins B and L, which results in small fragments that
are processed further by cathepsins K, L, and S (163, 164). T , but not T , is released to some extent by the
extracellular proteolysis of Tg within the colloid, at the apical surface of thyrocytes (160). This form of proteolysis is
not an easy process compared with bone resorption by osteoclasts. Although bone resorption occurs under acidic and
reducing conditions, Tg proteolysis occurs at neutral pH and under oxidizing conditions, which are not ideal for
maximum protease activity. However, evidence suggests that cathepsins conserve their proteolytic properties for
awhile, even under oxidizing conditions (165). Upon TSH stimulation, the proteolytic process is activated as
cathepsins are rapidly transported extracellularly through retrograde trafficking vesicles. TSH-induced cytosolic
calcium release activates the fusion of apical vesicles with the plasma membrane within minutes. Thereafter,
intracellular reserves of cathepsins are reconstituted, either from the extracellular colloid lumen or by de novo
biosynthesis (165). A recent paper (166) reported that altered trafficking routes of cathepsins, for instance toward the
basal membrane instead of the apical membrane, could have devastating consequences for malignant cell invasion
because they degrade components of the extracellular matrix. This observation is in accord with another study
published in the early 1990s (167).

In resting or moderately activated states, highly iodinated Tg is internalized via fluid-phase pinocytosis and receptor-
mediated endocytosis (reviewed in Ref. 168). Under TSH stimulation, pseudopods form at the apical membrane of
thyrocytes and incorporate Tg as colloid droplets (169); however, this process has not been observed in species
(including humans) other than rodents (170). The multiligand endocytic receptor megalin, a member of the low-
density lipoprotein receptor family, acts as a high-affinity receptor for Tg (171). Megalin mediates Tg transcytosis
from the apical to the basolateral surface, especially under intense TSH stimulation, which prevents excessive
hormone release (168). Megalin also transports Tg molecules with a low hormone content away from lysosomes,
which promotes the lysosomal degradation of hormone-rich Tg molecules (172). Evidence suggests that immature Tg
molecules are internalized and recycled through the Golgi compartment (173, 174), and although still controversial, it
is thought that this may occur via PDI (175) or via the vacuolar protein sorting 10 protein family member sortilin,
which is expressed in thyroid epithelial cells in a TSH-dependent manner (176).

C. The TPO-DUOX couple: the heart of the synthesis complex

The multiprotein complex involved in TH biosynthesis is shown in Fig. 3. TH synthesis depends on biochemical
reactions that would be highly toxic if not perfectly controlled. H O , a key element in this biosynthesis, would be
lethal if not used immediately and/or properly detoxified (177–182).
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For cells to be protected from life-long, cytotoxic free radical attacks, all oxidizing and coupling reactions must occur
outside the cell, at the interface with the colloid, in a special biochemical environment that was called the
thyroxisome by Song et al. (178). The thyroxisome cannot be considered as a true morphological entity or a cellular
organelle because it has never been visualized as such. Rather, it should be viewed as a biochemical concept (that still
needs to be further worked out) that helps to understand how TH biosynthesis occurs safely despite an a priori toxic
environment. A harmless biochemical milieu is created in microvilli when the TPO-like extracellular N-terminal
domain of DUOX interacts with TPO (178, 181, 182). How this specialized environment remains harmless needs to
be further clarified, even though recent data, such as those reported below, brought new knowledge in this matter.
Thus, both proteins are thought to be already closely related during their posttranslational maturation and transport
across the Golgi apparatus, but in the absence of TSH, they are kept in an inactive state just below the apical
membrane. One may admit that this assumption is still rather weak because it is based only on indirect arguments
about location and activation of TPO and DUOX (84, 181–184). Under TSH-induced calcium signaling, DUOX is
fully activated to form a competent H O -generating system after its integration into the apical membrane (178, 180–
182).

In addition to the TPO-DUOX couple, other forms of autoregulation are required to make TH biosynthesis operate as
a safe process. For instance, H O  favors the association between TPO and DUOX in human thyrocytes (181);
however, when produced in the absence of I , H O  instead decreases the activity of both TPO and DUOX (182).
TPO protects DUOX activity against the inhibitory effects of H O . This can be ascribed to its catalase-like activity,
which requires a close interaction with the N-terminal domain of DUOX2 (182). DUOXs also need partners to work
properly. One such partner is the thioredoxin-related protein EF-hand binding protein 1 (EFP1), which interacts with
the intracellular region of DUOX1 and DUOX2 that contains two EF-hand domains. EFP1 may also be involved in
the destruction of H O  when H O  is not used as an oxidizing substance in TH synthesis and leaks away from the
site of its production (177). Two other partners are the DUOX-specific quality controlling maturation proteins
DUOXA1 and DUOXA2, which are required in overcoming the ER retention of DUOX enzymes (98, 185). The
critical role of the DUOX2/DUOXA2 complex in hormonogenesis was confirmed recently by results showing that
loss-of-function mutations in DUOX2 and DUOXA2 cause congenital hypothyroidism (100, 186–188). Further
support for this role comes from a mouse model of inactivated Duoxa1 and Duoxa2, where DUOXA deficiency led to
intracellular retention of DUOX subunits and the loss of calcium-inducible H O  release (189). Stable
DUOX/DUOXA complexes at the apical membrane are necessary for proper H O  generation. Less stable
combinations (such as DUOX2/DUOXA1) do not form complexes at the plasma membrane and produce O  instead
of H O , which indicates that DUOX activators not only promote DUOX maturation but also take part directly in
H O  production (185). Caveolin-1 (Cav-1) is another important member of the multiprotein complex involved in TH
biosynthesis (183). Cav-1 is one of three caveolar proteins that are important components of caveolae (190). Caveolae
are invaginated microdomains of the plasma membrane that influence endocytosis, transcytosis, lipid metabolism,
signal transduction pathways, and cell proliferation in many eukaryotic cells (adipocytes, endothelial and epithelial
cells, myocytes, and fibroblasts) (reviewed in Ref. 191). In the thyroid, caveolae are required for TH synthesis and
homeostasis, as recently demonstrated (183, 192). For instance, an increased apoptotic rate was reported in the
thyroid of Cav-1-knockout mice (183). In these mice, the organification process is abnormal because the synthesis
enzymatic complex is mislocalized to, and active in, the cytoplasm instead of the apical pole of the cell (183). There
are reasons to believe that this mislocalization is responsible for the increased apoptotic rate observed in this
knockout model, because apoptosis is associated with high oxidative stress (OS). High OS is a consequence of the
increased expression and activity of H O -generating DUOX, which occurs when Cav-1-induced DUOX inhibition is
insufficient. Thus, in the absence of Cav-1, DUOXs are localized to the cytosol, where they are abnormally active. It
has been proposed, but not yet formally proven, that the Cav-1-induced inhibition of DUOX is caused by the
presence of three amino acid sequences that may act as putative binding sites for the Cav-1 scaffolding domain (183,
193). This negative regulation is reminiscent of the role played by caveolar proteins in the negative regulation of
signal transduction pathways and cell proliferation (191). Accordingly, as recently demonstrated in autonomous
adenomas, in a model of adenosine A2-receptor transgenic mice, and in Cav-1-knockout mice, reciprocal negative
regulation occurs between TSH/cAMP-mediated proliferation and Cav-1 expression via mRNA destabilization (183,
192). The increased proliferation rate of thyrocytes in Cav-1-knockout mice provides further evidence for the
antimitogenic role of Cav-1 in the thyroid. This would explain why the overall size and function of the Cav-1-
knockout thyroid remain unchanged, because the OS-mediated increase in the apoptotic rate is likely compensated by
the increase in the proliferation rate in the Cav-1-knockout mice. A pathological mechanism similar to that observed
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in Cav-1-knockout mice was described in a hypothyroid PDS patient with a large goiter (184). PDS is an autosomal
recessive disorder caused by mutations in the SLC26A4 gene. The disease is characterized by sensorineural deafness,
diffuse goiter, and a positive perchlorate discharge test (reviewed in Ref. 59). In this case, iodination processes were
observed to also occur in the cytosol rather than in the apical membrane, suggesting that the disturbance of the TPO-
DUOX molecular complex and its shift into the cytoplasm were, at least partly, responsible for the thyroid tissue
destruction that is sometimes observed in PDS patients (184). This pathological mechanism cannot be generalized to
all PDS patients because the phenotypes of PDS are highly variable and depend on nutritional iodine intake. Thus, in
countries with a high iodine intake, PDS patients are usually euthyroid. This is in contrast to patients from iodine-
deficient regions who may present with overt congenital hypothyroidism (59).

Thus, TPO and DUOX, the two main proteins involved in TH biosynthesis, interact with each other and are activated
in microvilli under TSH stimulation. For TH biosynthesis occurring in safe conditions, additional proteins are
required. How fine-tuned interactions physiologically occur between the different actors still requires further
investigations, which opens new perspectives in this field of research. This sophisticated biochemical setting is
responsible for the fact that H O  production is tightly controlled, because H O  is readily consumed during TPO-
induced I  oxidation, tyrosyl iodination, and iodophenoxy-ether coupling, whereas any H O  intracellular leakage is
strictly contained (178). Consequently, H O  can be produced in the micromolar range similar to that in stimulated
leukocytes (103, 194) without being lethal to cells. The local H O  production in a restricted area of the cell (i.e. the
apical membrane) is reminiscent of the recently proposed model of compartmentalized redox signaling, which infers
that, in response to the activation of receptor tyrosine kinases, H O  does not diffuse freely across the cytoplasm, but
instead localizes to microdomains that are located close to sites of production (plasma membrane, endosomal
compartment, and ER membranes) (195).

D. ROS: key factors in thyroid function and growth

Increasing evidence indicates that ROS other than H O , such as OH  and O , are produced during TH synthesis,
but in very small amounts (130, 179, 196, 197). These ROS do not harm thyroid cells, but they do increase the level
of basal DNA damage in thyrocytes, which may increase the spontaneous mutation rate with functional and/or
tumoral consequences (198–203), as explained later in this review. In fact, beyond the protection provided by the
aforementioned regulatory mechanisms operating during TH biosynthesis, toxicity due to ROS leakage is kept under
tight control by many potent other intracellular antioxidant defense systems, including catalases, superoxide
dismutase, peroxiredoxins, and glutathione peroxidases (178, 179, 203–207). Peroxiredoxins degrade H O  and
reduce peroxidized membrane phospholipids. They are associated with enzymes of the thioredoxin reductase family,
which are selenoenzymes as is glutathione peroxidase. This emphasizes the role of selenium in the redox protection
of the thyroid, its beneficial action during the course of thyroid autoimmune diseases, and its involvement in
myxoedematous cretinism in conditions of combined iodine and selenium deficiency (208) (reviewed in Refs. 179,
209, and 210). It was reported recently that the inactivation of mouse thyroid selenoproteins using a genetic loss-of-
function approach was not associated with severe morphological or functional alterations. This suggests that
selenoproteins are not essential for thyroid cell integrity, perhaps because other antioxidant enzymes can compensate
for their activity when they are absent or inactivated (207).

ROS mediate a variety of signal transduction pathways (reviewed in Ref. 211). In accordance with this, a recent
report demonstrated that ROS levels corresponding to the physiological oxidative load of the cell are required to
safeguard the function and integrity of the thyroid (198). In goitrous thyrocytes, the oxidative load is higher than
under basal conditions, resulting in OS, likely because of increased H O  production or impaired consumption when
iodide is lacking and/or when TPO is blocked (212). However, OS under these conditions is probably neutralized by
antioxidant defenses and is thus harmless. Likewise, OS is required for cell division because goiter formation is
significantly hampered when OS is blocked by N-acetylcysteine, a potent antioxidant (212). These results are not
entirely surprising, because they are in accordance with the growth-promoting effects of ROS (213). For instance,
ROS, including H O , stimulate the proliferation of many cell types through various mechanisms that affect growth
receptor tyrosine kinase pathways, the MAPK pathway, the phosphoinositide-3-kinase pathway (PI3K/Akt), several
cyclin-dependent kinases, and the nuclear factor κB pathway, making them important mediators of thyroid
carcinogenesis (213–221). These observations support a role for H O  in the high frequency of thyroid tumors and
microcarcinomas, particularly under conditions of antioxidant deficiency (201–203). They are also in agreement with
a study that showed that the high rate of mutations in the thyroid is due to constitutive elevated H O  levels (202) and
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with other studies showing that large amounts of H O  cause RET/PTC1 rearrangement and DNA double-strand and
single-strand breaks in thyroid cells (199, 200). In addition, imbalances in intracellular redox systems have been
linked to the molecular mechanisms of tumorigenesis in patients with thyroid cancers (222). Although the link
between OS and thyroid carcinogenesis still needs to be worked out, some explanations are now put forward to
explain why H O  becomes a carcinogen when not adequately contained. Thus, DUOX protein expression is
generally normal or slightly increased in thyroid cancers, whereas NIS, TPO, and pendrin protein expression is
decreased, mislocalized, or even sometimes absent, which implies less H O  utilization and therefore longer exposure
to H O  (54, 223–225). This longer exposure, even though mild, may have long-term consequences considering the
mean 8.5-yr life span of thyroid cells (226). In addition, it is not unusual to observe aberrant localization of the H O -
DUOX-generating system, for instance in the cytoplasm, where antioxidant defenses are again inadequate to deal
with increased OS (223, 225). Under such uncontrolled conditions, moderately high levels of H O  that are not
enough to kill the cell (as seen in the aforementioned model of Cav-1-knockout mice and in PDS patients) might,
however, diffuse freely into the nucleus and provoke DNA damage. Thyroid cancer tissues are also infiltrated by
inflammatory cells that are sources of ROS, which may promote tumor growth by stimulating the major oncogene-
initiated signaling pathways (227–229). TSH-stimulated H O  production could be an additional explanation for the
carcinogenic properties of H O , because cancerous thyroid cells still express the TSH receptor (224). This may
explain why high TSH plasma levels are associated with an increased risk of malignancy in thyroid nodules (230,
231).

OS is also highly toxic in experimental models of iodine-induced thyroid involution, Th1 cytokine-induced
cytotoxicity, and autoimmune thyroiditis (232–236). Iodine treatment of hyperplastic thyrocytes results in their
impairment, as shown by the increase in necrosis/apoptosis, the presence of many cellular fragments, and the massive
interstitial inflammatory reaction (234, 237–242). In these cases, iodine-induced cytotoxicity is due to a more
aggressive attack associated with a massive release of very toxic free radicals (OH , O , ONOO , and
iodocompounds) in addition to H O , most of which are also produced by infiltrating inflammatory cells (196, 234).
Nevertheless, cell destruction is transient, and the thyroid always returns to its original aspect. This is not the case in
individuals genetically susceptible to developing autoimmune diseases such as Hashimoto's thyroiditis. In
experimental models of nonobese diabetic mice for instance, the acute inflammation that occurs after iodine
administration nearly always evolves toward long-term destructive autoimmune thyroiditis (236, 240, 243–246). A
clinical connection can be easily made with these experimental data, because human thyroid autoimmune diseases
have been shown to be associated with increased OS (247–250). Taken together, the data indicate that, although
thyroid antioxidant systems are ideally adapted for the detoxification of H O  and other ROS produced under normal
conditions or even in excess in goiters, it is likely that they are overwhelmed under conditions of high free radical
release, which would lead to neoplastic and autoimmune diseases.

IV. The Angiofollicular Unit: From Concept to Demonstration

A. The role of the local microvasculature in the maintenance of endocrine function

The complex functional and morphological multistep changes that occur during goitrogenesis have been described in
great detail in the past (196, 201, 240, 243, 251–257). It is, of course, widely accepted that TSH stimulates
thyrocytes, as shown by the increases in hypertrophy, hyperplasia, and expression of NIS, TPO, and Tg (251–253,
255, 258–260). It has also been known for decades that epithelial changes accompany increased thyroid blood flow
and vascular expansion (253–255, 261–267). The microvascular expansion is even essential for goitrogenesis, as
evidenced by the inhibition of goiter formation when three important angiogenic growth factor signaling pathways
[vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and angiopoietins] are blocked (268).

Each follicle is enclosed by an independent basket-like plexus of anastomotic fenestrated capillaries that covers 20–
50% of its surface (269). After ID or goitrogen treatment, each vascular nest increases in size as a result of cell
proliferation and capillary fusion to cover up to 70–80% of the follicle surface area (269). This vascular expansion
can be rather impressive; for example, a 250% increase in thyroid blood flow was observed in rats rendered iodine
deficient for 2 wk (270), whereas in humans, a 44% decrease in iodine intake resulted in a 49% increase in thyroid
blood flow (271). By contrast, thyroid blood flow falls promptly in cases of massive iodine supply (potentially
triggered by endothelins), which is necessary to prevent excessive TH synthesis and to protect the gland against free
radicals (196, 239, 253, 272, 273). Considering the emerging role of the microvasculature in thyroid homeostasis, it is
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becoming clear that the morphological and functional unit of the thyroid is not restricted solely to the follicular cells
of the follicle but involve also the surrounding capillaries that, along with thyrocytes, form the AFU (258–260, 274) (
Fig. 4).

Such interconnected changes between epithelial and endothelial compartments are not unique to the thyroid. In the
pancreatic islets of Langerhans, for example, dynamic interactions occur between blood vessels and ß-cells to
improve insulin secretion and ß-cell proliferation (275, 276). Islet blood flow is for instance regulated by specific
metabolic factors such as glucose that almost doubles it (277, 278), but also by less specific factors such as ATP
signals through A1 adenosine receptors as well as neuronal and vasoactive factors (279, 280). In all cases, these
changes occur independently of blood flow in the rest of the pancreas. As conceptualized in the case of the thyroid
where capillaries close to thyrocytes behave differently from one AFU to another and from those irrigating the
adjacent parathyroids, pancreatic islets are also arranged so that regions containing highly vascularized ß-cells are
distinct from those containing other cell types (281). The pituitary gland is another interesting example where the
microvasculature is involved in growth, development, and function (282), and there is evidence that abnormal
microvascular development or altered angiogenesis is associated with some forms of central diabetes insipidus and
pituitary adenomas (283, 284). Also bearing in mind the peculiar vascular architecture in the ovaries (285–287) and
in the adrenals (288, 289), it appears that the involvement of the microvasculature is part of a more global system in
endocrine glands where the local vasculature cooperates with endocrine cells to preserve their function and maintain
homeostasis.

B. ID: the trigger of an immediate TSH-independent microvascular response

The question of how epithelial and endothelial growth is coordinated in the thyroid has been addressed extensively in
the past. The involvement of TSH, although obvious at first sight (290, 291), was challenged quickly (270, 292, 293),
and additional hypotheses, including the neuronal hypothesis and the growth and vasoactive factor hypothesis were
proposed (274, 294). According to the neuronal hypothesis, thyroid blood flow and TH secretion are influenced by
adrenergic, cholinergic, and peptidergic stimuli (270, 292, 293, 295–301), whereas the growth and vasoactive factor
hypothesis implies the involvement of paracrine/autocrine factors of epithelial, neuronal, interstitial, and endothelial
origin (258–260, 268, 272–274, 302–306). Additionally, the vascular status of the thyroid gland may also be
influenced by estrogens (307). Again, this kind of complex regulation is not restricted solely to the thyroid because
similar complex interactions between vasodilators and vasoconstrictors, gastrointestinal peptides, and the autonomic
nervous system were reported to control islet blood flow in the pancreas (308).

In addition to not being the sole participant in this complex interplay, it is known that TSH acts somewhat late in
response to ID, once intrathyroidal reserves of iodine become insufficient to maintain steady TH production (more
than a week in animal models of ID-induced goiter) (251–255, 258, 267, 273, 302). Thus, to cope with daily
variations in iodine supply, thyrocytes use various TSH-independent intra- and extrathyroidal self-regulatory
mechanisms including the stimulation of I  trapping by NIS, the preferential synthesis of T  over T , the recycling of
intracellular I  by DEHAL1, the peripheral conversion of T  into T  (309–311), and the rapid inflation of its own
microcirculation (251–255, 258–260, 267, 269–271, 273, 292, 293, 299, 302).

These changes in the endothelial compartment are the earliest morphological events observed in response to ID and
occur a few days before changes are visible in epithelial cells (252, 254, 267). The vascular reaction occurs in two
waves. The delayed phase is TSH dependent, starts at least a week after goiter onset, and is accompanied by the
hypertrophy and hyperplasia of follicular cells (253–255, 261–267). By contrast, the early phase is TSH independent
and, besides endothelial cells, also involves pericytes, as evidenced by the increased expression of the proteoglycan
neuron-glial antigen 2, a marker of pericyte activation (263, 267). Because this early phase takes place as an
immediate response to the drop in intrathyroid I  content, the intracellular I  shortage has been suggested to initiate
the changes that affect microvessels, even though a role for the organified form of I  or for other iodinated molecules
cannot be ruled out (267). A link between I  shortage and the quick release of VEGF from thyroid epithelial cells was
established recently in vitro (49) and in experiments where bevacizumab (an antibody against VEGF) was
administered to iodine-deficient animals (267). In contrast to animals receiving control IgGs, this antibody prevented
an increase in thyroid blood flow and blocked an increase in the relative volumes of vessels.

C. ID-induced microvascular response: which molecular mechanism?
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The molecular links between ID and TSH-independent VEGF-driven vascular reactions were dissected recently in an
in vitro model of thyrocytes acutely deprived of iodine (49). When the intracellular I content drops sharply in
thyrocytes incubated without I  for 4 h or treated with perchlorate, an immediate increase in hypoxia-inducible
factor-1α (HIF-1α) and VEGF expression occurs along with a concomitant surge in intracytoplasmic ROS. Thus,
when I  is no longer available or when its transport is blocked, its intracellular stocks drop rapidly, which causes an
increase in ROS and the stabilization of HIF-1α. In turn, HIF-1α heterodimerizes with HIF-1ß, which is constitutively
present in the cell. After binding to the promoter region of the VEGF gene, the HIF-1α/HIF-1ß heterodimer initiates
transcription. As a result, VEGF mRNA and protein expression increases. VEGF is then secreted and activates
adjacent pericytes and endothelial cells, which leads to microvascular expansion and increased blood flow (Fig. 5).

This pathway is transitory and is not associated with abnormal tissue growth, which implies tight control. By contrast,
in malignant cells, the pattern of intracellular events in response to ID is somewhat different. ID-induced VEGF
expression is stronger and is not controlled over time, which implies that the intracellular pathways are different from
those activated in nonmalignant cells (50). Thus, although the angiogenic stimulus should be viewed as a
physiological adaptation of the gland to optimize its functional yield in normal cells (49, 267), ID is associated with a
less controlled angiogenic switch in malignant cells (50). This notion of microvascular control in normal tissues vs.
malignant cells was also reinforced by the recent discovery of some components of the highly conserved cell
signaling system Delta-Notch pathway in the thyroid (312). Beyond VEGF, angiogenic stimuli are monitored by
many other controlling pathways, including the Delta-Notch pathway (313–316). This pathway is activated by VEGF
to prevent excessive vessel proliferation. In humans, four Notch receptors (1–4), and five ligands [Delta-like ligand
(DLL)-1, -3, and -4 and Jagged-1 and -2] were identified (316, 317). Notch1, -2, and -3 were reported in a study that
suggested a role for the Notch pathway in thyroid cell differentiation (318), whereas Notch4 and DLL4 expression
was reported to be lower in normal thyroids than in nonmalignant hyperplastic and malignant tissues (312). Only
capillaries of Graves' disease samples were positive for DLL4, suggesting that DLL4 plays a role as a downstream
controller of VEGF in hyperplastic nonmalignant tissues to keep the expanding microcirculation under control. Thus,
in contrast to carcinomas where coherent and coordinated cross talk between cells of different tissue compartments is
altered and leads to anarchic vascular growth, such cross talk is kept intact under nonmalignant conditions.

D. AFUs: a heterogeneous population of three-dimensional structures that protects the thyroid
gland against functional failure

Although AFUs are perfectly adapted to respond to goitrogen stimuli in a synchronized manner, they do not work as a
uniform population, but instead as heterogeneous clusters of distinct units characterized by particular growth and
functional properties. This functional and morphological heterogeneity is a hallmark of the thyroid that helps the
gland to adapt to changing physiological conditions and explains its propensity to form nodules.

In a model of elderly mice, characterized by marked morphological heterogeneity, thyroid capillaries are closely
related to the functional status of the follicle upon which they depend. In fact, two types of follicles coexist in the
thyroid of aged animals. Based on morphological and autoradiographic criteria, they are either active (hot) or inactive
(cold) (258, 319–321). A correlation was drawn between the degree of activity of each follicle and the expansion of
its respective microcirculation, which was significantly larger around active (hot) follicles than around inactive (cold)
ones (258). When applied to humans, using tissue sections of multinodular goiters, the follicles were also sorted out
into active or inactive, based on morphological criteria. In contrast to richly vascularized active follicles, inactive
follicles, such as those in old mice, were surrounded by a hypotrophic microcirculation (259). Beyond epithelial
function, vascular changes are also more marked around proliferative epithelial cells, as demonstrated in a model of
transgenic hyperthyroid mice expressing the A2a adenosine receptor (Tg-A2aR) and in human Graves' disease (260)
where the number of proliferating cell nuclear antigen-positive cells was highest in the most vascularized areas.

V. Angiofollicular Heterogeneity, Nodulogenesis, and Multinodular Goiter: Why and
How?
The limitations of adaptive autoregulatory mechanisms in the thyroid gland in the face of a widely fluctuating iodine
supply may lead to the development of goiters. Goiter formation should be considered as an adaptive process rather
than pathological, as long as thyroid function is preserved and even though they may sometimes occur along with
risks of local compression (35, 255). Throughout this process, not only TSH, but also many locally produced growth,
vasoactive, and angiogenic factors [IGF-I, epidermal growth factor (EGF), FGF, endothelin-1, nitric oxide, VEGF,
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and others] are involved in the growth and replication of epithelial and endothelial cells (Fig. 2) (reviewed in Refs.
274, 294, 303, and 306). Of course, ID is not the unique etiological factor of goiters, because many individual genetic
determinants and environmental factors (cigarette smoking, nutritional goitrogens, radiations, gender, age, and body
mass index) are other well-known causative factors (256, 257, 322).

Starting from diffuse hyperplasia, nontoxic goiters always tend to become heterogeneous over time and are gradually
transformed into multinodular goiters (MNGs) (201, 256, 257, 322). The tissue heterogeneity may be explained by
two theories (perhaps complementary): the most studied and accepted polyclonal and mutation theory and the more
recently proposed and less studied stem cell theory.

A. The polyclonal and mutation theory

The heterogeneity of MNG is evidenced in humans in I and technetium scans, which show a complex mixture of
normal, hyperfunctioning (hot), and hypofunctioning (cold) nodules in variable proportions, the functional status (eu-,
hyper-, or hypothyroidism) of a given individual being determined by the overall functional balance of these nodules
(257). At the microscopic level, epithelial cells of each AFU also show heterogeneity in growth, endocytic responses,
and Tg synthesis (319, 323–329). For instance, only a small fraction of thyrocytes reacts with TSH via the formation
of endocytic colloid droplets (324, 325). In addition, the production of Tg varies considerably between cells; the
colloid content of each follicle depends on the cells producing the largest amounts of Tg (72, 319, 323). The
considerable tissue heterogeneity is therefore the result of the phenotypic diversity of thyroid cells. This phenotypic
diversity may be explained by the polyclonality theory, which postulates that for a given stimulus, cells react
differently from their neighbors depending on their intrinsic properties, which reflect their polyclonal origin (330–
336). The principle of polyclonality can be understood at the cellular level. Thus, some cells, even within the same
AFU, could for instance enter the cell cycle more quickly than others in response to growth stimuli. But the same
principle can also be understood at the level of the organ as a whole. Accordingly, a rising nodule may result from the
coordinated replication of a cluster of follicles characterized by the same growth properties, which may differ from
those of their neighbors. When this trait is amplified, the process may eventually give rise to nodules having their
own specific morphological and functional properties (201, 255–257, 260, 322, 337). This is supported by a study
that reported that the thyroid epithelium exhibits large embryonal patch size. According to this paper, cellular
monoclonal zones that react to growth-regulating signals would be relatively large instead of being restricted as
initially thought (338). Thus, when it is applied to an organ made of many large monoclonal cell patches, but with
different somatic genetic properties, the principle of polyclonality could account for organ heterogeneity and explain
the development of macroscopic nodules distributed among otherwise morphologically and functionally quiescent
areas. These resting zones are composed of large AFUs lined with flat epithelium and filled with dense colloid-
containing globules of compact Tg (see Section III.B and Fig. 2) (157, 258, 259, 274). Their adjacent vasculature is
hypotrophic. In experimental models, they are considered to act as a functional reserve that works as a rescue system
when needed. Of note, proteins of the apical pole (TPO, pendrin, and DUOX) are absent in these hypofunctioning
follicles, as is TgI. Upon TSH stimulation, the progressive dilution of dense Tg globules into soluble Tg is
accompanied by the reexpression of proteins involved in TH synthesis (TPO, DUOX, and pendrin) and the
proliferation of endothelial cells, as demonstrated by the increased number of [ H]thymidine-labeled endothelial
nuclei (157, 258, 259). This morphological and functional awakening is necessarily followed by a stabilization phase
mediated by locally generated regulatory factors such as TGF-ß that, on the one hand, limit cell growth and function
but, on the other hand, facilitate the deposition of connective tissue, which may aggravate tissue heterogeneity (208,
303, 333, 339, 340). Over time, nodules of different size and aspect develop. Sometimes they degenerate and a cyst is
formed with traces of hemorrhage and calcium deposits, and it is not unusual to also observe areas of focal
lymphocytic infiltration. As in cold hypofunctioning nontransformed nodules, there is also a loss of TgI in thyroid
cancers, but the causative defects differ. In cold hypofunctioning nontransformed nodules, NIS and TSH receptor
expression persists, whereas the apical markers (pendrin, DUOX, and TPO) vanish (224). In cancers, NIS expression
either disappears or increases in association with a mislocalization of the protein that is no longer retained in the
basolateral membrane, which suggests that the decrease in I  uptake in thyroid carcinomas is due instead to
alterations in NIS trafficking (reviewed in Ref. 54). The presence of apical markers depends on the type of tumor. For
instance, pendrin and TPO are still observed in follicular carcinomas, in contrast to papillary carcinomas where they
are undetectable. This suggests that the defect in Tg iodination has different causes in nontransformed and
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transformed tissues and in different types of carcinomas. Accordingly, the anti-TgI antibody (159) was shown to help
the diagnosis of thyroid carcinomas, especially when the differential diagnosis with nontransformed follicular
adenomas is difficult (224).

During tissue transformation, some nodules may acquire growth and functional advantages, as in autonomously
functioning thyroid nodules. This is likely to be associated with an increased number of mutation events resulting
from increased cell proliferation and functional activity (reviewed in Refs. 201, 256, 257, and 322). As already
mentioned, during thyroid hyperplasia, DNA damage occurs because of increased H O  production, which results in
a higher mutation load, and H O -associated mutagenesis is now a well-established fact (178, 199, 200, 202, 203,
213). Some of these mutations (ras mutations or those in the RAS/RAF/MEK/ERK/MAP cascade) confer a growth
advantage, as is sometimes seen in cold thyroid nodules, whereas others (TSHr and Gsα mutations) rather favor both
cell growth and function, as seen in autonomously functioning thyroid nodules, because they result in constitutive
activation of the cAMP cascade (201, 256, 257, 341). These small clones with activating mutations will proliferate
further irrespective of intra- and extrathyroid mechanisms (e.g. TSH) and even after cessation of the initial
stimulatory stimulus (for example, ID). In addition, some defects in genes directly involved in thyroid physiology and
TH synthesis (Tg, TPO, NIS, TSH receptor, PDS, and DEHAL1) will also predispose the thyroid to the development
of goiter, especially in areas of borderline or insufficient iodine supply (reviewed in Ref. 201).

B. The stem cell theory

Currently, the most widely accepted theory of thyroid tissue heterogeneity, ranging from adenomas to MNGs and
finally carcinomas, is based on the notion that this is caused by multiple molecular aberrations in well-differentiated
thyrocytes, including epigenetic changes, profound alterations in chromosomes, and dysregulated signaling and
regulatory pathways. An alternative, and perhaps complementary, explanation for thyroid heterogeneity was
presented recently using the concept of adult stem cells (342–348). Adult stem cells are undifferentiated, quiescent, or
slow cycling cells found in differentiated tissues (349). In addition to colon, skin, pancreas, liver, and brain, they have
been reported in the human thyroid gland (342–345). Through asymmetric cell division, adult stem cells are capable
of making identical copies of themselves, resulting in one self-copy and one precursor or progenitor cell that divides
further, eventually giving rise to differentiated cells. Adult stem cells are characterized by their resistance to growth
stimulation, which is explained by their close interactions with niche cells (reviewed in Refs. 350 and 351). These
cells protect stem cells from uncontrolled differentiation stimuli, apoptotic stimuli, and excessive proliferation. Under
conditions where strict niche cell-induced control is reduced, stem cells gradually escape growth control and start
dividing. Some progenitor cells, under the influence of locally produced growth factors, may then proliferate faster
than the surrounding differentiated thyrocytes to form nodules or hyperplastic lesions. If progenitor cells are not fully
differentiated, they could serve as the starting point of cold nonfunctioning nodules (347). A paper by Lan et al. (344)
in 2007 indicated that thyroid adult stem cells can be isolated directly from primary thyroid cultures as three-
dimensional spheres (called thyrospheres) in a medium enriched with EGF and FGF, but only under serum-free
medium conditions and in the absence of TSH (i.e. in conditions that reflect differentiated cell apoptosis). When
isolated from these nonadherent, three-dimensional spheres, these stem cells can then differentiate into thyrocytes
(with the ability to express PAX8, Tg, NIS, TSHr, and TPO mRNA and to show TSH-dependent I uptake) when
they are incubated into serum-enriched medium containing TSH, even though no TH secretion was found in this
model (344) or in models of mouse embryonic stem cells (352, 353). Whether these stem cell-derived thyrocytes can
reconstitute functional AFUs is currently unknown. Recently, thyroid cancerous stem cells derived from mutated
adult stem cells or their progenitor cells were reported in papillary, follicular, and undifferentiated thyroid cancers
(12, 347, 348, 354–357). Their identification is important because they could account for the aggressiveness and
recurrence of undifferentiated carcinomas and for their resistance to radioiodine treatment and conventional chemo
and radiotherapy (12, 347, 348). Further investigations are necessary to assemble into one coherent model current
knowledge about the events affecting differentiated thyroid cells and stem cells.

VI. Concluding Remarks
The thyrocyte is a specialized cell that adapts itself continuously to fulfill its main function, that is, TH synthesis, a
potentially hazardous biochemical reaction, while optimizing the uptake of an essential trace element, iodine.
Oxidizing and coupling reactions occur at the interface with the colloid and are regulated in such a way that H O
and ROS production are tightly controlled. ROS are more than by-products of aerobic respiration; they are key
players in thyroid function, and thyrocytes are well equipped to deal with ROS by virtue of their potent detoxifying
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systems. When the synthesis complex is altered, oxidation reactions start to occur in the cytoplasm with devastating
consequences, such as morphological and functional breakdown, which engender disease processes, including those
of an autoimmune or neoplastic nature.

A crucial function that thyrocytes must perform on a daily basis is the constant incorporation of iodine into Tg. To
face daily variations in iodine supply, each thyrocyte uses various intra- and extrathyroidal TSH-independent self-
regulatory mechanisms, including the regulation of its own microvasculature. In this context, the structural and
functional unit of the thyroid includes the adjacent microvasculature in the three-dimensional structure called AFU.
According to this concept, the vascular plasticity acts in conjunction with the multiple homeostatic processes that
control TH synthesis. ID-associated vascular responses occur in two successive phases: the first early phase involves
a TSH-independent ROS/HIF/VEGF pathway, whereas the second delayed phase starts when TSH plasma levels rise;
however, the nature of the intracellular sensor that triggers the quick vascular remodeling in reaction to ID is still
unknown. It is worth investigating the identity of this trigger, because AFU must tightly control the adjacent vascular
response at all times. It is easy to understand how strategic this control must be for the thyroid to avoid anarchic and
uncontrolled growth of the vascular compartment. Such strict control of the endothelial compartment by epithelial
cells, irrespective of TSH, is an inherent property of healthy AFU and could explain why so many in situ
microcancers are quiescent in the thyroid gland. Recent evidence suggests that ID regulates vascular changes in
thyroid carcinomas through VEGF, but in a way different from that in nonmalignant tissues or at least using an
alternative sequence of events. This suggests that altered autocrine-paracrine signals in unstructured AFUs facing ID
may induce an angiogenic switch that leads to uncontrolled cellular proliferation.

When protective measures become insufficient for thyrocytes to sustain TH synthesis, TSH leaps into action along
with many other locally generated growth and vascular regulatory factors in very dense and complex paracrine
networks, resulting in the emergence of a goiter. Although goiter growth is controlled in time and space, it is highly
heterogeneous from inception because of the polyclonal origin of the cells. Evidence suggests that the concept of
polyclonality accounts for organ heterogeneity and the growth of nodules distributed among morphologically and
functionally quiescent areas. These zones correspond to tissue reserves that become easily accessible upon TSH
stimulation. This morphological and functional awakening is always followed by a stabilization phase attributable to
locally generated regulatory factors, such as TGF-ß that, on one hand, limit cell growth and function but, on the other
hand, facilitate the deposition of connective tissue, which may aggravate the heterogeneous character of the thyroid
tissue.

To conclude, the thyroid gland has somehow succeeded during its phylogenic maturation in squaring the circle
between iodine uptake, TH synthesis, and protection against ROS by setting up highly efficient structures, termed
AFUs, which enable it to face its own functional exigencies. This morphological and functional integration warrants
an adequate TH supply, at any time and whenever necessary.
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Footnotes
Abbreviations:

AFU Angiofollicular unit 
AHDS Allan-Herndon-Dudley syndrome 
Cav-1 caveolin-1 
DEHAL1 dehalogenase 1 
DIT di-iodotyrosine 
DLL Delta-like ligand 
DUOX1 dual oxidase 1 
DUOXA2 DUOX maturation factor 2 
EFP1 EF-hand binding protein 1 
EGF epidermal growth factor 
ER endoplasmic reticulum 
FGF fibroblast growth factor 
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HIF-1α hypoxia-inducible factor-1α 
ID iodine deficiency 
MCT8 monocarboxylate transporter 8 
MIT mono-iodotyrosine 
MNG multinodular goiter 
NADPH reduced nicotinamide adenine dinucleotide phosphate 
NIS sodium-iodide symporter 
NOX adenine dinucleotide phosphate oxidase 
OS oxidative stress 
PDI protein disulfide isomerase 
PDS Pendred syndrome
ROS reactive oxygen species 
SLC5A5 soluble carrier 5A5 
Tg thyroglobulin 
Tgl antibody against iodinated Tg containing T  at the N-terminal hormonogenic site 
TH thyroid hormone 
TPO thyroid peroxidase 
TR TH receptor 
VEGF vascular endothelial growth factor. 
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Figure 1.

The intrathyroidal journey of iodide. Iodide (I ) entering the thyroid gland through fenestrated microvessels must sequentially cross
the two basal laminae of endothelial and epithelial cells to be transported into the thyrocyte by NIS, which uses the energy provided by
a Na -K -ATPase. Once inside the cell, I  rapidly goes to the apical surface (according to a process that still remains elusive) where it
is transported across the apical membrane by pendrin, even though other apical transporters have been proposed to be part of this
process. I  is readily oxidized by TPO in the presence of H O  and incorporated into tyrosine residues of Tg to form MIT and DIT,
which are coupled, again by TPO, to form T  and T . H O  is produced by DUOX2 in coordination with DUOXA2. TH biosynthesis
occurs at the interface with the colloid in a harmless environment for the cell. Iodinated Tg is stored in the colloid until use (see Fig. 2
). T  can be partly released extracellularly by cathepsins K and L. In the human, the uptake of Tg by thyrocytes occurs by
micropinocytosis, which can be either nonspecific (fluid phase) or receptor mediated. After endocytosis, colloid droplets containing
partly digested Tg are transported to the endolysosomal compartment for complete hydrolysis by lysosomal enzymes including
cathepsins. THs are released into the circulation via basal TH transporters (including MCT8) and transported to their target tissues via
binding transport proteins. Unused MIT and DIT are dehalogenated by DEHAL1, and most of the I  is recycled into TH synthesis.
The binding of TSH to its receptor activates both Gs and Gq proteins. Green dots represent colloid droplets with partially degraded
Tg, and blue dots represent cathepsins. BM, Basal membranes; DAG, diacylglycerol; Gq/G11, guanine nucleotide-binding protein αq
and α11 subunits; Gs, guanine nucleotide-binding protein α-subunit; IP3, inositol triphosphate; TJ, tight junctions; TSHr, TSH
receptor.
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Figure 2.

Open in a separate window

Proposed mechanism of hypofunctioning follicle reactivation and processing of Tg globules upon TSH stimulation. In the normal
human thyroid, active follicles coexist with many hypofunctioning follicles that are surrounded by hypotrophic capillaries and that
contain compact Tg globules. These globules correspond to condensed Tg in covalently cross-linked form, not immediately available
for TH synthesis, but eventually usable in case of increased hormonal needs. When this occurs, hypofunctioning follicles serve as a
functional reserve that can be reactivated upon TSH stimulation. TPO, DUOX, and pendrin expression then reemerges along with
progressive dilution of Tg globules into soluble Tg, under the action of secreted cathepsins. This occurs along with the expansion of
adjacent microvessels, which, besides TSH, depends also upon many locally secreted growth and vasoactive factors. Persistent TSH
stimulation induces thyrocyte hypertrophy and proliferation resulting in goitrous follicles with no more colloid Tg reserves. The
microvascular reaction keeps evolving with the proliferation of endothelial cells, the fusion of adjacent microvessels, and the
formation of larger microvessels. At this stage, in addition to being secreted by thyrocytes, VEGF, as well as FGF at least, could also
function as crinopexins that are locally synthesized molecules sequestered in pericellular structures (extracellular matrix, cell surface,
and proteoglycans) under a latent form (305). According to this theory, early alterations in local blood flow and in microvessel shape
may alter the extracellular matrix, thereby provoking the release and the activation of crinopexins that could, in turn, stimulate
endothelial cell proliferation. This would amplify local changes in the microvasculature initially originated from thyrocytes. Of note,
VEGF expression is observed even in thyrocytes of hypofunctioning follicles. ECM, Extracellular matrix; ET, endothelins; TSHr, TSH
receptor.
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Figure 3.

Open in a separate window

The multiprotein complex involved in TH biosynthesis. A, Upon TSH stimulation, DUOX2 and TPO migrate into the plasma
membrane where the complex is activated. TPO and DUOX2 are viewed as a producer-consumer unit that allows TPO to use H O
instantly to oxidize iodide (I ) into iodine, to iodinate tyrosyl residues of Tg, and to couple iodotyrosyl residues to form T  and T ,
while protecting the cell against H O  possible oxidative damage. DUOX2 is represented here as a seven-transmembrane-domain
glycoprotein with an extracellular NH -terminal peroxidase-like domain that appears essential for interaction with TPO, a long
COOH-terminal region that contains the catalytic NADPH oxidase core along with the flavin adenine dinucleotide (FAD) and
NADPH binding cavities, and two EF-hands in the first intracellular loop that are essential calcium binding sites. TPO is represented
with a short intracellular COOH terminus and a long extracellular NH  terminus (90% of its amino acids) that exhibits a catalase-like
activity in certain circumstances. His407 is involved in the covalent binding of the heme prosthetic group that is essential for enzyme
activity. The manner in which TPO and DUOX2 interact makes the apical multiprotein complex perfectly suited to detoxify ROS and
avoid H O  spillages. The local H O  concentration is kept under control by the TPO catalase-like action (which protects DUOX2, as
long as both proteins are closely associated). In addition, the complex contains the thioredoxin-related protein EFP1, which interacts
with the two EF-hands of DUOX2 and detoxifies H O  that is not readily used in the biosynthesis process. EFP1 may also be involved
in the maturation process of DUOX2. For this biochemical unit to be activated, DUOX2 must be fully glycosylated (Y, N-
glycosylation sites) following successive maturation steps in the ER and the Golgi apparatus. DUOX2 must also be associated with the
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maturation factor DUOXA2, which is represented here as a five-transmembrane-domain protein with an extracellular loop between the
second and the third transmembrane domains along with three glycosylation sites (Y). I  and H O  regulate the activity of the
enzymatic complex, depending on their local relative concentration. When I  is present in adequate amounts, H O  is the limiting
factor of the reaction and mediates the association between TPO and DUOX2. In thyroids with low intracellular I  content, I  instead
exerts a stimulatory effect on H O  production. When I  is present in excess, H O  synthesis is blocked. Because I -induced effects
are inhibited by methimazole or propylthiouracil, this indicates that I  acts through oxidized species. B, In resting conditions, the
complex TPO-DUOX2-DUOXA2 is kept inactive underneath the apical membrane. Cav-1 is required to keep DUOX2 quiescent,
because it may interact with domains in the cytoplasmic region of the molecule that are putative sites for Cav-1 scaffolding domains
(following a hypothesis that still needs to be proved). According to the most plausible explanation, Cav-1 would come off the enzyme
complex after its incorporation into the apical membrane. The absence of Cav-1 is responsible for mislocalization and premature
activation of the complex in the cytoplasm, creating potentially devastating consequences due to increased OS and/or lack of efficient
antioxidant mechanisms naturally activated when I  organification and coupling reactions normally occur in apical microvilli.
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Figure 4.
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The concept of AFUs in the thyroid gland. The thyroid gland is composed of many AFUs. They are individualized entities with their
own genotypic and phenotypic assets under the local control of a host of autocrine and paracrine factors, as well as exerted by TSH. A
and B, Each unit is composed of thyrocytes gathered in a follicle that is surrounded by capillaries made of endothelial cells and
pericytes independent from their neighbors. In unstimulated conditions (i.e. in conditions of adequate iodine supply), the vascular bed
covers about 20–50% of the follicle surface (this AFU corresponds to the so-called active follicle in Fig. 2). C and D, As soon as the
intracellular iodide (I ) content drops, the thyrocytes react immediately by secreting VEGF, which triggers an early and modest TSH-
independent microvascular reaction. If the increased local clearance of I  associated with this compensatory mechanism is not enough
to preserve TH synthesis, TSH plasma levels start rising. Upon TSH stimulation, a more robust but always tightly controlled
microvascular reaction occurs. E and F, By the end of the process, the area occupied by the expanded vascular bed may cover up to
80% of the follicle surface made of hyperplastic and hypertrophic thyrocytes. Scale bar, 10 μm. Arrows indicate microvessels.
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Figure 5.
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Proposed mechanism of early ID-induced TSH-independent microvascular reaction in thyroid AFUs. A, TSH-independent
microvascular activation. In unstimulated AFUs (left), capillaries close to thyrocytes are fenestrated and surrounded by pericytes.
Endothelial cells and pericytes are separated only by fused basal membranes. If iodide (I ) supply drops, independently from any
stimulation by TSH (right), VEGF expression increases in thyrocytes, which induces a microvascular activation, implying, as initial
step, the detachment of chondroitin sulfate proteoglycan 4 (NG2)-expressing pericytes from endothelial cells. B, Molecular
mechanisms. When I supply is altered or when its transport is blocked, the thyrocyte intracellular content drops rapidly, thereby
increasing ROS, which leads to the stabilization of HIF-1α. The exact nature of ROS and where they are produced still deserve further
investigation. HIF-1α heterodimerizes with HIF-1β, which is constitutively present in the cell. The HIF-1α/HIF-1β heterodimer, after
binding to the hypoxia response element (HRE) site of the promoter region of the VEGF gene, turns on its transcription. As a result,
VEGF mRNA and protein expression increases. VEGF is then secreted and activates adjacent endothelial cells and pericytes, thereby
leading to microvascular activation, increased blood flow, and proliferation of endothelial cells and, in turn, to increased local
clearance of I . When this and other protective measures become insufficient to safeguard TH synthesis, TSH enters into the action, in
coordination with many other locally generated growth and vascular regulatory factors.
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