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Diabetes mellitus is one of the life threatening diseases over the globe, and an early prediction of diabetes is of utmost importance
in this current scenario. International Diabetes Federation (IDF) reported nearly half of the world’s population was undiagnosed
and unaware of being developed into diabetes. In 2017, around 84 million individuals were living with diabetes, and it might
increase to 156 million by the end of 2045 stated by IDF. Generally, the diagnosis of diabetes relies on the biochemical method that
may cause uneasiness and probability of infections to the subjects. To overcome such difficulties, a noninvasive method is much
needed around the globe for primary screening. A change in body temperature is an indication of various diseases. Infrared
thermal imaging is relatively a novel technique for skin temperature measurement and turned out to be well known in the medical
field due to being noninvasive, risk-free, and repeatable. According to traditional Chinese medicine, the human tongue is a
sensitive mirror that reflects the body’s pathophysiological condition. So, we have (i) analysed and classified diabetes based on
thermal variations at human tongue, (ii) segmented the hot spot regions from tongue thermogram by RGB (red, green, blue) based
color histogram image segmentation method and extracted the features using gray level co-occurrence matrix algorithm, (iii)
classified normal and diabetes using various machine learning algorithms, and (iv) developed computer aided diagnostic system to
classify diabetes mellitus. *e baseline measurements and tongue thermograms were obtained from 140 subjects. *e measured
tongue surface temperature of the diabetic group was found to be greater than normal. *e statistical correlation between the
HbA1c and the thermal distribution in the tongue region was found to be r2 � 0.5688. *e Convolutional Neural Network has
outperformed the other classifiers with 94.28% accuracy rate.*us, tongue thermograms could be used as a preliminary screening
approach for diabetes prognosis.

1. Introduction

Diabetes mellitus (DM) is an epidemic life threatening
disorder characterized by elevated levels of blood glucose.
*e International Diabetes Federation (IDF) predicted that
around one-fifth of the total population with diabetes in the
world is from South East Asian countries. It was found that
there are almost 84 million individuals suffering fromDM in
the year 2017. *ese figures were anticipated to increase to
156 million (86%) by the year 2045. Also IDF reported 425

million adults aged 20–64 years in 2017 are living with
diabetes worldwide. By 2045, it is predicted to increase to
about 629 million in adults aged 20–64 years [1]. Moreover,
the World Health Organisation (WHO) estimated that in
2012, deaths caused by DM were found to be 1.5 million [2].
*e globalized diabetes prevalence rate was estimated as 9%
among men and 7.9% among women in 2014, increasing
from 4.3% and 5.0% in 1980 due to population growth and
ageing factors [3]. Prolonged asymptomatic phase of type 2
diabetes leads to micro- and macrovascular complications
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[4]. *e researchers estimated about 45.8% or 174.8 million
adults with diabetes are undiagnosed globally in the year
2013, and it is found to be 42.2 million adults in India [5].
*e factors such as obesity, decreased physical activities,
growing population, ageing, sedentary lifestyle lead to the
rapid increase in diabetes prevalence rate inmen and women
[6]. Some study postulated that a hereditary factor can partly
drive the risk of diabetes [7]. Various research studies ob-
served a firm relationship between body mass index (BMI)
and diabetes [8–13].

Generally, DM is categorized as type I and type II
whereas type I DM is the degeneration of beta cells within
the pancreas and type II DM is found when our body is
unable to use the released insulin properly [14, 15]. *e
American Diabetes Association (ADA) reported that DM
could be diagnosed based on HbA1c criteria, either the
fasting glucose or 2 h plasma glucose after a 75 g oral glucose
tolerance test (OGTT) [16]. Several research studies sug-
gested HbA1c diagnostic criteria as the standard method for
long term glycaemic control in diabetic patients [17, 18].*e
biochemical analysis and glucometers are used as diagnostic
methods to measure the glucose level for diabetic adults.
*ese methods are producing precise results only after the
damage had affected the nerves, blood vessels, and tissues.
So, this inconvenience to the diabetic adults can be changed
only by an alternative method for diagnosing DM [19]. *e
skin surface temperature was highly influenced by patho-
logical and physiological changes in the human body [20].
*ermography is used to measure and analyse the distri-
bution of thermal emission from the surface of the body [21].
Infrared thermal imaging is a noncontact, nonradiative, and
risk-free detection tool [22]. *e application of thermal
imaging is persistently developing along with the technical
advancements. *ermal imaging is used to evaluate dry eye
[23], lower and upper extremities [24, 25], dermatology [26],
Raynaud’s disease [27, 28], diabetic foot ulcer [29], stress
[30], and atherosclerosis [31].

Tongue diagnosis is a noncontact method to evaluate the
condition of the patient’s internal organs. *e tongue is a
sensitive mirror that reflects the pathophysiological condi-
tion of the body. According to East Asian Medicine, the
internal organs such as liver, stomach, lung, heart, and
urinary bladder meridians were directly connected to the
corresponding reflex zones of the tongue [32]. Hu et al. have
observed that tongue features are strongly correlated with
the alanine aminotransferase (ALT) and aspartate amino-
transferase (AST) which are important biomarkers for liver
diseases [33]. Nakamura et al. have found a mass of neu-
rofibroma in the tongue which indicates von Recklinghausen
disease, which is an autosomal dominant neurogenetic
disorder [34]. Jian et al. have evaluated the association
between purple bluish tongue and increased platelet counts.
Furthermore, they examined their relations with the re-
currence of epithelial ovarian cancer [35]. Han et al. have
found a distinctive microbiome coating on the tongue be-
tween colorectal cancer and healthy subjects [36]. Pang et al.
have obtained promising results for appendicitis diagnosis
based on the pathological changes on the tongue surface
[37]. *e association between blood perfusion rate and

tongue thermograms for anaemic subjects was investigated
by Xie and Zhang [38]. Liao et al. have identified that certain
tongue features (tongue color, fur, and thickness) were
related to the progression of diabetes with pyrogenic liver
abscess (PLA) [39]. Zhihao et al. have found an unusual
increase in tongue thermograms on coronary artery disease
subjects compared with normal subjects due to the irregular
metabolic rate [40]. Baek et al. have found that tongue
surface temperature measured using infrared thermography
could be the partial indicator of cold heat pathological
patterns [41].

*e proposed study was aimed (i) to analyse the thermal
distributions in the tongue region between the normal and
type II DM, (ii) to segment the hot spot regions (red
component) using RGB based color histogram image seg-
mentation method from tongue thermogram and extract the
statistical features using gray level co-occurrence matrix
(GLCM) algorithm, (iii) to classify the normal and type II
DM based on the tongue surface temperature measurements
and extracted features from the tongue region using various
machine learning algorithms, and (iv) to develop the
computer aided diagnostic system for the classification of
type II DM.

2. Materials and Methods

2.1. Study Population. *e tongue thermograms were col-
lected from a free screening diabetic camp organized at SRM
Hospital and Research Centre, Kattankulathur, Tamil Nadu,
India with the approval of an institutional ethical committee
with an ethical clearance number: 834/IEC/2015. *e in-
formed consent forms and questionnaires were obtained
from all the subjects (n� 200). After scrutinizing the patient
information sheet filled up by the participants, cases like
fever, cardiovascular complications, arthritis, and renal
failure were excluded from the study. Out of the 200 subjects
who participated, a total of 140 subjects (Normal, n� 70 and
type II DM, n� 70) aged between 20–50 years were included
for the proposed study. *e exclusion criteria involved for
this proposed study were pregnant and nursing women and
subjects with renal failures, thyroid problems, anaemia, and
uncontrolled blood pressure; based on these criteria 60
subjects were excluded. *e overall mean± standard devi-
ation of age for male subjects (n� 63) was found to be
44.60± 9.19 years and that of female subjects (n� 77) was
46.48± 9.45 years. Based on the World Health Organization
(WHO) criteria, the standard HbA1c value ≥6.5% was di-
agnosed as type II DM [42]. According to this criterion, the
subjects were classified into two groups and tabulated in
Table 1.

2.2. Baseline Measurements. *e parameters such as height
(cm), weight (Kg), body mass index (Kg/m2), systolic blood
pressure (mmHg), hip circumference (cm), diastolic blood
pressure (mmHg), waist circumference (cm), and Spo2 (%)
were measured using a standard method. *e biochemical
variables such as the fasting blood glucose (FBG) (mg/dL),
postprandial blood glucose (PPBG) (mg/dL), HbA1c (%),
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and estimated average glucose (eAG) (mg/dL) were mea-
sured from the subjects blood sample using gold standard
method [43, 44].

2.3. Measurement Protocol. *e tongue thermogram was
acquired from the subjects using an infrared camera (FLIR
A305 SC, FLIR Systems, USA). *e subjects were instructed
to remove all the metallic accessories and adapted to the
controlled environment of 22–23°C and relative humidity of
50% [45]. *e subjects were asked to be in a sitting position
for ten minutes before the image acquisition procedure. *e
images were captured during the fasting condition for the
total population studied. During the measurements, the
subjects were advised to place their chin on a resting tool
with widely opened mouth and to extend their tongue out
with the tip pointing downward prior to the image acqui-
sition process. *e subjects were informed to close their
mouth for two minutes as the prolonged extension might
influence the blood perfusion as well as the temperature on
the surface of the tongue. *e images were captured at a
distance of 0.3 meters from the tongue region of the subjects
using a thermal camera. *e tongue thermograms were
analysed using thermal imaging FLIR tools software. *e
temperature scale was kept constant for tongue thermo-
grams. Figure 1 depicts the template of the tongue in which
region of interest (ROI) is fixed on the tongue. *e centre
region of the tongue indicates the spleen and stomach organ
of the human body [46]. So, the ROI has been fixed at the
centre of the tongue region to classify DM.

*e temperature was measured using various built-in
tools such as spot detection, line, area, ellipse, rectangle, and
so forth, available in FLIR tools software. Among all these
tools, the rainbow palette and area tool was used to de-
termine the ROI of the tongue thermograms. *e shape of
the ROI used was the rectangle area tool and the size of the
area fixed in thermal imaging for measurement was
10×12mm. Figure 2 depicts the illustration of overall study
design and the workflow of the proposed image processing
technique in the diagnosis of type II DM.

*e tongue thermogram was processed using Matlab
R2014a software. *e summary of an algorithm was given as
follows:

Step 1: tongue thermogram was considered as an input
image
Step 2: the images were resized into 256× 256 pixels
and preprocessed using Gaussian filter.
Step 3: based on the preprocessed image histogram,
minimum and maximum threshold values have been
defined for three channels (red, green, and blue) and
were segmented into red, green, and blue components.

Step 4: the segmented red component (hot spot) region
was converted into grayscale image and the constant
ROI has been fixed in the centre of the tongue.
Step 5: the statistical features were extracted from the
desired ROI using the Gray level co-occurrence matrix
(GLCM) algorithm.

2.4. RGB Based Color Histogram Image Segmentation.
Image segmentation is a method of labelling every pixel in an
image. *e importance of image segmentation is to group
each pixel in the related regions. *e similar regions in the
image can be perceived and clustered by using some
properties like gray levels, color, texture, and intensity to
obtain meaningful information [47]. Image segmentation
can be performed based on discontinuity or similarity
property of the intensity values. *e thresholding method is
the similarity property for partitioning the images.
*resholding is a technique which partitions the image into
foreground and background based on the brightness regions
in the image. *e gray image thresholding is as follows in
equation (1):

g(m, n) �

if f(m, n), <T then 0,

else,

f(m, n)≥T then 1,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where T is the single threshold value, f (m, n) is the input gray
level image, and g (m, n) is the output threshold image. In

Table 1: Total population classified into two groups based on a diagnostic criterion.

Parameters Group I: normal subjects (n� 70) Group II: type II diabetes mellitus subjects (n� 70)
HbA1c (%) ≤6.4 ≥6.5
Male/female ratio 1 : 2 1 : 2
Age (years), mean (±SD) 43.88 (±10.71) 47.38 (±7.42)

ROI 

Tongue tip

Tongue base

Figure 1: Template for positioning the region of interest (ROI) in
tongue thermogram.
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the color image segmentation, each and every pixel is cat-
egorized by RGB channels. *e threshold value of each
channel should be defined for three RGB components such
that the foreground pixel values fall in the selected range of
RGB intensities of the image [48]. *e RGB based color
histogram image segmentation is as follows in equation (2):

Gr,g,b(m, n) �

if r(m, n), <T then 0,

else,

r(m, n)≥T then 1,

if g(m, n), <T then 0,

else,

g(m, n)≥T then 1,

if b(m, n), <T then 0,

else,

b(m, n)≥T then 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where Gr,g,b (m, n) is the threshold output image of red,
green, and blue components, T is the threshold value, and
input RGB components are r (m, n), g (m, n), and b (m, n) of
the image. *e color image segmentation in the proposed
study has been performed based on the RGB based color
histogram thresholding technique. It calculates the RGB
histogram of the image with three channels. *e range of
minimum and maximum threshold values for RGB com-
ponents with three RGB channels is defined and tabulated in
Table 2. Based on this defined minimum and maximum
threshold values, the tongue thermogram has been seg-
mented into red, green, and blue components separately.

2.5. Statistical Feature Extraction. *e RGB components
were segmented from the preprocessed tongue thermogram.
*e segmented red component was converted into grayscale
output image. *e feature extraction technique was applied
over the grayscale image. *e desired ROI was fixed at the
middle of the grayscale tongue image to extract the intensity
and statistical features. *e GLCM algorithm was imple-
mented in the grayscale tongue image to extract the features
such as contrast, correlation, energy, homogeneity, mean,
entropy, standard deviation, skewness, variance, and kur-
tosis. *e definition of the GLCM parameters was given as
follows:

Contrast: it is a measure of the intensity contrast be-
tween a pixel and its neighbour over the whole tongue
image and it is calculated by the following equation:

􏽘
N− 1

i,j�0
P(i, j)(i − j)

2
. (3)

Correlation: it is the measure of how correlated a pixel
is to its neighbor over the whole tongue image and it is
defined in the following equation:

􏽘

N− 1

i,j�0

P(i, j)(i − μ)(j − μ)

σ2
. (4)

Energy: it measures the textural uniformity. *e energy
value is highest when all the values in the co-occurrence

Normal and diabetic subjects (N = 140)

Biochemical
analysis Tongue infrared thermogram (°C)

Image preprocessing

Feature extraction 

Statistical analysis 

Classification 

Classified as normal and diabetes

Demographic
variables 

RGB color image segmentation based on threshold value 

(i)
(ii)

(iii)
(iv)

(v)

Age 
BMI 
Hip and waist circumference 
Systolic and diastolic blood
pressure
Core body temperature

(i)
(ii)

(iii)
(iv)

FBS 
PPBS 
HBA1C 
EAG 

Machine learning algorithms
(i)

(ii) Naïve bayes
Support vector machine

Deep learning algorithm
(i) Convolutional Neural Network–VGG16 

Figure 2: *e proposed study design for the classification of type II DM.
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matrix (GLCM) are all equal. It can be computed using
the following equation:

􏽘

N− 1

i,j�0
P(i, j)

2
. (5)

Homogeneity: it computes the closeness of the con-
veyance of segments in the GLCM to the GLCM corner
to corner. It is represented mathematically as follows:

􏽘

N− 1

i,j�0

P(i, j)

1 +(i − j)2􏼐 􏼑
. (6)

Mean: it measures the average gray level of every
district in a tongue image. *e mean can be calculated
using the following equation:

􏽘

N− 1

i,j

iP(i, j). (7)

Standard Deviation: it is a proportion of variation from
the mean esteem and can be calculated using the fol-
lowing equation:

􏽘

N− 1

i,j�0
(i − μ)

2
P(i, j)⎛⎝ ⎞⎠

1/2

. (8)

Skewness: it calculates the asymmetry of the data
around the sample mean and it is defined as follows:

􏽘
(Xi − µ)3

nσ3
. (9)

Variance: it calculates the gray level vacillations from
the mean gray level dimension value. It can be cal-
culated as follows:

􏽘

N− 1

i,j�0
P(i, j)(i − μ)

2
. (10)

Kurtosis: it measures about the outlier prone distri-
bution and describes the shape of the tail of histogram

and is mathematically represented in the following
equation:

􏽘
(Xi − µ)4

nσ4
. (11)

Entropy: it is a proportion of randomness that can be
utilized to describe the texture of a tongue image and
can be calculated by using the following equation:

􏽘

N− 1

i,j�0
− ln(P(i, j)). (12)

where P (i, j)�Elements i and j of the gray levels in a
grayscale tongue image, N�No. of gray levels in the gray-
scale tongue image, n� sample size, σ2 �Variance, µ�Mean,
and σ � Standard Deviation.

2.6. Machine Learning Algorithms. To discriminate the
normal and type II DM and obtain the best classification
accuracy, the machine learning algorithms such as Support
Vector Machine (SVM), Näıve Bayes (NB), and deep
learning algorithm such as Convolutional Neural Network
(CNN) VGG 16 net were used in our proposed study. *e
input parameters such as anthropometrical body circum-
ferences, blood pressure, measured temperature at the
tongue region, and extracted GLCM features at desired ROI
were fed into SVM and NB algorithms using Matlab pro-
gramming environment. *e input images were fed directly
into CNN using Python programming environment. *e
tenfold cross validation was performed to obtain better
classification accuracies.

2.7. SVM Classifier. *e SVM algorithm is one of the out-
standing supervised machine learning algorithms dependent
on factual learning hypothesis. It uses an ideal linear sep-
arating hyperplane to partition the two sets of information in
the feature space [49]. *e given training sets for two classes
are (xm, ym), (xk, yk), (xn, yn), where xi� 2D feature space
and yi� {− 1, +1} class labels with i� 1, . . ., n. *e SVM
classifier fabricates the ideal separable hyperplanes based on
the kernel function (K). Training the SVM in the linear
kernel K (x, y)�<x, y> is much faster than the other kernels.
*e feature vectors of the image lie on hyperplane’s one side
that are fitted into the − 1 class and the remaining feature
vectors belong to the +1 class.

Table 2: Tongue thermogram: RGB components threshold values.

Color components
Red channel Green channel Blue channel

*reshold values *reshold values *reshold values
Minimum Maximum Minimum Maximum Minimum Maximum

Red 222 252 0 176 0 122
Green 8 255 165 255 6 96
Blue 0 28 0 161 0 255
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2.8. NB Classifier. *e NB algorithm is a probabilistic
grouping algorithm dependent on the Bayes hypothesis and
is particularly fit when the dimensionality of the free spaces
(i.e., number of inputs) is high [50]. From a given set of
independent variables, X� {x1, x2, x3, . . ., xn}, where X is a
predictor. *e condition probability is P (Ck, X)� P (Ck|X).P
(X)� P (X|Ck).P (Ck) for each k class where k� 1, 2. Using the
Bayes theorem to construct the conditional probability, P
(Ck|X)� (P (X|Ck).P (Ck))/P (X).

2.9. CNN Classifier. Convolutional Neural Network is a
class of deep learning architectures which has turned out to
be one of the dominant models in the world of computer
vision. CNN is a mathematical construct which is basically
composed of stacking of multiple building blocks with
three layers such as convolution layers, pooling layers, and
fully connected layers. CNN can automatically extract and
adapt to learn the spatial features from the image. A
convolutional layer plays a vital role in CNN architecture
with a stack of mathematical linear and nonlinear opera-
tions to perform the feature extraction. *e pooling layer
performs the downsampling operation and decreases the
number of learnable parameters. *e extracted and pooled
features from convolution and pooling layers are mapped
in the fully connected layers to the final output. Currently
there are many pretrained deep learning CNN models such
as Alex Net [51], Res Net [52], Dense Net [53], and VGG
net [54] which are available for the classification. As per the
literature, the VGG net architecture is the most commonly
used deep learning CNN for medical image classification.
Hence, it has been used in our proposed study to dis-
criminate the normal and diabetic subjects. Figure 3
portrays the pretrained VGG16 net CNN architecture.
*e transfer learning approach was used in VGG16 net
architecture with five convolutional blocks and thirteen
convolutional layers. One of the methods used in our
proposed study to reduce the overfit in the model is the data
augmentation method which modifies the training data
through random transformations. *e data augmentation
methods such as shearing, zooming, and rotational, hor-
izontal, and translational flipping were used in VGG16 net
CNN architecture. *e max pooling (2D) method was used
for pooling operation in the pooling layer. Stochastic
Descent Gradient (SDG) was used as an optimization al-
gorithm in the VGG16 net that updates the learning pa-
rameters iteratively with a 0.01 learning rate. *e Rectified
Linear Unit (ReLu) activation function is used in the fully
connected layer of VGG16 net and softmax function which
normalizes the output values and target class probabilities
ranges 0 or 1.

2.10. Receiver Operating Characteristic Curve (ROC) and
Performance Assessment Metrics. *e ROC curve is a
graphical plot between true positive rate and false positive
rate which elucidates the performance of different classifiers.
*e diagnostic accuracy of the test can be interpreted from
the area under the ROC curve [55].

(i) Sensitivity (%) is the proportion of true prediction
of type II DM.

Sensitivity�TP/(TP+ FN)

(ii) Specificity (%) is the proportion of true prediction
of normal.

Specificity�TN/(TN+FP)

(iii) Accuracy (%) is the proportion of true prediction of
the present study.

Accuracy � (TP +TN)/(TP+TN+FP+FN)

(iv) Positive Predictive Value (%)�TP/(TP+ FP)
(v) Negative Predictive Value (%)�TN/(TN+FN)

True Positive (TP): the subjects are correctly
identified as type II DM.
False Positive (FP): the subjects are incorrectly
identified as type II DM.
True Negative (TN): the subjects are correctly
identified as normal.
False Negative (FN): the subjects are incorrectly
identified as normal.

2.11. Statistical Analyses. All the statistical studies were
performed using SPSS (IBM) software package version
21.0, Chicago, IL, USA. All the data were expressed as
mean ± standard deviation (S.D). Student’s t-test was
computed for all the parameters such as anthropometric,
biochemical, measured tongue temperature, and extracted
features for the total studied population. *e Shapiro–
Wilk test was performed for data normalization. *e
Kruskal–Wallis was a rank based nonparametric test
performed between the groups to determine the statisti-
cally significant difference. *e Pearson correlation was
studied to examine the association between the different
variables.

3. Results and Discussion

*e tongue thermal pattern distributionmay fluctuate due to
many myriad factors such as fever, arthritis, and anaemia,
and pregnant women can have hormonal changes, renal
problems, and uncontrolled blood pressure which lead to
cardiovascular complications. *e certain factors observed
to lower the diagnostic efficiency of tongue thermograms to
classify the type II DM in the prior stage were excluded from
the proposed study based on the questionnaires obtained
from the total subjects.

Table 3 indexed the baseline characteristics
(mean ± SD) of all subjects grouped into normal and type
II DM. It was observed that only age (years) in
anthropometrical parameter and waist circumference
(cm) in body circumference variable shows a significant
difference between the normal and type II DM subjects.
*e blood pressure parameters had not produced any
significant differences between the normal and diabetic
groups. *e biochemical parameters such as HbA1c (%),
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glucose (mg/dl), and EAG (mg/dl) show highly statis-
tically significant difference between the groups
(p< 0.01).

*e temperature measured at ROI shows statistically
significant differences in the tongue region between the
groups. *e statistical features extracted from tongue

Table 3: Baseline characteristics of total population (N� 140).

Parameters & GLCM features Normal (N� 70) Diabetes (N� 70) p value
Age (years) 43.88± 10.71 47.38± 7.42 0.02 (s)
Height (cm) 160.90± 6.95 159.27± 10.17 0.27 (ns)
Weight (kg) 63.48± 13.54 66.06± 11.76 0.23 (ns)
BMI (Kg/m2) 24.51± 4.98 26.13± 5.45 0.06 (ns)
Onset of diabetes duration (years) — 8.78± 6.26 —
Spo2 (%) 97.9± 0.81 98.1± 0.68 0.11 (ns)
Core body temperature (°C) 36.87± 0.30 36.93± 0.42 0.33 (ns)
Waist circumference (cm) 79.57± 12.44 84.51± 14.89 0.01 (s)
Hip circumference (cm) 87.22± 11.69 91.75± 17.38 0.07 (ns)
Systolic pressure (mmHg) 122± 15.18 122.85± 18.42 0.07 (ns)
Diastolic pressure (mmHg) 76.42± 9.33 76.14± 9.82 0.86 (ns)
HbA1c (%) 5.27± 0.15 8.58± 2.30 0.0001 (s)
FBS (mg/dL) 94.31± 10.04 148.67± 58.72 0.0001 (s)
PPBS (mg/dL) 116.02± 15.15 225.32± 98.73 0.0001 (s)
EAG (mg/dL) 119.77± 7.21 191.1± 66.57 0.0001 (s)
Tongue surface temperature (°C) ROI 34.62± 0.77 35.23± 0.61 0.0001 (s)
Contrast 0.86± 0.40 0.74± 0.23 0.0412 (s)
Correlation 0.78± 0.04 0.76± 0.08 0.1269 (ns)
Energy 0.27± 0.17 0.19± 0.04 0.0001 (s)
Homogeneity 0.80± 0.07 0.79± 0.02 0.7066 (ns)
Mean 6.17± 0.90 6.51± 0.41 0.0047 (s)
Standard deviation 47.75± 18.42 79.91± 11.01 0.0001 (s)
Entropy 45.88± 5.12 41.63± 10.55 0.0029 (s)
Skewness 3.78± 0.88 2.82± 0.35 0.0001 (s)
Variance 18.37± 8.98 10.38± 1.76 0.0001 (s)
Kurtosis 0.01± 0.006 0.02± 0.008 0.0018 (s)
s: significant; ns: nonsignificant.

Input
layer

224 × 224
pixelst

Conv
block 1
2 layers

3 × 3
64

filters

Conv
block 2
2 layers

3 × 3
128

filters

Conv
block 3
3 layers

3 × 3
256

filters

Conv
block 4
3 layers

3 × 3
512

filters

Conv
block 5
3 layers

3 × 3
512

filters

Fully
connected

layer

Classified
output

Normal Diabetes

Softmax

Convolution
layers 

Max
pooling

Figure 3: VGG16 Convolutional Neural Network classifier architecture.
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thermograms such as contrast, energy, mean, standard
deviation, entropy, skewness, variance, and kurtosis show a
significant difference between normal and DM group
(p< 0.01), whereas the other features like correlation and
homogeneity did not show the statistical difference between
the groups.

Figure 4 represents the scatter plot showing the statistical
correlation (r2 � 0.5688) between the HbA1c (%) and thermal
distribution in the tongue region (°C).

Figure 5 represents the sample measured tongue ther-
mograms. Figures 5(a) and 5(b) represent the measured
thermal distribution of the samplenormal and diabetic
tongue thermograms acquired from an infrared camera. *e
temperature scale was kept constant for normal and diabetic
tongue thermograms. *e red and blue arrows in the ROI
box indicate the higher and lower temperatures in the
tongue region.

Figure 6 portrays the normal and diabetic RGB channels
and histograms of tongue thermogram. Figures 6(a) and 6(b)
depict the normal and diabetic tongue thermograms.
Figures 6(c), 6(e), and 6(g) portray the red, green, and blue
channels of normal tongue thermogram. Similarly,
Figures 6(d), 6(f ), and 6(h) represent the diabetic tongue
thermogram. Figures 6(i) and 6(j) represent the RGB his-
togram of normal and diabetic subjects.

Figure 7 represents the segmented RGB of normal and
diabetic tongue thermograms. Figures 7(a) and 7(b) are
the tongue thermograms of normal and diabetic subjects.
Figures 7(c)–7(f ) represent the segmented white and red
components from normal and diabetic tongue thermo-
grams. Figures 7(g)–7(j) represent the segmented green
and blue components from the normal and diabetic
tongue thermograms. *e lack of blue component was
observed in Figure 7(j) which indicates the absence of cold
spot in the diabetic tongue. From these segmented results,
the red component is a hot spot which was found to be
lower in the normal subjects compared to diabetic indi-
viduals. Also, the thermal patterns were found to be
limited in the centre region of the diabetic tongue whereas
the thermal patterns were found to be in the overall region
for normal tongue.

Table 4 represents the Pearson correlation matrix for
diabetic subjects (n� 70) for all the parameters. *e diastolic
blood pressure (DBP) of the diabetic group was positively
correlated with HbA1c (r� 0.246, p< 0.05). *e HbA1c was
positively correlated with FBS (r� 0.647, p< 0.01), PPBS
(r� 0.711, p< 0.01), and EAG (r� 0.555, p< 0.01) for the
diabetic population, as it was obvious that increased FBS,
PPBS, EAG levels lead to increased HbA1c level. *e HbA1c
was positively correlated with the measured temperature of
the tongue (r� 0.662, p< 0.01).

Table 5 represents the confusionmatrices of (a) SVM, (b)
NB, and (c) CNN classifiers. *e sensitivity, specificity, and
accuracy were found from the confusion matrix. Table 6
denotes the performance of three different classifiers for the
classification of normal and diabetic groups. Among the
three different classifiers, it was observed that the CNN
classifier achieved a better accuracy rate as 94.28% than the
NB (89.28%) and the SVM (92.85%) classifiers.

Figures 8(a)–8(c) represent the area under the ROC
curve of support vector machine (SVM), Näıve Bayes (NB),
and Convolutional Neural Network (CNN) classifiers.
Figure 9 shows the accuracy rate bar diagram of different
classifiers. Figures 10(a) and 10(b) show the computer aided
diagnostic system for tongue thermogram for classifying the
sample normal and diabetic subject using SVM classifier
based on the measured mean tongue temperature and
extracted statistical features at the desired region of interest
in tongue thermogram.

*e present study analysed the thermal distributions
in the tongue thermogram between the normal and type
II DM. *e RGB color based histogram thresholding
method is used for segmentation of tongue thermogram.
*e normal subjects were distinguished from the diabetic
with a better accuracy rate using CNN classifier as a novel
approach for classification of type II DM. *e GLCM
algorithm was used to extract the statistical features at
the constant ROI from the red component which has
been converted into grayscale tongue image. *e per-
centage difference of measured average temperature of
tongue region between normal and diabetic groups was
found to be 2.35%.*e temperature measured at constant
ROI of the tongue was correlated with HbA1c bio-
chemical parameter. *e hot region (red component) was
spotted to be higher in the centre region of the diabetic
tongue than the normal. *e biochemical variables,
measured temperature at tongue region and extracted
features, were found to be statistically significant. Fur-
ther, the normal and diabetic subjects were classified
using SVM, NB, and CNN classifiers. Finally, the CAD
system was developed for the classification of type II
diabetic from tongue thermogram using the SVM clas-
sifier. To the best of our knowledge and as per the review
of literature, the studies related to the tongue thermo-
grams were limited. Also, the classification of type II DM
based on tongue thermogram using deep learning
methods was not initiated till today.

*e poor glycaemic control in diabetic subjects leads to
the cardiovascular problems; therefore tight glycaemic
control (HbA1c of <7%) recommended for the prevention of
the onset of disease was discussed by Moodahadu et al. [56].

y = 0.2834x + 32.859
R2 = 0.5688
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Figure 4: Scatter plot between HbA1c (%) and thermal distribution
in the tongue region (°C).
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Figure 6: Continued.
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Figure 5: Measured sample tongue thermograms. (a) Sample normal subject. (b) Sample diabetic subject.

Evidence-Based Complementary and Alternative Medicine 9



(g) (h)

(i) (j)

Figure 6: RGB color channels and histogram of the tongue thermogram. (a, b) Sample normal and diabetic tongue thermograms. (c, e, g)
Red, green, and blue channels of the sample normal tongue thermogram. (d, f, h) Red, green, and blue channels of the sample diabetic tongue
thermogram. (i, j) RGB color histogram of the sample normal and diabetic subjects.

(a) (b)

(c) (d)

(e) (f )

Figure 7: Continued.
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*e study computed by Conget and Gimenez [57] elucidated
the relationship between the glucose control and cardio-
vascular disease. *e endothelial cells assume a fundamental

role in maintaining the cardiovascular homeostatic balance
if these cells lose their physiological properties which leads to
the vasodilation and development of atherosclerosis. In spite

(g) (h)

(i) (j)

Figure 7: Segmented RGB color components of tongue thermogram. (a, b) Sample normal and diabetic tongue thermograms. (c, d, e, f )
Segmented white and red color in the sample normal and diabetic tongue thermograms. (g, h, i, j) Segmented green and blue color from the
sample normal and diabetic tongue thermograms.

Table 4: Pearson correlation of studied type II diabetes mellitus subjects (n� 70).

Age (years) Hip cir (cm) SBP (mmHg) DBP (mmHg) HbA1c (%) FBS
(mg/dl)

PPBS
(mg/dl)

EAG
(mg/dl) TST (°C)

Age (years) 1
Hip cir (cm) 0.458∗∗ 1
Waist cir (cm) 0.305∗ 0.780∗∗ 1
DBP (mmHg) 0.047 − 0.108 0.718∗∗ 1
HbA1c (%) − 0.082 0.076 0.235 0.246∗ 1
FBS (mg/dl) − 0.039 0.047 0.082 0.115 0.647∗∗ 1
PPBS (mg/dl) 0.007 0.099 0.093 0.071 0.711∗∗ 0.653∗∗ 1
EAG (mg/dl) − 0.033 0.003 0.161 0.198 0.555∗∗ 0.834∗∗ 0.552∗∗ 1
TST (°C) − 0.009 − 0.036 0.19 0.276∗ 0.662∗∗ 0.435∗∗ 0.471∗∗ 0.270∗ 1
∗∗correlation is significant at 0.01 level, ∗correlation is significant at 0.05 level. Hip cir: hip circumference (cm), waist cir: waist circumference (cm), SBP:
systolic blood pressure, DBP: diastolic blood pressure, HbA1c: glycated haemoglobin, FBS: fasting blood sugar, PPBS: postprandial blood sugar, EAG:
estimated average glucose, TST: tongue surface temperature at region of interest.

Table 5: Confusion matrices of all the classifiers.
(a) Support vector machine (SVM) Normal (predicted) Diabetes mellitus (predicted)
Normal (actual) 67 (TN) 3 (FP)
Diabetes mellitus (actual) 7 (FN) 63 (TP)
(b) Näıve Bayes (NB) Normal (predicted) Diabetes mellitus (predicted)
Normal (actual) 58 (TN) 12 (FP)
Diabetes mellitus (actual) 3 (FN) 67 (TP)
(c) Convolutional Neural Network (CNN) Normal (predicted) Diabetes mellitus (predicted)
Normal (actual) 67 (TN) 3 (FP)
Diabetes mellitus (actual) 5 (FN) 65 (TP)
TP: true positive, FP: false positive, TN: true negative, FN: false negative, PPV: positive predictive value, NPV: negative predictive value.
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Figure 8: Receiver operating characteristic (ROC) curves of various classifiers. (a) ROC of the SVM classifier. (b) ROC of the NB classifier.
(c) ROC of the CNN classifier.

Table 6: Comparison of classification performance of SVM, NB, and CNN machine learning algorithms.

Classifiers AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)
Support vector machine (SVM) 0.92 90 95.71 91.30 90.54 92.85
Naı̈ve Bayes (NB) 0.96 95.71 82.85 84.81 95.08 89.28
Convolutional Neural Network (CNN-VGG16 net) 0.80 92.85 95.71 95.58 93.05 94.28
AUC: area under the curve (ROC), PPV: positive predictive value, NPV: negative predictive value.
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Figure 9: Accuracy rate bar diagram of different classifiers.
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of good glucose control, the endothelial cell levels were
found to be higher in the diabetic subjects. *e poor or
fluctuating glycaemic control in the subjects lead to endo-
thelial dysfunction and oxidative stress which was briefed by
Avogaro et al. [58] and Ceriello et al. [59]. In our study, the
positive correlation (r� 0.246, p< 0.05) was observed be-
tween the diastolic blood pressure and HbA1c in the studied
diabetic group; this might lead to the cardiovascular com-
plications for diabetic subjects in the future.

According to the literature, the tongue thermograms
were observed with decreased temperature for various
diseases. *e tongue thermograms of the anaemic subjects
were observed to have a lower temperature (34.14°C) by the
study conducted by Xie and Zhang [38]. And Baek et al. have
found decline in tongue temperature (32.70°C) for cold and
heat patterns of the women subjects with gynaecological
problems [41]. Whereas in the case of type I diabetic tongue
thermograms the temperature was found to be higher

(a)

(b)

Figure 10: Computer aided diagnostic (CAD) system for the classification of type II diabetes mellitus. (a) Sample normal subject. (b) Sample
diabetic subject.
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(35.94°C) than other diseases observed by Selvarani and
Suresh [60]. Similarly in our study the type II diabetic tongue
thermogram which falls in the temperature range between
35.23°C and 35.84°C at the desired region of interest could be
one of the parameters for the classification of type II diabetes
mellitus.

Sreebny et al. observed a lower salivary flow rate (<0.1 to
<0.7ml/min) in diabetic compared with healthy subjects
[61]. Lin et al. speculated that the impaired salivary rate leads
to noninsulin dependent DM with xerostomia conditions
[62]. An increased mean surface temperature at the tongue
region was observed in our diabetic group compared with
normal group.*e variations in the glucose levels are almost
influenced by the secretion of saliva. *e upsurge in mea-
sured tongue temperature was observed in the diabetic
group because of the lower secretion of saliva and xero-
stomia conditions.

Chiu in his study predicted that complications in the
human stomach region can be diagnosed by the tongue color
appearance and texture. *ey extracted statistical features
such as angular second moment, variance, contrast, and
entropy which are obtained in the tongue region of the
random subjects. *e grimy coating was detected in four
subregions such as the liver, stomach, gall bladder, and heart
using spatial gray tone dependency matrices (SGTDM) [63].
In our study, the extracted features like contrast, energy,
mean, standard deviation, entropy, skewness, variance, and
kurtosis were found to be statistically significant in both
normal and diabetic groups. Whereas homogeneity and
contrast features were not found to be insignificant between
the groups. *is insignificance might be due to the thicker
white coating in the middle region of the diabetic tongue.

*e classification of normal and diabetic neuropathy
using plantar thermograms by interdigital isothermal
technique was observed to have 81.3% and 46.2% as sen-
sitivity and specificity [64]. *e sensitivity of foot thermo-
gram for screening the osteomyelitis was found to be 60%
and observed increased skin surface temperature distribu-
tion in periwound ankle and knee areas of diabetic foot [65].
Zhang et al. extracted the color and texture features from the
digital tongue images from diabetic and nondiabetic subjects
to develop the diagnostic technique for DM. *ey observed
the SVM classifier has comparatively achieved higher ac-
curacy rate (79.72%) than k-NN (78.77%), NB (75.94%), and
backpropagation neural network (75.00%) [66].

In our study, the sensitivity was found to be 90% in SVM,
95.71% in NB, and 92.85% in CNN for the classification of
type II DM. It was observed from the review of literature that
many methods rely on the handcrafted features and tradi-
tional classifiers such as SVM, NB, k-NN, random forest, and
fuzzy sets for diagnosis and prognosis of the diseases. Deep
learning architectures were found to be an evident tool in the
world of machine vision especially CNN classifiers which
paved the way for more accurate results in medical imaging
[67]. We obtained competitive results compared to the
traditional classifiers and achieved 94.28% as accuracy rate
in CNN (VGG16 net) classifier (deep learning) for dis-
tinguishing the normal from the diabetic subjects using
tongue thermograms. *e limitation of the proposed study

was needed to perform validation of the data for larger
number of sample size. Inevitably, the conventional tongue
evaluation does have its impediments inferable to both
physician’s ability and environmental setting.

4. Conclusions

In this present study, we have observed the measured tongue
surface temperature was correlated significantly with the
standard biochemical parameters. *e measured tongue
surface temperature of the diabetic group was found to be
greater than the normal group. *e statistical correlation
between the HbA1c and thermal distribution in the tongue
region was found to be r2 � 0.5688. *e baseline variables,
tongue temperature parameters, and extracted features were
fed as input attributes to the machine learning algorithms
(SVM, NB), and input images were directly fed into the deep
learning algorithm (CNN). *e performances of the ma-
chine and deep learning algorithms were compared, and it
was found that CNN classifier have outperformed the other
classifiers with an overall accuracy rate of 94.28% whereas
SVM classifier has obtained 92.85% and NB classifier has
attained 89.28% for categorising the normal and type II DM.
And, finally a computer aided diagnostic system was de-
veloped for the classification of type II DM. Diabetes is one
of the life threatening disorders so the early assessment is
most important to control the prevalence of the disease. So,
the tongue thermogram assessment may conceivably fill in
as a prompt, reasonable, and noninvasive approach for
preliminary screening of type II DM.
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