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Robust evidence shows that phytochemicals from cruciferous vegetables, like broccoli,

are associated with numerous health benefits. The anti-cancer properties of these foods

are attributed to bioactive isothiocyanates (ITCs) and indoles, phytochemicals generated

from biological precursor compounds called glucosinolates. ITCs, and particularly

sulforaphane (SFN), are of intense interest as they block the initiation, and suppress

the progression of cancer, through genetic and epigenetic mechanisms. The efficacy

of these compounds is well-demonstrated in cell culture and animal models, however,

high levels of inter-individual variation in absorption and excretion of ITCs is a significant

barrier to the use of dietary glucosinolates to prevent and treat disease. The source of

inter-individual ITC variation has yet to be fully elucidated and the gut microbiome may

play a key role. This review highlights evidence that the gut microbiome influences the

metabolic fate and activity of ITCs. Human feeding trials have shown inter-individual

variations in gut microbiome composition coincides with variations in ITC absorption

and excretion, and some bacteria produce ITCs from glucosinolates. Additionally,

consumption of cruciferous vegetables can alter the composition of the gut microbiome

and shift the physiochemical environment of the gut lumen, influencing the production of

phytochemicals. Microbiome and diet induced changes to ITC metabolism may lead to

the decrease of cancer fighting phytochemicals such as SFN and increase the production

of biologically inert ones like SFN-nitrile. We conclude by offering perspective on the

use of novel “omics” technologies to elucidate the interplay of the gut microbiome and

ITC formation.

Keywords: bacteria, broccoli sprouts, cruciferous vegetables, glucosinolate, isothiocyanate, microbiome,

sulforaphane, sulforaphane nitrile

INTRODUCTION

Cruciferous Vegetables and Cancer Prevention
Cancer is the second leading cause of death in the United States and high cruciferous
vegetable consumption has been associated with lower risk of breast, prostate, lung, colorectal,
bladder, endometrial, gastric, ovarian, renal, and pancreatic cancer (1–17). Cruciferous vegetable
consumption offers a possible cost-effective and appealing non-pharmacological approach to
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cancer prevention through dietary intervention. Glucosinolates
(GLS) are a class of compounds ubiquitously contained in
cruciferous vegetables, that when metabolized, have been shown
in animal and cell culture models to prevent and suppress cancer
formation (18–28). A single type of cruciferous vegetable will
contain a wide variety of GLSs, however, one to three are typically
present in the greatest abundance (29). Broccoli, Brussels sprouts,
bok choy, collard greens, cabbage, cauliflower, Chinese cabbage,
kale, kohlrabi, mustard, radish, rutabaga, turnips, swiss chard,
watercress, and other cruciferous vegetables are a rich and
unique source of GLS (30). A GLS can be metabolized to an
isothiocyanate (ITC), indole, or nitrile (31, 32). ITCs and indoles
are bioactive and largely considered responsible for the anti-
cancer properties of these foods, while nitriles and GLSs are
thought to be biologically inert (18, 33). The most heavily studied
ITCs and indoles are sulforaphane (SFN) and indole-3-carbinol
(I3C), respectively (18–25, 34–38).

SFN and I3C have a plethora of anti-cancer bioactivities
that can be grouped into two primary mechanisms, the first
of which is “blocking” the initiation of cancer and the second
is “inhibiting” the progression of tumor growth and metastasis
[reviewed in (39)]. The blocking mechanisms are primarily
related to the modulation of Phase I and Phase II drug
metabolizing enzymes which prevent the activation of pro-
carcinogens and increase the clearance of xenobiotics and
carcinogens. I3C increases the transcription of Phase I enzymes
while SFN works in a complementary manner to upregulate
Phase II enzymes (18–24, 36, 40–47). In addition to these
activities, I3C can also alter sex hormone metabolism, playing
a role in preventing hormone-sensitive cancers (48, 49). Post-
initiation, SFN and I3C can help inhibit the growth of tumors by
inducing apoptosis and halting cellular proliferation (19, 21, 24,

50–52). SFN and 3-3
′

-diindolylmethane, the acid condensation
product of I3C, have also been shown to inhibit enzymes that
regulate epigenetics whose dysregulation contributes to cancer
development (25, 37, 53, 54). For example, in cancer cells,
administration of SFN has been shown to decrease the catalytic

activity of histone deacetylase while 3-3
′

-diindolylmethane has
been shown to decrease the levels of HDAC proteins, restoring
the activity of tumor suppressor genes (25, 34, 37, 38, 53–
56). Other ITCs, including allyl isothiocyanate (AITC), benzyl
isothiocyanate, and phenethyl isothiocyanate, from cruciferous
vegetables have been shown to have anti-cancer properties as
well (47, 57, 58). In this review we will primarily focus on GLS
metabolism to ITCs, related nitriles, and the role the microbiome
may play in their metabolism. Indoles are reviewed by David E.
Williams in this same issue.

Variability in Human Studies: A Case for
the Gut Microbiome
While cell culture and animal models present robust evidence
supporting the anti-cancer potential of ITCs, human clinical

Abbreviations: AITC, Allyl Isothiocyanate; ERN, Erucin; GER, Glucoerucin; GIB,

Glucoiberin; GLS, Glucosinolate; GNP, Gluconastrurtiin; GRP, Glucoraphanin;

GSH, Glutathione; GST, Glutathione-S-Transferase; GTP, Glucotropaeolin; IBN,

Iberin; ITC, Isothiocyanate; NAC, N-Acetyl Cysteine; NIT, Nitrile; SFN,

Sulforaphane; SNG, Singrin.

trials examining the efficacy of whole food interventions on
cancer prevention targets have shown high levels of inter-
individual variation in both the absorption and excretion
of ITCs [reviewed in (59)]. The source of this variation is
still unknown and is critical to understand as low levels
of GLS conversion to ITCs may limit the use and efficacy
of diet as a strategy to reduce cancer risk. Inter-individual
variation following GLS consumption has been described in
both food-based and glucoraphanin (GRP) supplement clinical
trials (34, 60–65). In a study where 45 participants received
a standardized dose of GLS orally (primarily GRP), ITC
conversion rates ranged from 1.1 to 40.7% of the given
GLS dose (66). Inter-individual variation of ITC absorption
has also been described for other cruciferous vegetables
like watercress which highlights that variation in metabolism
likely extends to a wide variety of GLS and their bioactive
ITCs (67, 68).

Much of the early work that examined sources of ITC inter-
individual variation focused on glutathione-S-transferase
(GST) polymorphisms, as a major factor modulating
effects of ITC metabolism, but studies are inconsistent and
equivocal (69–81). Our own group has shown that Nrf2
KO mice, which lack the ability to induce GSTs, do not
manifest differences in SFN metabolite production (82).
As an alternative, it has been proposed that differences
in individuals’ gut microbiomes may contribute to the
observed variation through the production of ITC or inert
NITs from GLS, which we discuss here in detail. Likewise,
we discuss how consumption of cruciferous vegetables may
alter the microbiome and in turn influence ITC absorption.
The gut microbiome is well-known to play a critical role
in the metabolism of other bioactive chemicals obtained
from food sources. Research in the field of soy isoflavone
metabolism has shown that the gut microbiome not only
plays an integral role in the metabolism of isoflavones, but
also determines their efficacy (83, 84). Similar responder/non-
responder paradigms have been observed with urolithins
from pomegranate extract, with three distinct “metabotypes”
having been identified and correlated with differential gut
microbiota compositions (85). Cumulatively, these findings
suggest that a similar paradigm may exist regarding cruciferous
vegetables metabolism.

While this review focuses on how the microbiome may
contribute to high levels in inter-individual variation in
GLS metabolism, other host derived factors that may
also affect variation include mastication, digestion, meal
composition, body mass, and use of medications [reviewed
in (29, 86)]. It is also important to acknowledge that
variation in detecting relationships between cruciferous
vegetables and cancer prevention at the population level
may also be related to variation in GLS concentrations
and metabolism in the vegetables including the variety
of vegetable, soil type, growing conditions, growing
methods, and age of plant at harvest (87–89). Likewise,
differences in vegetable processing, cooking methods,
and time of day the GLS are consumed also affects the
metabolism, absorption and excretion of ITC [reviewed in
(66, 90, 91)].
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Glucosinolates and Their Metabolic
Products
Biologically important glucosinolates include GRP,
glucobrassicin, glucoerucin (GER), glucoiberin (GIB), sinigrin
(SNG), progoitrin, glucotropaeolin (GTP), and gluconasturtiin
(GNT) (30, 31). GLS are relatively stable in the plant cell
and are composed of a thiohydroximate-O-sulfonate group
linked to glucose, and an alkyl, aralkyl, or indolyl side chain
[reviewed in (92)]. Metabolism of GLS often begins when the
raw plant tissue is damaged by cutting, or mastication and
the thioglucose bond in the GLS is cleaved by myrosinase
(31, 92). Myrosinase is a β-thioglucoside glucohydrolase which
is stored in specialized myrosin cells, preventing a reaction
between GLS and myrosinase until damage to the plant cell
wall occurs (93, 94). Within the active site of myrosinase, a
nucleophilic attack by glutamate on the anomeric carbon of the
GLS begins the reaction, leading to the aglycone product being
released, which then undergoes a Lossen-type rearrangement
(94). Ascorbic acid acts as cofactor deprotonating a water
molecule which then attacks the anomeric center of the substrate
resulting in the release of the bound glucose from the glutamate
residue (94). The products from this reaction depends on the
conditions [ex. pH and described elsewhere (31, 91)], proteins
present (ex. Epithiospecifer protein), type of GLS and results in
the formation of ITCs, indoles, nitriles (NITs), epithionitriles,
oxazolidine-thiones, and thiocyanates (29, 31, 95, 96). It is
critical to note that many GLS obtained via diet may not be
converted to ITCs because many methods of cooking inactivate
myrosinase in the vegetable, and myrosinase-like activity does
not occur in mammalian cells (31, 91, 97, 98). Importantly
some gastrointestinal microflora have myrosinase-like activity
highlighting an important role for the microbiome on GLS
metabolism (99–110).

ITC have been shown to have a wide range of biological effects,
and NITs are considered biologically inactive although this is
also controversial (18, 33, 111–113). AITC, allyl nitrile, benzyl
isothiocyanate, benzyl nitrile, iberverin, iberverin nitrile, iberin
(IBN), iberin nitrile, erucin (ERN), erucin nitrile, phenethyl
isothiocyanate, and phenethyl nitrile are ITCs and NITs that are
largely studied to date. Here we will discuss these compounds
but also focus our discussion around SFN as it is the most well-
studied ITC. Like other ITCs, SFN metabolism begins with how
the vegetable is prepared. When eaten raw, or lightly cooked
such that myrosinase is active, GRP is cleaved to produce SFN
(Figure 1). SFN appears to be absorbed into the enterocyte
by passive diffusion and the rapid conjugation of SFN to
glutathione potentiates this process (114, 115). Intracellular SFN-
glutathione is exported from enterocytes back into the gut lumen
by membrane bound proteins (115, 116). SFN metabolites exit
the enterocyte into circulation where they are predominantly
conjugated to glutathione, however, unbound SFN can bind
to blood proteins and has been detected in mice and humans
(82, 117). SFN is further metabolized in the liver through the
mercapturic acid pathway where compounds are first conjugated
to glutathione, via a reaction catalyzed by GSTs, then further
metabolized to cysteinylglycine (CysGly), cysteine (Cys), and

N-Acetylcysteine (NAC) conjugates (30, 31). SFN-NAC is the
major metabolite detected in urine. In the absence of myrosinase,
GRP may be metabolized by the gut microbiome or it can be
directly excreted with no biological activity (Figure 1) (91). It is
unclear if microbes conjugate SFN and other ITCs to glutathione
following GLS hydrolysis, however, SFN must be in its free
form in order to enter into the enterocyte (114). Conversion of
GRP to SFN-NIT, as opposed to SFN, could lead to a reduction
in bioactivity (Figure 1). Endogenous SFN-NIT metabolism is
not well-understood although allyl nitrile metabolism has been
described (118). SFN-NIT can also be produced by vegetable-
derived myrosinase when GRP hydrolysis occurs in the presence
of epithiospecifier protein (ESP) (95, 96, 119, 120). Members of
the microbiome may also produce SFN-NIT from GRP (Figure 1
and discussed herein).

The bioavailability of ITCs from GLS has been shown to be
greatly impacted by processing before ingestion [reviewed in
(31, 92, 121)]. When ITCs are given preformed, such as those
found in supplements, they are readily absorbed by humans
and possess the greatest level of bioavailability. ITCs from raw
cruciferous vegetables, while less bioavailable than those from
supplements, additionally have a high bioavailability, as much
GLS is converted to ITCs by endogenous plant myrosinase in
the mouth during chewing or before consumption during the
chopping of vegetables (86, 92, 93, 122). Cooking has been shown
to greatly decrease bioavailability as heat deactivates endogenous
plant myrosinase, thus any conversion of GLS to ITCs would
occur in the gut lumen by the gut microbiome (31, 66, 67, 92,
93, 97, 109, 121, 123).

MICROBIAL METABOLISM OF
GLUCOSINOLATES

GLS Hydrolysis to Bioactive Compounds
This review will focus primarily on ITCs and NITs produced
from GLS by members of the gut microbiome because little
is known about the extent to which bacteria metabolize GLS
to other metabolic endpoints. The most heavily studied of
GLS biotransformation by gut microbes is the hydrolysis of
GLS to bioactive ITCs. It is well-known that plant myrosinase
generates ITCs from GLS, however, heat-treatment, such as
during cooking, deactivates plant myrosinase, limiting the
conversion of GLS to ITCs and making this biotransformation
reliant on myrosinase-like activity of bacteria in the gut (92,
97, 123). Both in vitro and in vivo work has shown that
the gut microbiota has myrosinase-like activity, converting
GLS to ITCs, and select microbes shown to metabolize GLS
is presented in Table 1 (99–102, 109, 125). Work conducted
in vitro has shown direct relationships between specific gut
microbes and ITC generation, typically through the use of
microbial monocultures and purified GLS extracts (101, 102,
109). Bacteroides thetaiotaomicron has been shown extensively
to possess myrosinase-like activity, both in vitro and in vivo
(99, 124). Lactobacillus agilis R16, Eneterococcus casseliflavus
CP1, and Escherichia coli VL8, Escherichia coli 1917 Nissile, have
also been shown in vitro to possess myrosinase-like activity and
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FIGURE 1 | During chewing of raw broccoli sprouts, plant myrosinase converts glucoraphanin (GRP) to sulforaphane (SFN) in the mouth. In the gut lumen, GRP is

further converted to either SFN or sulforaphane-nitrile (SFN-NIT) by the gut microbiome. It is unclear if microbes conjugate SFN to glutathione (GSH), however, only

free SFN is taken up into enterocytes. Within the enterocyte, SFN-GSH is either excreted back into the gut lumen or enters circulation where it is exists as SFN-GSH

or in its free form which conjugates with blood proteins. SFN is transported to either tissues where it exerts its bioactivity or to the liver where it is metabolized via the

mercapturic acid pathway. Mercapturic acid metabolites, SFN-cysteine (SFN-Cys) and SFN-N-Acetyl-Cysteine (SFN-NAC), from the liver are either exported to the bile

for excretion to the feces, or back into the blood to go to tissues. SFN also goes to the kidney where it is converted to SFN-NAC and excreted into the urine.

Un-hydrolyzed GRP is either excreted into the feces or absorbed where it is either transported to the kidneys to be excreted in urine or to the liver where it is excreted

into bile. GRP that undergoes enterohepatic circulation and is either hydrolyzed in the gut or excreted to the feces. SFN-NIT is absorbed from the gut lumen where it is

transported to kidneys for excretion into urine. SFN-NIT metabolism in humans needs further investigation.

produce ITCs from GLS including GTP, GER, GIB, and GRP
(101, 102, 107, 109).

While these studies have generated a pool of microbes capable
of myrosinase-like activity, their translation to human work is
unclear. Manymicrobes found within the human gastrointestinal
tract are unculturable, making their growth in a lab environment
to conduct such studies a challenging feat. Additionally, the
monocultures used in these studies fail to capture microbe-
microbe interactions that occur in dynamic systems such as the
gastrointestinal tract. Beyond these issues, the use of purified GLS
does not capture the impacts of whole food matrix components
on microbial communities, failing to address the most common
way that GLS are received in the diet. Interestingly, many
of these studies show high degradation of GLS yet low yield
of ITCs and NITs and it is not clear if this is because of
further metabolism of ITC and NIT, or metabolism of GLS to
alternate endpoints (99–102, 109, 110, 126). This is complicated
by the unstable nature of ITCs, which have been shown to
spontaneously degrade and react with other compounds, and
may lead to an incomplete understanding of conversion rate and
yield of ITC from bacteria (127).

Clinical studies and animal models have provided further
evidence that the gut microbiome can produce bioactive ITCs
from GLS. Most studies investigating the role of the gut

microbiota in GLS conversion utilize purified GLS extracts or
whole cruciferous vegetables with heat-deactivated myrosinase,
however, some use less conventional routes such as having
participants swallow broccoli sprouts whole (65, 128–132).
Work conducted in rodents and other animal models have
additionally relied on gnotobiotic models to further characterize
the role of the gut microbiome in GLS metabolism (100,
124, 133). Cumulatively, these studies have indicated that the
gut microbiome is essential for conversion of GLS to ITCs
in the absence of plant-derived myrosinase and have shown
that without conversion to ITCs, GLS are biologically inert.
Other studies using gnotobiotic animals inoculated with single
strains of bacteria have demonstrated that biotransformation of
allyl isothiocyanate from sinigrin in vitro does indeed translate
to biotransformation in vivo (99). Curiously, some studies
using humanized rodent models have failed to demonstrated
conversion of GLS to ITCs while others have observed the
generation of AITC from SNG in germ-free animals (99, 100).
These discrepancies highlight the need for model systems which
capture complex interactions and dynamic systems.

Clinical trials examining the role of the gut microbiota on
the conversion of GLS to ITCs is far more limited at this
time (62, 66, 131). These studies typically rely on the use of
vegetables with heat deactivated-myrosinase and purified GLS
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TABLE 1 | Bacteria shown to metabolize glucosinolates (GLS).

Bacteria Effect on GLS GLS studied Model References

Bacteroides thetaiotomicron Convert GLS to ITC SNG, GRP In vitro, monocolonized

gonotbiotic mice

(99, 124)

Bifidobacterium

adolescentis

Convert GLS to NITs SNG In vitro (103)

Bifidobacterium longum Convert GLS to NITs SNG In vitro (103)

Bifidobacterium

psudoctenulatum

Convert GLS to NITs SNG In vitro (103)

Enterococcus casseliflavus

CP1

Convert GLS to both NITs and

ITCs

GER, GIB, GRP, GTP, SNG, GNT In vitro (101, 102)

Enterococcus cloacae Convert GLS to NITs; Reduced

GLS

GRP, GIB In vitro (110)

Escherichia coli 1917 Nissile Convert GLS to NITs; Reduced

GLS

GRP, GIB In vitro (110)

Escherichia coli VL8 Convert GLS to both ITC and

NITs; Reduced GLS

GER, GIB, GRP, SNG, GTP, GNT In vitro (101, 102)

Lactobacillus Agilis R16 Convert GLS to both ITCs and

NITs

SNG, GTP, GNT, GER In vitro (101, 102, 109)

Lactobacillus plantarum

KW30

Convert GLS to NITs GRP, GIB In vitro (110)

Lactococcus lactis KF147 Convert GLS to NITs GRP, GIB In vitro (110)

GER, Glucoerucin; GIB, Glucoiberin; GNT, Gluconasturtiin; GRP, Glucoraphanin; GTP, Glucotropaeolin; SNG, Singrin; ITC, Isothiocyanate; NIT, Nitrile.

extract to draw conclusions on the role of the gut microbiome
(34, 35, 61, 65, 128, 130, 131). A study conducted by Fahey et
al. identified large inter-individual variation in GLS metabolism
and sought to explore the role of the human gut microbiota
by utilizing broccoli sprout extracts (primarily containing GRP)
where myrosinase was heat deactivated (66). One particularly
noteworthy finding of this study was the general presence of
four phenotypes of GRP metabolism in the population, high/fast,
high/slow, low/fast, and low/slow converters; where high/low
refers to conversion efficacy and fast/slow refers to if the bulk
of the dose was converted within the first 8 h after consumption
or between 8 and 24 h after consumption. These phenotypes
may be related to differences in the subjects’ microbiomes and
the findings suggest that enterohepatic circulation and food-
matrix effects could have a profound impact on microbial
metabolism of GLS. Work conducted by Bheemreddy and Jeffrey
has verified that GLS undergo enterohepatic circulation in rats,
giving greater insight into systemic metabolism of both GLS and
ITCs (133). This work complements earlier findings by Kassahun
et al. who identified SFN-GSH and SFN-NAC in the bile of
rats fed purified SFN (134). These findings are important as it
suggests two different intervals in time when GLS metabolism
occurs in the large intestine, where the majority of the gut
microbiome resides. The first interval is metabolism of GLS
directly following consumption when the GLS is not absorbed in
the small intestine. The second time interval occurs when GLS
are absorbed in the small intestine and go through enterohepatic
circulation, returning as GLS in the gut where the factors
influencing microbial metabolism (such as the food matrix, pH,
and other compounds present) may be different from the first
time interval.

Another landmark study on the role of the gut microbiome
in GLS metabolism comes from Li et al. (60). Participants
were fed cooked broccoli and ITC excretion in urine was
measured over the course of 24 h. Fecal samples from the
10 highest and lowest ITC samples were then cultured and
incubated again with purified GRP 1–2 months following the
first feeding. This study found no significant differences in
microbiome composition between high and low ITC excreters.
Furthermore, ex vivo incubation of fecal samples from high and
low ITC-producers resulted in non-significant differences in GLS
degradation. While this is one of the only studies to directly
measure relationships between the gut microbiota and GLS
conversion to ITCs in humans, and has a sound study design, it
has a fewmajor limitations. At the time this study was conducted,
bioinformatic technologies and software lacked modern power
and taxonomical resolution. Additionally, in the fecal incubation
studies, the researchers solely measured degradation of GLS as
opposed to the metabolic products of GLS, failing to capture the
entire picture. Nevertheless, the findings of this study also show
the ephemeral nature of the gut microbiota and highlight that gut
microbiome composition can change and thus may be targeted,
through dietary or probiotics means.

The genes responsible for the microbial conversions of GLS
to ITCs are still being elucidated. Three genes encoding β-
glycosidase enzyme have been identified in E. coli strains
(135). Two of these genes in particular, bglA and ascB were
shown in vitro to degrade singrin to AITC (135). Another
microbial myrosinase-like gene has been identified in Citrobacter
isolated from soil, however, the relevance of this strain to
the gut microbiome is unclear (136). A recent study has
identified an operon in Bacteroidetes thetaiotaomicron that is
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responsive to GLS and is capable of metabolizing them to ITCs,
and metagenomic analysis across multiple distinct populations
suggested that this operon is widely distributed across the
gut microbiome (124). Among Bacteroidetes thetaiotaomicron
species, varying ability to convert GLS to ITCs was detected,
suggesting that environment or horizontal gene transfer could
influence the expression of GLS metabolizing gene (124).
Furthermore, the bacterial GLS metabolizing genes had no
identified homologs in Lactobacillus agillis R16 and E. coli VL8,
two other microbes known to metabolize GLS to ITCs, implying
that multiple microbial metabolic pathways exist (101, 109,
124). Further work utilizing modern “omics”-level approaches
will be necessary in identifying microbial genes, and their
related enzymes, that are responsible for the conversion of GLS
to ITCs as well as other microbial metabolites produced by
GLS hydrolysis.

GLS Hydrolysis to Biologically Inert
Compounds
Beyond conversion to ITCs, GLS can be metabolized to
biologically inert compounds, such as NITs (Table 1).
Endogenous plant factors, such as ESP have been shown to
skew GLS conversion by myrsosinase toward NIT production,
as opposed to ITCs, however, ESP is deactivated under heat
treatment (95, 96). Other factors, such as the presence of
Fe2+ ions and acidic conditions can additionally lead to the
production of NITs over ITCs, however, evidence in vitro
has shown that regardless of pH microbes can produce NITs
from GLS, suggesting distinct microbial metabolic pathways
exist for this biotransformation (29, 31, 91, 101, 102, 137).
Work conducted by Mullaney et al. has suggested that lactic
acid bacteria, particularly Lactobacillus plantarum KW30 and
Lactococcus lactis KF147 preferentially convert GRP and GIB to
SFN-NIT and IBN-NIT, respectively, as opposed to ITCs (110).
Other work has shown that some taxa, including Enterococcus
casseliflavus CP1 and Escherichia coli VL8 are all capable of
producing both NIT and ITC products from multiple GLS
including SNG (Allyl-NIT, AITC), GTP (Benzyl-NIT, Benzyl-
ITC), GNT (Phenethyl-NIT, Phenethyl-ITC), GER (ERN-NIT,
ERN-ITC), GIB (IBN-NIT, IBN), and GRP (SFN-NIT, SFN)
(101, 102). While these studies have contributed greatly to
our understanding of microbial metabolism of GLS, they tend
to rely heavily on monocultures and purified GLS extracts,
failing to capture complex diet-microbe, microbe-microbe, and
microbe-host interactions which are present in the human gut
(101, 103, 107–110, 137).

While many microbes have been shown to convert GLS to
NITs, the metabolic pathway underpinning this bioconversion
still needs further elucidation. Work by Luang-In et al. has
shown that bacterial β-O-glucosidase are capable of metabolizing
desulfoglucosinolates, GLS without a sulfate group, to NITs
(101, 138, 139). While desulfoglucosinolates exist naturally in
plants, it is hypothesized that a bacterial sulfatase could fill
the metabolic niche of converting GLS to desulfoglucosinolates.
Desulfoglucosinolate hydrolysis results solely in the production
of NITs and cannot result in ITC production. In vitro work has

identified twomicrobial enzymes responsible for this conversion,
bgl4 and Tp8, which have been shown to yield ∼15 and ∼70%
NITs from desulfoglucosinolates, respectively (138, 139). The
large difference in yields from these two enzymes is most likely
due to differences in structure and origin. Work by Lu et al.
searched for the bacterial sulfatase present, and while detecting
one, they found it had low affinity for SNG concluding that
it was not the enzyme responsible for the biotransformation
(140). Additionally, a novel bacterial sulfatase was discovered
in members of bacterial family Clostridiaceae which may be
responsible for the conversion of GLS to desulfoglucosinolates
(141). Coinciding with this hypothesis, a recent study by
Kaczmarek et al. found that broccoli consumption lead to a
decrease in abundance of bacteria from family Clostridiaceae
(142). Bacteria from the Clostridiaceae family were also found
to be negatively correlated with the maximum peak of GLS
metabolites in plasma (142). A microbial enzyme directly
responsible for the desulfation of GLS to desulfoglucosinolates
has not yet been detected, thus, the impact on this desulfation in
vivo is not yet known. Individuals with gut microbiomes enriched
with bacteria capable of converting GLS to desulfoglucosinolates
could result in lower bioavailability of ITC from a dose of
GLS. Future work is needed to identify microbial enzymes
responsible for the desulfation of GLS by gut microbes and
to determine the impact of these bioconversions on efficacy of
broccoli sprout supplementation.

GLS Redox Reactions
Beyond hydrolysis, the gut microbiota has been shown to utilize
redox reactions to biotransform not only GLS but also NITs.
More specifically, in vitro experiments with bacteria have shown
that many microbes are capable of reducing GLS such as GIB and
GRP to their redox partners glucoiberverin andGER, respectively
(110). The conversion of SFN to ERN has been observed in
vivo, both in human and animal studies (34, 62, 101, 102, 132,
133, 143). Enterobacter cloacaeATCC13047, Escherichia coli 1917
Nissile, and Escherichia coli VL8 have all been shown to reduce
GRP and GIB as well as the nitriles IBN-NIT and SFN-NIT, in
vitro (102, 110). In human studies, high levels of inter-individual
variation in conversion of SFN to ERN was observed and it is
still unclear if this biotransformation occurred before or after
the hydrolysis of GLS to ITC and if the reduction occurred
by endogenous host enzymes or in the gut lumen by the gut
microbiome (143). Reduction of SFN-NIT to ERN-NIT and IBN-
NIT to iberverin-NIT was also observed in fecal cultures in vitro,
however, it has yet to be shown if this occurs in humans (110).
Bacterial methionine sulfoxide reductase A is a prime candidate
to reduce ITCs, like SFN to ERN, because it is found in all aerobic
organisms and thus may alter ITC metabolism as they travel
through the gut (144, 145). Microbes shown to complete redox
reactions on GLS are shown in Table 1.

The implications of these redox-reactions are not well-known
in humans. In studies solely examining the bioavailability and
conversion of a single GLS to ITCs (e.g., GRP to SFN), these
conversions can lead to a decrease in apparent bioavailability
or increased variability between subjects due to differing levels
of conversion. The impact of redox reactions on the bioactivity
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of ITCs also needs further investigation. ERN is shown to
possess similar bioactivity as its redox partner SFN, however, its
parent GLS, GER, has been shown to possess direct antioxidant
properties and ERN is also believed to possess these properties
(19–21, 41). Interestingly, when GER reacts with hydroperoxides
it becomes oxidized to GRP, the precursor of SFN (41). Further
investigation is needed to identify the implications of GLS, ITC,
and NIT redox transformations in vivo.

CRUCIFEROUS VEGETABLES AND GUT
MICROBIOME COMPOSITION

Impacts of Cruciferous Vegetable
Consumption on Microbiome Structure
Compounds from cruciferous vegetables have been shown
to modulate the gut microbiome, altering its structure and
potentially metabolic function, having implications in both
cruciferous vegetable metabolism and general health (104,
105, 146–148). This implies a direct relationship between the
composition of the gut microbiome and the metabolism of
GLS, specifically the generation of ITCs. Clinical trials have
shown that consumption of a diet rich in cruciferous vegetables,
compared to a cruciferous vegetable devoid diet, significantly
alters the composition of the gut microbiome (146). Interestingly,
each individual responded uniquely to cruciferous vegetable
consumption, suggesting that basal microbiome composition
may impact outcome. A similar shift in microbiome composition
was observed in rats in response to cruciferous vegetable
consumption (105). In rodents, bacteria from the phylum
Verrucomicrobia and from the species Akkermansia municiphila
have been shown to increase with consumption of broccoli
while the genus Lactobacillus has been shown to decrease with
broccoli consumption (105, 148). Conversely, bacteria from
genusOscillibacter, Ethanoligenens, and Gordonibacter have been
shown to increase with broccoli consumption (105, 147). In
humans, Eubacterium hallili, Phascolarctobacterium faecium,
Aliestipes petrudeinis, and the genus Eggerthella. were found to
decrease with cruciferous vegetable consumption (60, 146). In
humans, the family Desulfovibrionacaeae was found to increase
with broccoli sprout consumption while in rats this family was
decreased with consumption (60, 104). The differential changes
inDesulfovibrionacaeae across studies could be due to differences
in host factors, considering that one study was conducted in
rats while the other was conducted in humans, or the source of
vegetable with the Wu et al. utilizing freeze dried raw broccoli
while the Li et al. used fresh broccoli sprouts. Similar discordant
changes were observed in bacteria from the genus Alistipes in
multiple studies conducted in humans (60, 146, 149). Factors
driving these differences could stem from differences in study
populations as one was conducted in the US and the other
in the UK or differences in the foods consumed alongside the
cruciferous vegetables.

A recent study conducted in humans found that consumption
of cooked broccoli and raw daikon radish resulted in an increase
bacteria from the genera Bacteroides and phylum Bacteroidetes
and a decrease in bacteria from the phylum Firmicutes, compared

TABLE 2 | Bacteria significantly altered with cruciferous vegetable consumption.

Bacteria* 1 With consumption Model References

Akkermansia Increase Rat (105, 148)

Alistipes Decrease Rat (147)

Increase Human (146)

Increase Human (60)

Decrease Human (149)

Bacteroides Increase Human (142)

Phylum: Bacteroidetes Increase Human (142)

Blautia Decrease Rat (105)

Burkholderiales Decrease Human (146)

Clostridium Increase/decrease Rat (105)

Decrease Human (149)

Coprococcus Decrease Rat (105)

Dehalobacterium Decrease Human (149)

Desulfovibrio Increase Human (60)

Decrease Mice (104)

Dorea Decrease Rat (105)

Eggerthella Increase Human (146)

Ethanoligenens Increase Rat (147)

Eubacterium hallii Increase Human (146)

Phylum: Firmicutes Decrease Human (142)

Decrease Human (149)

Family: Lachnospiraceae Decrease Rat (105)

Increase Mice (104)

Family: Rikenellaceae Decrease Human (149)

Family: Ruminococcaceae Increase Rat (105)

Decrease Human (149)

Family: S24-7 Increase Rat (105)

Gordinobacter Increase Rat (147)

Lactobacillus Decease Mice (148)

Lactococcus Decrease Rat (147)

Increase Human (60)

Lutispora Decrease Rat (147)

Family: Mogibacteriaceae Decrease Human (149)

Mucispirillum schaedleri Decrease Mice (148)

Oscillobacter Increase Rat (147)

Oscillospira Increase Rat (105)

Papillibacter Decrease Rat (147)

Prevotella Increase Rat (105)

Rc4-4 Increase Rat (105)

Streptococcus Decrease Rat (147)

Tannerella Decrease Rat (147)

Vampirovibrio Decrease Rat (147)

*Genera unless otherwise stated.

to control (142). Another study found that consumption of
a diet high in cruciferous vegetables lead to a decrease in
sulfate-reducing bacteria compared to a diet low in cruciferous
vegetables, specifically bacteria from the order Clostridiales
(149). A list of bacterial genera altered by cruciferous vegetable
consumption can be found in Table 2. This list focuses on studies
completed in healthy individuals and animal models, however,
work has also been conducted in disease models (150–153).
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Cruciferous vegetable induced changes in the microbiome
may have a functional impact on the microbiome and in turn
influence the host. This was recently highlighted in a paper
which showed that changes induced by consumption of cooked
broccoli and raw daikon radish were predicted to be associated
with changes in microbial genes involving the endocrine
system, transport and catabolism, and energy metabolism (142).
Due to predictive nature of these analyses, future studies
examining functional alterations to the gutmicrobiome following
cruciferous vegetable consumption would benefit from the use
of metagenomic methods and the integration of metabolomics
data to further address how the changes in bacteria may influence
the host. Kellingray et al. found that broccoli consumption lead
to a decrease in sulfate-reducing bacteria, which are associated
with gastrointestinal disorders such as ulcerative colitis and
irritable bowel syndrome (149). Furthermore, sulfate is a product
of GLS conversion to desufloglucosinolates, thus, the reduction
in sulfate-reducing bacteria could potentially contribute to the
increased production of ITCs by decreasing GLS conversion to
desufloglucosinolates. Unfortunately, Kellingray and colleagues
did not measure GLS, NIT, nor ITC metabolites so additional
experiments are needed to test this hypothesis. Cumulatively,
these findings suggest that cruciferous vegetable consumption
could not only impact host health through the generation of ITCs
and other bioactives, but also by altering overall gut microbiome
composition and metabolism and thus host health.

While it has been well-established that consumption of
broccoli sprouts significantly alters the composition of the gut
microbiome, the specific compounds within broccoli that are
responsible for this change are still unclear. Initial hypotheses
pointed toward GLS, and their downstream metabolites ITCs, as
responsible for the microbiome-modulatory effect of cruciferous
vegetables due to the anti-microbial nature of ITCs (154–157).
In contrast, recent evidence has suggested that broccoli itself
is responsible for the changes (104). Two separate feeding
studies in rodents found that hydrolyzed broccoli, where all
GLS had been converted to ITCs, and broccoli containing
intact GLS, lead to changes in gut microbiome composition
while GLS supplementation, in the absence of broccoli, did not
change microbiome composition (104, 105). Interestingly, in
both studies treatment with whole broccoli, regardless of GLS
hydrolysis, resulted in similar microbial community composition
while GLS supplementation alone did not result in change
relative to a broccoli-free control (104, 105). Taken together, these
results suggest that while the non-GLS components of broccoli
are responsible for the microbiome-modulatory properties of
these foods, ITCs could act synergistically with these compounds.

Alterations to Microbial Metabolism of
Cruciferous Vegetables With Prolonged
Exposure
Alterations to the gut microbiome through long-term
consumption of cruciferous vegetables also has been observed
to impact GLS metabolism. Rodent studies have reported an
increased myrosinase-like activity by gut microflora following
prolonged consumption of broccoli sprouts, typically 14 days

or longer (104, 105). In humans, one study examining the
bioavailability of SFN from a GRP rich powder over the course
of 84 days found a gradual increase in SFN bioavailability over
the course of the study (131). The authors of this study did not
examine the gut microbiomes of their participants, but they
speculate the increase in SFN bioavailability could be driven
by changes in the composition of the gut microbiome. Liu
et al., found that consumption of both cooked broccoli and
purified GRP, lead to an increase in myrosinase-like activity
in the gut microbiome (105). Conversely, the Wu et al. study
found that raw broccoli lead to an increase in myrosinase-like
activity while administration of SNG, the GLS precursor to
AITC, did not (104). A possible explanation for the increase
in myrosinase-like activity from GLS exposure could be due to
induction of GLS-metabolizing genes through the operon first
identified by Liou et al. in Bacteroides thetaiotaomicron (124).
Overall, consumption of cruciferous vegetables can alter not
only gut microbiome composition, but also gut microbiome
metabolism. Further investigation is needed to understand these
alterations in humans, as well as their impact on not only GLS
metabolism but overall human health.

DISCUSSION—METABOLOMICS AND
MICROBIOME ANALYSIS FOR THE
FUTURE

To address gaps in knowledge in the role of the microbiome in
driving inter-individual variation in GLS metabolism, a systems-
biology approach leveraging recent technological advances can
be utilized. High throughput sequencing (HTS) allows rapid
and inexpensive deep sequencing of microbial samples, and
improvements in bioinformatic technology have led to an
increase in our power to analyze data (158, 159). These
technological and methodological advancements have resulted
in an abundance of studies utilizing 16S sequencing, revealing
the composition of the gut microbiome. These types of studies
will allow researchers to detect alterations to gut microbiome
composition with cruciferous vegetables and identify taxa driving
GLS metabolism in vivo. While these studies expand our
knowledge of the gut microbiome, they lack the ability to tell
us the functional role of these microbes. In contrast to 16S
sequencing, metagenomic sequencing allows for identification
of microbial genes enriched by experimental conditions, giving
explanation of both which microbes are present and what
they do (160). Despite its power, metagenomic sequencing has
major limitations, specifically in the identification of novel genes
responsible for microbial metabolism. Gene function is typically
determined by comparing sequences against homologous genes,
however, if homologous genes do not exist within annotated
databases the functional aspects of metagenomic sequencing
can fail to be captured (160). Nevertheless, metagenomics
offers the potential to understand which metabolic niches GLS-
metabolizing microbes fill, and determine the implications of
these microbes not only on GLS metabolism, but more broadly
on human health.
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New methods have been proposed to bridge the gap between
taxonomy and function, chiefly through the use of multi-
omic integration to address the shortcomings of metagenomic
sequencing (161). An example of a multi-omic approach would
be to combine metabolomics and 16S sequencing data to uncover
the influence of the microbiome in metabolite generation. Multi-
omic methods can include data-driven approaches, which use
an untargeted approach to analyze data and extract features
of interest. Additionally, knowledge-based approaches use prior
knowledge to find relationships between features. Data-driven
approaches are typically based on statistical and machine
learning techniques such as network analysis, regression, decision
trees, and data reduction techniques like principal component
analysis (regularized), canonical correlation analysis, and partial
least squares (162–164). Knowledge-based approaches leverage
databases and use techniques such as set-based enrich analysis,
pathway analysis, and constraint-based metabolic modeling
(162). All these methods rely on the integration of multiple
omics technology, chiefly metatranscriptomics, metaproteomics,
and metabolomics which capture perturbations to the gut
microbiome at a more precise level than metagenomics
alone (161).

Particularly relevant to GLSmetabolismwill be the integration
of metabolomics data with microbiome data [reviewed in (165)]
which could identify associations between members of the
gut microbiome and specific microbial metabolites generating
novel hypotheses for more targeted investigation. For example,
untargeted metabolomics and 16S sequencing methods may
shed light on why many of the in vitro studies of bacterial
metabolism found up to 100% GLS degradation by bacteria,
while a significant portion of the ITC (or related metabolites)
products were unaccounted for (101, 102, 110, 140). The presence
of unknown microbial metabolites may be a contributing factor
and this multi-omic approach can capture not only ITCs,
NITs, and their conjugates, but other products of microbial
cruciferous vegetable metabolism. Through these approaches
novel bioactives may also be discovered, further uncovering
components of cruciferous vegetables which are responsible for
their microbiome-modulatory effects as well as their efficacy in
cancer prevention.

Metabolomics on human plasma coupled with bacterial
sequencing following broccoli consumption can be also be used
to find microbes associated with circulating SFN and SFN-
NIT levels. Metabolomics captures host metabolites, as well as
microbial metabolites, giving greater insight into inter-individual
variation. While a large portion of both the human and microbial
metabolome are unannotated, advances in computational mass
spectrometry have helped overcome this barrier through the
use of machine learning techniques for MS/MS matching
and tentative metabolite annotation (166–168). Future studies
utilizing multi-omic approaches will not only aid in identifying
factors driving inter-individual variation in GLS metabolism, but
also may lay the groundwork for how an individual’s microbiome

could be altered to improve ITC bioavailability from food and
thus, may lead to improvements in ITC bioavailability and affect
efficacy in cancer prevention.

CONCLUSIONS

Growing evidence points toward the gut microbiome as an
important player in determining ITC bioavailability in humans
following GLS consumption. It is clear from in vitro studies
that members of the gut microbiome can metabolize GLS to
ITCs (Lactobacillus agilis R16, Enterococcus casseliflavus CP1,
and Escherichia coli VL8) and NIT (Lactic Acid Bacteria). Thus,
understanding the role of the gut microbiome in ITC production
is paramount to the use of cruciferous vegetables as a cancer
prevention strategy, as changes to GLS metabolism by the
gut microbiome may lead to the decrease of cancer-fighting
phytochemicals such as SFN, and increase the production
of biologically inert ones like SFN-NIT. Consumption of
cruciferous vegetables has additionally been shown to alter
the composition of the gut microbiome, not only shifting its
structure, but also its metabolic abilities toward ITC production.
Understanding the role of the gut microbiome in the metabolism
of GLS, specifically their conversion to ITC, is important
to understanding the drivers of inter-individual variation in
humans. Without addressing the factors that drive the high
variability in ITC absorption and excretion observed in human
clinical trials, translating the chemopreventative properties of
cruciferous vegetables from the lab bench to the clinic is a
challenge. Future studies should utilize multi-omics approaches
to better understand the interplay between GLS metabolism, the
gut microbiome and cancer prevention.
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