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Abstract: Demand for silver engineered nanomaterials (ENMs) is increasing rapidly in 

optoelectronic and in health and medical applications due to their antibacterial, thermal, 

electrical conductive, and other properties. The continued commercial up-scaling of ENM 

production and application needs to be accompanied by an understanding of the occupational 

health, public safety and environmental implications of these materials. There have been 

numerous in vitro studies and some in vivo studies of ENM toxicity but their results are 

frequently inconclusive. Some of the variability between studies has arisen due to a lack of 

consistency between experimental models, since small differences between test materials 

can markedly alter their behaviour. In addition, the propensity for the physicochemistry of 

silver ENMs to alter, sometimes quite radically, depending on the environment they encounter, 

can profoundly alter their bioreactivity. Consequently, it is important to accurately characterise 

the materials before use, at the point of exposure and at the nanomaterial-tissue, or “nanobio”, 

interface, to be able to appreciate their environmental impact. This paper reviews current 

literature on the pulmonary effects of silver nanomaterials. We focus our review on 

describing whether, and by which mechanisms, the chemistry and structure of these materials 

can be linked to their bioreactivity in the respiratory system. In particular, the mechanisms 

by which the physicochemical properties (e.g., aggregation state, morphology and chemistry) 

of silver nanomaterials change in various biological milieu (i.e., relevant proteins, lipids and 
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other molecules, and biofluids, such as lung surfactant) and affect subsequent interactions 

with and within cells will be discussed, in the context not only of what is measured but also 

of what can be visualized. 
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1. Introduction 

Silver nanoparticles (AgNPs) are a class of metallic particles with at least one dimension less 

than 100 nanometres. The well-known antibacterial properties of AgNPs [1–4], as well as the unique 

optoelectronic properties of this material [5,6], has led to a dramatic increase in research and industrial 

production of silver nanomaterials. Among over 1800 commercially available products, identified as 

containing nanomaterials according to manufacturers’ reports, about 25% contain silver nanomaterials [7]. 

The available products range from electronic and photonic devices (such as solar panels) to textiles, food 

storage containers, antiseptic and antibacterial sprays and more. 

The increase in the number of products containing silver nanomaterials has led to growing concerns 

about the potential adverse effects on human health upon exposure to Ag nanomaterials. As a result, 

nanosilver has been the subject of intensive investigation during the last decades. Elemental silver was 

considered to be of low toxicity to humans, although several cases have been reported of argyria 

(irreversible pigmentation of the skin) or argyrosis (irreversible pigmentation of the eyes) after chronic 

ingestion of colloidal silver [8,9]. The toxicity of AgNPs has been demonstrated for several species of 

vertebrates, invertebrates, and prokaryotic and eukaryotic microorganisms, as well as mammalian cell 

lines [2,10]. The toxicological outcomes upon exposure to Ag nanomaterials include oxidative stress, 

lipid peroxidation, inhibition of mitochondrial activity, damage of DNA, and cell apoptosis [11–20]. 

AgNPs are manufactured in several different formats, which may lead to varied toxicological potentials. 

Several physicochemical properties of the AgNPs have been shown to play a role in their bioreactivity 

(e.g., shape [16,21], size [12] and coating agent [14]) but the exact mechanisms remain elusive. Several 

studies have linked the toxicity of AgNPs to their dissolution and the release of free Ag+ ions [20]. Silver 

is an oxidation catalyst and undergoes slow oxidative dissolution as Ag+ so the chemical nature of 

AgNPs in the environment changes with time (depending on the environment), therefore both size and 

oxidation state will critically determine any cytotoxicity. Release of silver ions typically relies on the 

presence of dissolved molecular oxygen [22], and, given the presence of molecular oxygen, the amount 

and rate of silver ions released will increase as the pH becomes more acidic [23]. The kinetics of silver 

ion release will depend on the size [24] and surface functionalization of the NPs [25], temperature [24,26] 

and composition of the surrounding media [27–29]. Once released, the Ag+ ions will react with other 

species in their environment and may precipitate as insoluble silver compounds or undergo complexation 

with proteins. 
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Figure 1. Examples of transformations to the physicochemical properties of silver 

nanoparticles (AgNPs). To elucidate the mechanisms of biological action of AgNPs, these 

transformations must be carefully considered and comprehensive characterization should 

take place at each stage of the in vitro and in vivo testing. 

 

There has been much discussion in the literature as to whether the reactivity of AgNPs arises due to 

an ionic [27,30] or particulate effect [31–34], or both. Attempts have been made to resolve this question 

by incubating cells with AgNO3 or by culturing cells in anaerobic conditions [30]. However, several 

discrepancies still exist between the published results. This is most likely caused by the lack of sufficient 

controls over the particles used and the cellular systems investigated, making it hard to compare between 

experiments performed by different groups. On the one hand, further efforts are required to understand 

the stability of AgNPs and the kinetics of Ag+ ion release in biological environments. AgNPs are highly 

dynamic and their properties can change drastically when incubated in biological media, leading for 

example to aggregation or the formation of biomolecule coronas (Figure 1). As a result, characterization 

of as-synthesized AgNPs alone is not enough to predict their biological activity but appropriate 

characterization should also take place at conditions that realistically simulate in vivo exposure scenarios. 

When combined with molecular biological studies, this information can provide greater insight into the 

unique ENM behaviour and a better appreciation of potential effects on human health and the environment. 

Since experimental techniques commonly used in the past for AgNP characterization, such as atomic 

absorption spectroscopy or dynamic light scattering, may possess limitations in detecting transformations 
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of the physicochemical properties of AgNPs in different environments (e.g., pulmonary surfactant), 

several complementary techniques need to be applied. On the other hand, it is becoming increasingly 

clear that the extracellular release of Ag+ ions by AgNPs cannot wholly account for the observed toxicity. 

Additional effects at the particle-cell membrane interface and inside cells seem to play a role in the 

biological action of AgNPs [35]. Therefore, a synergistic effect between AgNPs and Ag+ ions must be 

considered in order to obtain accurate conclusions about the mechanisms of toxicity. The focus should 

be placed on developing new metrology methods that will be able to link the existing discrepancies 

between the effects of AgNPs and Ag+ ions. New approaches based on the correlative application of high 

spatial and energy resolution analytical microscopy techniques may offer an improved understanding of 

the mechanisms by which AgNPs interact with cells, and can guide the selection of the most relevant 

toxicological assays to test. Imaging and analysis could also help to determine whether the toxicological 

findings relate directly to the localization of AgNPs inside cells, or whether they are more general. 

Finally, the development of new methods for the quantification of Ag+ ions released intracellularly will 

prove invaluable in discriminating between the effects of AgNPs and Ag+ ions. 

2. Pulmonary Exposure to Silver Nanoparticles 

An increase in the number and production volume of products containing AgNPs will lead to a larger 

release into the environment during manufacture [36], use, washing or disposal of the products. There is 

currently very little data on the magnitude of release of AgNPs but efforts have begun to provide 

quantitative estimations of the environmental concentrations of engineered nanomaterials [37,38]. 

During manufacturing, AgNPs can be present in either powder or liquid formats and potentially present 

a health risk to workers. In an industrial manufacturing facility, significant release of AgNPs was 

observed during processing as soon as the reactor, dryer and grinder were opened, leading to a possible 

occupational exposure even for wet production processes [39]. In a laboratory setting, handling of silver 

nanomaterial powders inside a fume hood, led to an increase in the number concentration of particles in 

the breathing zone of a worker [40]. Moreover, few data exist on the effects of exposure of consumers 

to NPs in realistic application scenarios relating to the use of nanotechnology-based consumer products. 

As two studies have shown, the use of sprays containing AgNPs can lead to the generation of nanosized 

aerosols and the release of NPs near the human breathing zone [41,42]. Moreover, Ag is imbedded in 

textiles in a variety of different forms, such as ionic Ag, AgCl or metallic AgNPs, to provide them with 

an enhanced antimicrobial activity. These silver-treated textiles can be a source of AgNPs in the washing 

solution when laundering fabrics, regardless of the initial form of treatment [43]. Consequently, AgNPs 

are a potential occupational, environmental and public hazard and their effects must be assessed before 

the production and use of these nanomaterials are spread more widely. Regulatory frameworks to protect 

both public health and the environment are still under development. Therefore, scientific evidence is 

needed in order to inform these decisions and allow for the establishment of risk assessment processes. 

Human exposure to AgNPs may take place through various routes, including the respiratory tract, 

the skin, the gastrointestinal tract, the reproductive system or the circulatory system (Table 1) [1,4,44]. 

For instance, the use of AgNPs in wound dressings, antibacterial textiles, or cosmetic products could 

increase human skin exposure while AgNPs used in food packaging and kitchen utensils could lead to 

ingestion of AgNPs. Moreover, exposure of the reproductive system could occur through the use of 
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contraceptive devices or hygiene products containing AgNPs. Another important uptake route is the 

circulatory system, following intravenous injection of AgNP-based drugs or drug delivery/diagnostic 

systems. Although all these scenarios need to be assessed as potential portals of entry, inhalation of 

AgNPs is considered as one of the most important routes of exposure, since the respiratory system 

serves as a major portal for ambient particulate materials. Pathologies resulting from airborne particle 

materials at the micron level, such as quartz, asbestos and carbon, have been topics thoroughly researched in 

occupational and environmental medicine and associations between ultrafine particle inhalation and 

increased cardiovascular and pulmonary morbidity and mortality have been made [45,46]. Recently, the 

pathogenic effects of inhaled manufactured nanoparticles have also received attention [44,47]. Several 

healthcare, hygiene and antibacterial spray products containing AgNPs have now entered daily use. 

Therefore, AgNP aerosols directly applied into the nasal or oral cavity (e.g., nasal drops for rhinitis 

treatment) are of great concern, as concentrated NPs can be channeled into the lungs. The increasing use 

of sprays containing AgNPs, such as deodorants, shoe sprays or disinfectant cleaning products could 

also lead to accidental AgNP inhalation. Finally, as described above, AgNPs pose a risk of occupational 

respiratory exposure in manufacturing and research facilities. 

Table 1. Possible routes of human exposure to silver nanoparticles. 

Route of Exposure Sources of Exposure 

Respiratory System 

Handling AgNPs in manufacturing or research facilities;  
Aerosols directly applied in the nasal or oral cavities;  
Sprays (e.g., deodorants, shoe sprays, cleaning products);  
Air filters, breathing masks;  
Ambient airborne AgNPs 

Skin 

Wound dressings;  
Antibacterial textiles (e.g., sheet, towels, socks, underwear, fitness wear);  
Antibacterial surfaces, paints;  
Cosmetic products (e.g., lotions, roll-on deodorants, hair products);  
Computer hardware and mobile devices 

Gastrointestinal Tract 

Food packaging, cooking utensils and coatings;  
Water filters;  
Health supplements;  
Oral hygiene products (e.g., toothpastes, toothbrushes) 

Reproductive System 
Contraceptive devices;  
Feminine hygiene products 

Circulatory System 
Intravenous injection of AgNP-enabled drugs or drug delivery/diagnostic systems;  
Implants, medical catheters 

The human lungs consist of approximately 2300 km of airways and 300 million alveoli, giving rise 

to a surface area of about 150 m2. This vast internal surface area facilitates a broad access of inhaled 

materials to the lung, which cannot always deal adequately with the wide range of airborne materials 

present in urban or occupational environments [45]. The most critical characteristic determining the 

deposition patterns of particulates in the respiratory tract is the particle size distribution [45]. Larger 

particles (5–30 μm) are usually deposited in the nasopharyngeal region by the inertial impaction 

mechanism and smaller particles (1–5 μm) in the tracheobronchial region, mainly due to sedimentation. 
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These particles are typically cleared by bodily responses, such as coughing, mucociliary transport and/or 

phagocytosis by alveolar macrophages. The major deposition mechanism for particles smaller than  

0.5 μm is diffusion, therefore NPs can penetrate deeply into the alveolar region, where clearance may be 

insufficient [45,48,49]. The deeper the particle deposition, the longer it takes for pulmonary particle 

clearance; it is believed that this might give rise to a higher probability of adverse health effects due to 

continuous particle-tissue interactions [50]. Additionally, phagocytosis by alveolar macrophages to 

remove inhaled NPs appears to be less efficient than for larger particles [51,52]. Therefore, NPs can 

effectively access the alveolar region of the lungs and come into contact with the alveolar epithelium, 

where they can possibly be taken up by epithelial cells and fibroblasts. Once AgNPs reach the alveoli, 

further barriers to diffusion into the blood circulation are limited. This is because the epithelium that 

separates the inhaled air from the blood capillaries is very thin (<0.5 μm), consisting of a monolayer of 

type I and type II epithelial cells [53]. Type I (squamous alveolar) cells form the structure of the alveolar 

wall, whereas type II (cuboidal alveolar) cells continuously release pulmonary surfactant by exocytosis. 

Any cellular or protein damage in this region could not only have an impact on pulmonary homeostasis 

but would also determine possible translocations of AgNPs to other organs and allow them to elicit toxic 

effects at extrapulmonary sites. Hence, the interactions of AgNPs with the human lung epithelium 

urgently needs to be addressed, in order to predict their adverse effects, provide guidelines for their safe 

use and direct the regulation of silver nanomaterials. 

3. Bioreactivity of Silver in the Lung 

3.1. The Bioreactivity of AgNPs in the Lung in Vivo 

Although AgNPs have been identified as a possible exposure hazard, there is very limited information 

about how this class of nanomaterial interacts with the lung in vivo. Nanotoxicology assessment studies 

performed in vivo using the appropriate dosing amounts and routes of exposure can provide useful 

information because of the diversity of systemic phenotypic response and the anatomic influence, which 

can be directly translatable from animal models to human exposures. Particle pharmacokinetics combined 

with studies of regional dissolution rates can provide insights into the impact of dosing on systemic 

physiology and positional anatomy [54]. For instance, inhalation and instillation of 15 nm AgNPs in rats 

showed that lung particle content rapidly decreased following inhalation. The AgNPs were subsequently 

detected in the blood and other organs, such as the liver, kidney and brain [55]. In several cases,  

a gender-dependent difference for AgNP accumulation in kidneys has been reported, with females 

exhibiting a higher concentration than males [56–58]. Another study on the distribution and accumulation 

of AgNPs in rats following subcutaneous injection also revealed that the particles had translocated to the 

blood circulation and distributed throughout the main organs, especially in the kidney, liver, spleen, 

brain and lung [59]. Ultrastructurally, AgNPs that had accumulated in organs were observed within 

different types of cells, such as renal tubular epithelial cells and hepatic cells. Moreover, AgNPs induced 

blood-brain barrier destruction and astrocyte swelling, and caused neuronal degeneration [59]. In most 

studies that report on the anatomic distribution of silver following inhalation of AgNPs in vivo, silver is 

quantified by inductively coupled plasma mass spectrometry (ICP-MS) due to its high sensitivity [55,57,59]. 

However, this technique requires the digestion of tissue samples by strong acids and therefore ICP-MS 
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detects the total elemental silver content of samples. Consequently, it is difficult to draw conclusions 

about the form of silver that has reached each organ, i.e., distinguish between metallic AgNPs, ionic Ag+ 

or Ag compounds. Other groups have employed the silver-enhancement method to track Ag in 

tissues [58,60], which is based on the autometallography (AMG) technique [61]. This method is based 

on the principle that small-sized clusters of silver enhance the reduction of silver ions that are added on 

their surface, resulting in an increase in the size of the clusters. These can become large enough to be 

viewed under a light microscope, thus confirming the presence of Ag in tissue, but without being able 

to characterize the morphology or chemistry of the original AgNPs. Moreover, this method presents 

several drawbacks that could lead to artefacts. For example, autonucleation of the enhancement solution 

may lead to the formation of nanoparticles that are subsequently catalytic for further growth. 

A 28-day inhalation toxicity study of AgNPs on rats by Ji et al., showed no significant changes in the 

haematology and blood biochemistry in either the male or female rats [62]. To further evaluate these 

findings, a sub-chronic 90-day inhalation study was performed by the same group [56]. Among the lung 

function test measurements, the tidal volume and minute volume showed a statistically significant 

decrease during the 90 days of AgNP exposure. Moreover, histopathological examinations indicated 

dose-dependent increases in lesions related to AgNP exposure, such as mixed cell infiltrate and chronic 

alveolar inflammation, including thickened alveolar walls and small granulomatous lesions. Their 

findings indicated that prolonged exposure to AgNPs can induce lung function changes, along with 

inflammation, at much lower mass dose concentrations, when compared to Ag microparticles. In 

contrast, in a 28-day inhalation exposure performed by Hyun et al., histopathological examination 

showed that the nasal cavity and lungs from the AgNP-exposed groups exhibited no “remarkable” 

changes compared to the control group [63]. 

In contrast, Lee et al., found that a 14-day inhalation exposure of mice to AgNPs led to alterations in 

brain gene expression [64]. A total of 468 genes in the cerebrum and 952 genes in the cerebellum were 

identified as AgNP-responsive. The largest groups of gene products affected by AgNP exposure included 

73 genes in the cerebrum and 144 genes in the cerebellum. AgNP exposure modulated the expression  

of several genes associated with motor neuron disorders, neurodegenerative disease, and immune cell 

function, indicating potential neurotoxicity and immunotoxicity associated with AgNP exposure [64]. 

In a recent 90-day inhalation study it was demonstrated that a decrease in lung function and pulmonary 

inflammation could persist even after termination of the exposure in male rats, while in females there 

was no effect on lung function and a gradual improvement in lung inflammation following cessation 

of exposure [65]. 

While the results of the above studies clearly demonstrate a pro-inflammatory potential of AgNPs in 

the lung, the mechanism through which lung injury occurs and the characteristics of AgNPs that 

contribute to lung injury have not been assessed systematically. Recently, Wang et al., compared the 

effects of 20 and 110 nm AgNPs with two different surface coatings, citrate and polyvinylpyrrolidone 

(PVP), on mice [60]. Both size and surface coating were found to affect the cellular toxicity of AgNPs 

as well as their acute versus sub-chronic lung injury potential. Smaller particles induced more cellular 

toxicity and oxidative stress than the larger particles, possibly due to a higher rate of dissolution and Ag+ 

ion bioavailability. Moreover, there was a higher propensity for citrate-20 nm AgNPs (C20) to generate 

acute neutrophilic inflammation in the lung and to produce chemokines compared to citrate-110 nm 

AgNPs (C110). In contrast to the more intense acute pulmonary effects of C20, C110 induced mild 
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pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release, leading to a  

sub-chronic injury response [60]. Further investigation is therefore necessary in order to elucidate the 

mechanisms through which the physicochemical properties of inhaled AgNPs affect their interactions 

with the lung. Additionally, understanding how the impact of AgNPs at the cellular level in vitro 

translates to their in vivo toxicological potential will be essential for the development of a predictive 

toxicological paradigm for AgNP toxicity, the design of accurate screening assays and ultimately the 

development of safer products. 

Although the importance of dosimetry in biological studies is well-known, the relevance of AgNP 

doses used in animal inhalation studies to realistic exposure scenarios has rarely been assessed. This is 

in part due to the fact that very few data on AgNPs are currently available to evaluate occupational and 

consumer exposure. The recommended threshold limit value (TLV) set by the American Conference of 

Industrial Hygienists (ACGIH) for AgNP inhalation is 100 μg/m3 [66,67], while the recommended 

exposure level (REL) for nano-Ag by the US National Institute for Occupational Safety and Health 

(NIOSH) is 10 μg/m3 [68]. A study on airborne NP exposures associated with the manual handling of 

nanosilver in fume hoods showed a peak airborne concentration of 7000 particles/cm3 [69]. Another 

assessment reported a similar particle number concentration in the workplace air, while mass 

concentrations were between 0.02 and 1.02 μg/m3 [70]. A recent study estimated the potential exposure 

of workers in nanosilver manufacturing facilities by performing personal sampling, area monitoring and 

real-time monitoring over three days [71]. The highest AgNP concentrations were obtained from area 

sampling in the injection room, ranging from 5.01 to 288.73 μg/m3. These values were used in the study 

by Wang et al., to calculate the relevant doses to administer in their animal experiments [60]. Assuming 

a monthly deposition in human lungs, the equivalent dose per mouse was estimated at 0.33 mg/kg, 

therefore 0.1, 0.5 and 1.0 mg/kg were selected as the dose range to perform bolus instillation studies. 

Based on their findings, they predicted that a human lung burden equivalent to a bolus dose of  

0.1–1.0 mg/kg in a mouse could be associated with incremental acute pulmonary inflammation, whereas 

a lung burden equivalent to 1.0 mg/kg in a mouse may lead to sub-chronic pulmonary effects in a 

human [60]. For comparison, the doses used in other in vivo studies are summarized in Table 2. 

Table 2. Exposure doses used in in vivo studies of silver nanoparticles. 

Species 
Size 
(nm) 

Dose 
Exposure 
Method 

Exposure 
Time 

Reference 

C57BL/6 Mice,  
8 weeks old 

20, 110 0.1, 0.5 and 1.0 mg/kg 
Oropharyngeal 

aspiration 
Single 

injection 
[60] 

Sprague-Dawley 
rats, 6 weeks old 

15 
0.66 × 106 particles/cm3 (49 μg/m3) 
1.41 × 106 particles/cm3 (117 μg/m3) 
3.24 × 106 particles/cm3 (381 μg/m3) 

Inhalation 
6 h/day,  

5 days/week,  
for 12 weeks 

[65] 

Sprague-Dawley 
rats, 8 weeks old 

18 
0.7 × 106, 1.4 × 106 and  
2.9 × 106 particles/cm3 

Inhalation 
6 h/day,  
90 days 

[72] 
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Table 2. Cont. 

Species 
Size 
(nm) 

Dose 
Exposure 
Method 

Exposure 
Time 

Reference 

Wistar rats,  
8–10 weeks old 

15–40 4, 10, 20 and 40 mg/kg 
Intravenous 

injection 

32 days  
(injected at  

5 day 
intervals) 

[73] 

C57BL/6 mice 20 1.91 × 107 particles/cm3 Inhalation 
6 h/day,  

5 days/week, 
for 2 weeks 

[64] 

Wistar rats, 
female 

50–100 62.8 mg/kg 
Subcutaneous 

injection 
Single 

injection 
[59] 

C57BL/6N mice,  
adult male 

30 100, 500 and 1000 mg/kg 
Intraperitoneal 

injection 
24 h [74] 

Sprague-Dawley 
rats, 6 weeks old 

55 
0.7 × 106, 1.4 × 106 and  
2.9 × 106 particles/cm3 

Inhalation 
6 h/day for 

90 days 
[56] 

Sprague-Dawley 
rats, 8 weeks old 

13–15 
1.73 × 104 particles/cm3 (0.5 μg/m3) 
1.27 × 105 particles/cm3 (3.5 μg/m3) 
1.32 × 106 particles/cm3 (61 μg/m3)

Inhalation 
6 h/day,  

5 days/week, 
for 4 weeks 

[63] 

Sprague-Dawley 
rats, 8 weeks old 

15 
1.73 × 104,1.27 × 105 and  
1.32 × 106 particles/cm3 

Inhalation 
6 h/day,  

5 days/week, 
for 4 weeks 

[62] 

Fischer 344 rats, 
female 

15 3 × 106 particles/cm3 (133 μg/m3) Inhalation 6 h [55] 

3.2. The Bioreactivity of AgNPs in Vitro 

In vitro studies offer a relatively straightforward method to determine which features of a nanosubstance 

could predict an increased cellular reactivity. In vitro testing is one of the major options suggested in 

recent proposals on strategic approaches to discover any undesirable effects of NPs or to study NP cell 

targeting. However, the lack of standardized procedures for the evaluation of NP toxicity makes it 

difficult to compare between studies performed by different laboratories. One of the factors that can lead 

to inconsistencies between different studies is the use of different cell types, because the toxic effects of 

NPs are highly dependent on the type of cell encountered [75]. This is due to the variation in cell 

physiology (e.g., epithelial or macrophage cells), proliferation state (tumoral or resting cells), membrane 

characteristics and phagocyte characteristics among different cell types [76]. For example, cancer cell 

lines can be more resilient towards NP toxicity than normal cells due to an increased rate of proliferation 

and metabolic activity [77,78]. Also, since membrane transport depends on the composition of cellular 

membranes, cell type can greatly influence the amount of uptake of NPs into cells as well as their fate 

in the intracellular environment. Therefore, in order to identify the exact effect of NPs on the organs or 

cells of interest, the in vitro study should include cells that represent the relevant exposure scenario. 

Since NPs will encounter different cell types depending on the exposure route, different levels of 

toxicity can be expected with different exposure routes. Consequently, numerous cell types ranging from 
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endothelium, blood, spleen, liver, nervous system, heart and kidney are all of interest in toxicity studies 

of NPs in general and AgNPs in particular. 

In summary, a variety of oxidative stress-related changes have been observed in various mammalian 

cell types after exposure to AgNPs [79,80]. For example, the generation of reactive oxygen species 

(ROS), is induced after the treatment of cells with AgNPs at concentrations as low as 0.2 μg/mL in 

human glioblastoma cells (U251) [20], human Jurkat T cells [81], human colon cancer cells (HCT116 

and HT29) [82,83], human hepatoma cells (HepG2) [84,85], human Chang liver cells [19], mouse 

germline stem cells (C18-4) [86,87], mouse fibroblasts (NIH3T3) [82], mouse neuroblastoma cells 

(N2A) [88], rat liver-derived cell line (BRL 3A) [89] and rat pheochromocytoma cells (PC12) [90]. 

The level of lipid peroxidation is also increased by AgNP treatment in human skin carcinoma and 

fibrosarcoma cells [17], as well as in Chang liver cells [19]. Moreover, biochemical and molecular 

changes related to genotoxicity have been found following AgNP exposure in a variety of cells [19,20,81,84], 

including human mesenchymal stem cells [91], human hepatocyte cell line (L02) [92] and mouse 

embryonic stem cells and embryonic fibroblasts [93]. Furthermore, AgNP-induced apoptosis has been 

demonstrated in human-derived cells such as colon cancer [83,94] and hepatoma cells [85] as well 

as in Jurkat T [81] and HeLa cells [95]. Evidence of apoptosis has also been provided in some  

animal-derived cells, including mouse blastocysts [96], NIH3T3 and L929 fibroblasts [82,97], embryonic 

fibroblasts and stem cells [93] and baby hamster kidney cells [94]. As far as the lungs are concerned, 

various cells have been used to model the epithelial barrier. Primary cells directly isolated from tissue 

are not preferable due to their limited life span and variations in quality (donor variations and quality of 

preparation) [98]. Immortalized cell lines, although not as well differentiated as primary cells, provide 

high reproducibility and are most often used for the assessment of cellular toxicity and permeation, with 

human lung adenocarcinoma-derived A549 cells being the most popular [98]. Although very useful for 

toxicity testing, A549 cells are less suitable to assess permeation as they do not form tight intercellular 

junctions. To assess the bronchial barrier, Calu-3, 16HBE14o-, and BEAS-2B cells are usually used. 

The HPV-E6/E7 and hTERT immortalized bronchial epithelial cell line NuLi-1 has recently been 

employed as a model for the bronchial epithelial barrier [99]. Finally, models for the alveolar barrier use 

either primary or immortalized AT-II cells or NCI-H441 cells. Despite the fact that numerous studies 

have been published, investigating a wide of range cells that represent different exposure routes, 

including inhalation, the determination of a trend for AgNP toxicity can still be considered complex.  

In many of these studies, independent experimental methods have been employed, especially in regards 

to the physicochemical properties of the AgNPs tested. Consequently, it is not completely feasible to 

compare data from different studies, especially quantitative data such as half-maximal inhibitory 

concentration (IC50) values. 

Moreover, the selection of appropriate cytotoxicity assays is vital to the accurate assessment of NP 

toxicity, especially since some may interfere with the actual toxic effect produced by the NP [100–103]. 

For instance, single walled carbon nanotubes (SWCNTs) have been shown to interact with MTT-formazan 

crystals formed after the reduction of MTT [100]. This led to a false cytotoxic effect of SWCNTs on 

A549 human alveolar epithelial cells within the MTT assay. Cytotoxic assays can provide a large amount 

of information about toxic endpoints, such as membrane integrity lactate dehydrogenase (LDH), cellular 

metabolic activity (MTT), oxidative stress (reactive oxygen species (ROS) and apoptosis (fluorescent 

Annexin V or caspase substrates). These assays are generally employed to measure acute toxic effects 
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of cultured cells and, although they can be used to investigate cell viability, the results from one assay 

are difficult to directly compare with another as they measure different parameters [104]. AgNPs have 

been shown to cause various effects and interact with biological components in numerous ways, making 

it nearly impossible to cover the whole scale of cell-particle interactions in a single study. Correlating 

the information provided by toxicity assays with imaging techniques could provide very valuable 

information on local alterations in cell morphology, the localization of AgNPs and their transformation 

within cells and tissues. This would improve our understanding of the cytotoxicity mechanisms 

induced by AgNPs, depending on their concentration, size, shape, surface modification but also on 

the target cell type. 

Several studies have reported morphological changes in the cell membrane and cell shape after 

exposure to AgNPs. Using phase contrast microscopy, Lee et al., examined live cells from the human 

alveolar cell line A549 exposed to 10, 50 and 200 µg/mL AgNPs for 24 h. Significant morphological 

changes characteristic of cell death, including cell shrinkage, few cellular extensions, restricted 

spreading pattern, and increased floating of cells from the substrate were observed in a dose-dependent 

manner [105]. A rat alveolar macrophage cell line incubated with hydrocarbon-coated AgNPs of 

different sizes (15, 30 and 55 nm) presented size-dependent changes in cellular morphology [106]. 

The most pronounced changes were observed for cells treated with 15 nm AgNPs, with cell shrinkage 

and cellular debris floating in the medium. Cells exposed to 30 nm AgNPs presented abnormal sizes, 

with agglomerated AgNPs inside and outside the cells, whereas 55 nm AgNPs-treated cells had minor 

morphological changes [54]. Nguyen et al., compared the toxicity of PVP-coated AgNPs and uncoated 

AgNPs in a mouse macrophage cell line (J774A.1). Both types of AgNPs induced cell damage, including 

shrinkage, deformation and enlargement of mitochondria. However, uncoated AgNPs resulted in cell 

shrinkage, whereas coated AgNPs induced cell elongation and enlargement. These different responses 

to AgNPs suggest different mechanisms of cell damage depending on their surface coating [107].  

A systematic investigation on the cytotoxic effects, cellular response and membrane damage caused by 

four types of AgNPs with different surface charge was carried out on mouse macrophage (RAW-264.7) 

and lung epithelial (C-10) cell lines. Cytotoxicity was found to be strongly dependent on the surface 

charge of the AgNPs, with the positively charged AgNPs being the most toxic. The same study 

concluded that the response to AgNPs is dependent on the cell type, as lung epithelial cells were found 

to be more resistant to the AgNPs than macrophages, regardless of the surface coating [14]. This was 

attributed to the fact that the aggregate size of AgNPs in the cell culture medium was more than 100 nm, 

allowing them to be taken up more efficiently by macrophages than epithelial cells [108]. 

Moreover, the exposure of cells to AgNPs has been proven to induce stress responses, such as 

production of reactive nitrogen species (RNS) and reactive oxygen species (ROS). AgNPs have been 

shown to act on various cellular targets resulting in the induction of apoptosis, the stimulation of 

inflammatory signalling pathways or the production of free radicals, culminating in cell death [20,109]. 

For instance, enlargement of the mitochondria has been observed in human colonic epithelial (HT-29), 

mouse macrophage (J774A.1) and human macrophage (U937) cell lines, in a dose-dependent manner, 

after exposure to citrate or PVP coated AgNPs [107,110]. According to Asharani et al., AgNPs reduced 

the ATP production of human lung fibroblast cells (IMR-90), causing damage resulting in altered 

mitochondrial respiratory chain activity, dissipation of mitochondrial membrane potential and 

stimulation of apoptotic pathways [20]. Structural damage of the mitochondria may in turn lead to  
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a disruption of cellular ROS balance. Evidence in the literature suggests that AgNPs can bind to thiol 

containing proteins or peptides, such as GSH, restricting their availability for ROS neutralization  

and resulting in an oxidant-mediated response to AgNPs [31,111]. Lim et al., showed that exposure  

of a human macrophage cell line (U937) to 5 nm PVP-coated AgNPs resulted in swelling of  

the mitochondria and formation of double-layered membrane structures. The authors suggested that 

mitochondrial swelling was due to necrotic changes in the cell and that the presence of double-layered 

membrane structures was related to autophagosome formation [110]. Therefore, mechanisms other than 

apoptosis may also be involved in the initiation of cell death. Similarly, Gliga et al., reported that  

10 nm polymer-grafted AgNPs led to morphological changes suggestive of autophagy in a normal 

human bronchial epithelial cell line (BEAS-2B) [112]. The induction of autophagy, i.e., the degradation 

of unnecessary or dysfunctional cellular components through the action of lysosomes, has been reported 

for several types of NPs, including AgNPs and AgNWs, and may represent a common cellular response 

to NPs [113,114]. 

In some studies, evidence of genotoxicity upon exposure to AgNPs has also been obtained. 

Nanoparticles may interact with DNA chains through nuclear penetration and consequently induce DNA 

damage [115,116]. Occasionally, AgNPs have been found inside nuclei [15,117]. Cronholm et al., [118] 

detected agglomerates of AgNPs (from 0.5 to 1 μm) inside the nuclei of A549 type II alveolar epithelial 

cell line. Due to the large size of the aggregates, compared to the size of nuclear pores, it is possible that 

AgNPs enter via vesicles lodged to the nucleus [20], individual particles are internalized via the nuclear 

pores and agglomerate inside the nucleus or AgNPs enter during mitosis [119,120]. Furthermore,  

a mouse macrophage cell line (RAW264.7) exposed to chitosan-coated AgNPs showed dose-dependent 

nuclear shrinkage and chromosome abnormalities, such as double-strand breaks [121]. 

The results of in vitro studies on the toxic responses to AgNPs have been mixed. There is an on-going 

debate about the properties of AgNPs that determine their interactions with cells and the extent to which 

their bioreactivity depends on the release of free Ag+ ions. Exposure of mouse macrophages (J774A.1) 

to citrate and PVP-coated AgNPs resulted to an increase in ROS generation after 24 h for both types  

of particles, suggesting that surface modification did not have a great effect on cytotoxicity [107]. 

Similarly, Gliga et al., compared uncoated and citrate- and PVP-coated AgNPs of different primary sizes 

(10 up to 75 nm). They showed that only 10 nm AgNPs, regardless of surface coating, were cytotoxic 

on human bronchial epithelial cells (BEAS-2B). Their findings suggested that particle size was the key 

property determining their cytotoxicity [112]. A size-dependent toxicity of AgNPs on a rat alveolar 

macrophage cell line was also demonstrated by Carlson et al., who found the predominant mechanism 

of toxicity to be mediated through oxidative stress [106]. More recently, however, Wang et al., argued 

that both size and surface coating can affect the cellular toxicity of AgNPs, as well as their acute versus 

sub-chronic lung injury potential [60]. In their work, human bronchial epithelial (BEAS-2B) and mouse 

macrophage cell (RAW 264.7) lines were exposed to 20 and 100 nm PVP- and citrate-coated Ag-AuNPs 

(AgNPs with a gold core). The 20 nm Ag-AuNPs induced significant toxicity, in the dose range from 

6.25–50 μg/mL for 24 h. Significant ROS generation, intracellular calcium flux and decline of the 

mitochondrial membrane potential were also measured in both cell types [60]. The higher toxicity of the 

smaller particles was attributed to their higher rate of dissolution and Ag+ bioavailability. In comparison, 

Herzog et al., applied nebulized AgNPs to a triple cell co-culture system composed of A549 epithelial 

cells combined with monocyte-derived macrophages (MDM) and dendritic cells (MDDC) cultured at an 
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air-liquid interface. In this work, however, AgNPs did not significantly increase the LDH after a 24 h 

exposure and the secretion of pro-inflammatory markers did not alter [122]. In our own work,  

Ag nanowires (AgNWs) were applied to a human alveolar type 1-like epithelial cell line for 24 h,  

at a dose of 25 µg/mL. Cell viability studies showed no evidence of cytotoxicity or release of reactive 

oxygen species [123]. Analytical transmission electron microscopy revealed the precipitation of Ag2S 

within the cell, which acts as a “sink” for free Ag+, significantly limiting short-term toxicological effects. 

The differences in toxic outcomes between these studies reflect the different chemistries and formats of 

the particles applied to the cells, the cell culture model and differences in cell types. An improved 

understanding of how the AgNPs transform within each component of the cell culture model, and 

whether this is representative of the lung in vivo, may provide improved insights into the putative 

pulmonary bioreactivity of AgNPs. 

4. Evaluation of the in Vitro Testing of AgNPs 

One of the challenges of evaluating the toxicity of engineered nanomaterials in the coming years is 

the development of viable alternatives to in vivo testing. Although several in vitro systems exist, 

providing some mechanistic understanding of AgNP toxicity, these systems will have to be optimized 

in the future to simulate better the in vivo situation and provide a holistic understanding of the “bionano” 

systems. Valid in vitro systems will lead to decreased costs compared to expensive in vivo studies, faster 

results and improved animal welfare [124]. One of the limitations of most in vitro studies conducted in 

the past is the use of single cell types, which is not physiologically relevant. Not only is the pulmonary 

system diverse in its cellular makeup, but also different cell types often participate in coordinated 

responses [125]. Rothen-Rutishauser’s group has established and evaluated an in vitro model of the 

human epithelial airway barrier composed of epithelial cells and two of the most important immune cells 

of the lung (macrophages and dendritic cells; derived from blood monocytes), to study NP lung-cell 

interactions and their possible responses [126]. Their model can be used at the air-liquid interface, 

allowing the direct exposure of cells to an aerosol [127], therefore representing a realistic situation 

following NP inhalation. Using this model, they have demonstrated that cultured epithelial cells, 

macrophages, and dendritic cells can cooperate in NP trafficking. Nanoparticle uptake into the cells was 

also enhanced in co-culture compared with monocultures [128,129]. Additionally, inhaled NPs reaching 

the alveoli will first come into contact with pulmonary surfactant, therefore any interactions between 

particles and the surfactant could have an impact on their subsequent cellular effects. However, 

pulmonary surfactant components are not commonly integrated in in vitro testing of nanomaterials. 

In the future, surfactant interactions should be integrated into the experimental design, to better represent 

the in vivo situation. 

Moreover, in order to understand the discrepancies between the results of previous studies and 

elucidate the mechanisms of biological action of AgNPs, any transformations of the particles must be 

carefully considered at each stage of the in vitro experiment. More specifically, there are three steps to 

consider: (i) Preparation of the AgNPs and delivery to the biological medium; (ii) Transformations in 

the cell culture medium, either due to ionic salts or proteins, as well as the lung surfactant, prior to 

interaction with the cells; and (iii) Transformations of the AgNPs following internalization into the cell. 
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This will require meticulous particle characterisation and sophisticated imaging techniques under 

difficult experimental conditions. 

4.1. Preparation and Delivery to the Biological Media 

The last decade has witnessed the successful synthesis of silver nanocrystals in a variety of shapes 

(e.g., sphere, cube, plate, rod [130]), using a wide range of experimental setups. These Ag nanocrystals 

can be described by a set of physical parameters that may include their size, shape, composition, 

structure, coating and surface charge. In principle, the properties of the nanocrystal can be tailored and 

fine-tuned by controlling any one of these parameters [130]. Therefore, adequate physicochemical 

characterization of AgNPs prior to undertaking experiments for in vitro toxicity assessments is 

paramount in order to correlate biological responses with NP properties [131]. Some published 

nanotoxicity studies report characteristics of the particles using only manufacturer’s data, which 

provides incomplete information about the particle being used. There is a wide range of methods that 

can be used for NP characterization. Due to its simplicity and rapidity of analysis, dynamic light 

scattering (DLS) is increasingly being used in many fields of science and industry for the characterization 

of NPs, including AgNPs [132]. However, this technique could be problematic when measuring samples 

with wide size distributions, multimodal distributions or containing NP aggregates. This is because, in 

the presence of even a low percentage of larger particles, these will dominate the light scattering signal 

and mask the presence of smaller particles [133,134]. Moreover, DLS may be incompatible with 

biological media because of the presence of various light scattering components [75]. Therefore, precise 

characterization of AgNPs requires the use of a combination of techniques. The key strength of electron 

microscopy (EM) techniques, combined with elemental analysis, is their ability to provide spatially 

resolved information about the morphology, size and chemistry of NPs at the same time. Sample 

preparation for EM may lead to drying-induced artefacts, such as NP aggregation or sample fractionation, 

but these limitations may be overcome by the use of cryogenic temperature EM (cryo-EM). Cryo-fixation 

can be applied to rapidly freeze samples, allowing cryo-EM to acquire high-resolution images of NPs, 

as well as cells, in their native aqueous state [135]. 

Even though silver is considered as a noble metal, it is far from being chemically inert. Therefore, 

transformation of AgNPs caused by poor experimental control will likely interfere with the prediction 

of silver toxicity results. Moreover, information of AgNP behaviour during their full life cycle is limited. 

Normal aging of the NPs (e.g., Ostwald ripening, corrosion, aggregation, surface-state modification) 

may already affect their properties. The atmospheric corrosion of silver is an example of transformation 

that could take place over poorly controlled storage conditions. Due to existing gaseous hydrogen 

sulphide (H2S), carbonyl sulphide (OCS) and carbon disulphide (CS2) in the atmosphere, silver 

sulphidises upon exposure to the atmosphere [136]. Additionally, it is well known that AgNPs can be 

oxidized and shed Ag+ ions in aqueous media, by reacting with dissolved O2 [22]. Storage of AgNPs in 

dispersion for several weeks was shown to considerably increase the toxicity of the AgNP dispersion 

toward human mesenchymal stem cells, compared to freshly synthesized dispersions of AgNPs, due to 

an increased concentration of Ag+ ions. Finally, the toxicity of AgNPs can be affected by sonication 

dispersion protocols [137]. During sonication a large amount of energy is applied to the AgNP dispersion 

to enable the rupture of larger AgNP aggregates. However, the majority of this energy is converted into 
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thermal energy, raising the temperature and potentially promoting the dissolution of AgNPs [22]. Higher 

concentrations of Ag+ ions in AgNP dispersions prepared without cooling the samples over ice during 

sonication were measured by atomic adsorption spectroscopy (AAS). Sonicated AgNP dispersions were 

more toxic to A549 epithelial cells than when prepared with cooling [138]. 

4.2. Transformation in the Cell Culture Media 

To allow interaction with cells in culture, tissue or organisms, as-synthesized AgNPs are usually 

suspended in biocompatible aqueous tissue culture medium. Depending on the composition and 

exposure time to the biological environment, agglomeration/aggregation of the particles could take  

place or there may be alteration of their dissolution profile. Several factors such as ionic strength and 

composition of the dispersion medium [27–29,139,140], pH [22,141], dissolved organic matter [142], 

dissolved oxygen concentration [14] and temperature [26] have been shown to affect the stability of 

AgNPs and are consequently expected to have an impact on their bioreactivity. Therefore an assessment 

of the properties of AgNPs in the extracellular medium, before or during cell exposure tests, is also 

crucial. This has recently been highlighted by Chen et al., who reported cell culture media-induced 

changes to the chemistry of silver nanowires (AgNWs) using high resolution analytical electron 

microscopy (HRTEM) (Figure 2) [143]. It was demonstrated that silver sulphide (Ag2S) crystals 

formed on the surface of AgNWs following incubation in DCCM-1 cell culture medium. Ionic silver 

released from the surface of AgNWs will transform to Ag2S due to its extremely low water solubility 

(Ksp = 5.92 × 10−51) [144]. This silver-to-silver sulphide transformation will substantially reduce the Ag+ 

ion release rate; therefore reduced AgNP toxicity could be expected. Indeed, some studies have shown 

low toxicity of Ag2S NPs and reduced antibacterial activity of AgNPs because of sulphidation [145,146]. 

Moreover, studies to determine the amount of Ag+ ions dissolved in media, which are known as one of 

the major factors affecting Ag toxicity, and the impact of this ionic species on cells are quite rare [27,28]. 

Inductively coupled plasma sources (ICP-OES and ICP-MS) and atomic absorption spectroscopy (AAS) 

techniques are commonly used to correlate the dissolution rate of AgNPs with their toxicity profiles. 

However, there are discrepancies in the data provided by different authors, probably due to the use 

of inconsistent methodologies (e.g., experimental setup, separation method) and incomplete NP 

characterization [24,60,112,147]. Moreover, AgNO3 is frequently used as a control to study the effects 

of free Ag+ ions but the fact that addition of AgNO3 to cell culture media rapidly leads to the precipitation 

of insoluble Ag compounds has not been addressed. Using analytical TEM techniques, we have 

shown that the precipitates from AgNO3 in RPMI-1640 medium consisted of small particles, with 

sizes from 20 to 200 nm, that were likely a mixture of silver oxide (Ksp= 4 × 10−11) and silver chloride 

(Ksp= 1.77 × 10−10) (Figure 3). The amount of free Ag+ measured by ICP-OES was less than 5% of the 

total Ag+ added [143]. Therefore, a combination of characterization techniques is necessary in order to 

understand which particulate species actually interact with the cells. 
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Figure 2. (a,b) Low-resolution bright field transmission electron microscopy (BF-TEM) 

image (a) and high angle annular dark field scanning transmission electron microscopy 

(HAADF-STEM) image (b) of as-synthesized silver nanowires (AgNWs); (c) The 

corresponding energy dispersive X-ray (EDX) spectrum collected from the area circled  

in (b); The two peaks at 2.98 and 3.15 keV correspond to the Ag(Lα) and Ag(Lβ) peaks, 

respectively; (d–h) Physicochemical characterization of AgNWs incubated in various cell 

culture media for 1 h at 37 °C; (d–f) a high protein serum-free medium (DCCM-1, Biological 

Industries, Israel); (g) Dulbecco’s Modified Eagle Medium (DMEM); and (h) Roswell Park 

Memorial Institute (RPMI-1640) medium; (d) Representative BF-TEM image of AgNWs 

incubated in DCCM-1 medium, showing the formation of crystallites on the surface of the 

AgNWs. The inset is a selected area electron diffraction (SAED) pattern taken from the 

circled area (aperture size ~130 nm); (e) HRTEM image collected from the boxed area in 

(d) reveals that the crystallites have a different crystal structure than the original AgNWs. 

The lattice spacings of the crystals formed at the surface of the AgNWs (~0.26 and 0.22 nm) 

correspond to the (112) and (031) lattice spacings of Ag2S, respectively. The lattice spacings 

of the core of the nanowires (~0.23 and 0.20 nm) correspond to the interplanar spacings of 

metallic Ag. Insets are fast Fourier transform (FFT) patterns taken from the two-boxed 

areas; (f) HAADF-STEM image (top) taken from the same area as (d) and STEM-EDX 

spectra collected from the circled area (bottom), confirming the formation of Ag2S;  

(g,h) HAADF-STEM images (top) and EDX spectra (bottom) of AgNWs incubated in 

DMEM (g) and RPMI-1640 (h) cell media, indicating that AgNWs do not sulphidise in 

DMEM or RPMI-1640. Adapted with permission from [143]. Copyright 2013 American 

Chemical Society. 
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Figure 2. Cont. 

 

On the other hand, the addition of proteins in the cell culture medium could alter what the  

cell “sees” [148]. It is known that NPs are covered with serum proteins after their dispersion in  

serum-containing physiological media [149], leading to a so-called protein corona [150]. These proteins 

may be responsible for modifying the aggregation state of AgNPs and may even directly affect the 

degree of Ag+ ions released from the NP surface [151]. For instance, Kittler et al., reported that  

50 nm PVP-capped AgNPs suspended in RPMI medium containing bovine serum albumin (BSA) 

agglomerated, but the same particles remained dispersed if the BSA was replaced by foetal calf serum 

(FCS) [152]. The authors suggested that the albumin lipoprotein, glyco-protein and globulin content of 

FCS may have been responsible for a steric stabilization of the AgNPs. Yen et al., linked variations in 

serum protein attachment to the surface of AgNPs and AuNPs to differences in their uptake mechanism 

and toxicity to macrophages. They suggested that negatively charged AuNPs (ζ potential from −56.64 to 

−78.81 mV) were able to adsorb serum proteins and enter cells via the phagocytic as well as the pinocytic 

pathway. However positively charged AgNPs ζ potential from 5.35 to 15.43 mV) could not adsorb  

serum proteins, which reduced uptake and exerted a lower cytotoxicity than AuNPs [153]. In another 

published study, BSA was found to interact strongly only with uncapped AgNPs compared to PVP- 

and citrate-capped AgNPs of similar sizes (surface charge not reported). The presence of serum 

albumin led to the aggregation of uncapped AgNPs and consequently lowered their antibacterial activity 

compared to the capped AgNPs [154]. 

There are also conflicting data in the literature about whether sulfur containing proteins such as 

albumin are able to alter the chemistry of AgNPs. In our own work we showed that PVP-capped AgNWs 

do not sulphidise in phosphate buffered saline (PBS) containing 5% cysteine or 5% BSA, but do 

sulphidise in the inorganic fraction of a serum-free cell culture medium (DCCM-1) [143]. Other reports 

have shown that Ag+ ions can bind strongly to both inorganic sulfur groups as well as organosulfur 

compounds, with the highest affinity for thiols, such as cysteine [155]. Ag+ ions may have a high 

affinity for thiols and cysteine, changing their biological activity; however, Ag+ ions may not be 

able to remove sulfur from biological molecules to form an inorganic sulphide without the existence 

of other oxidizing species. 
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Figure 3. (a,b) HAADF-STEM-EDX characterization of the precipitates formed after  

the incubation of 17.0 µg/mL AgNO3 (equal to an Ag concentration of 10 μg/mL) in  

(a) RPMI-1640 and (b) DCCM-1 cell culture medium, at 37 °C for 0.5 h. The corresponding 

STEM-EDX spectra 1–4 were collected from the areas 1–4 marked in (a,b); The precipitates 

were collected by filtering the solution through 2 kDa filter membrane and were washed 

three times with DI-water. In both cell culture media, the particles have sizes that range 

from ~20 to ~200 nm. STEM-EDX analysis reveals that the precipitates in RPMI-1640 are 

probably a mixture of silver oxide and silver chloride. The insoluble compounds formed in 

DCCM-1 likely also contain silver sulphide; (c) Inductively coupled plasma optical emission 

spectroscopy (ICP-OES) analysis of solubilized silver concentrations of 17 μg/mL AgNO3 

(equal to an Ag concentration of 10 μg/mL) in deionized (DI) water, RPMI-1640, DMEM, 

and DCCM-1 solutions, incubated at 37 °C for 0.5 h (n = 3). Although 100% of the free  

Ag+ ions were detected in the AgNO3 DI-water solution, the amount of solubilized silver in 

cell culture media was less than 0.5 μg/mL after incubation. The dissolved Ag+ ions are 

probably sequestered as insoluble precipitates in the cell media, indicating the limitation 

of using ICP-OES to study the kinetics of Ag+ dissolution in cell culture media. Adapted 

with permission from [143]. Copyright 2013 American Chemical Society. 
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4.3. Transformation in Pulmonary Surfactant 

Pulmonary surfactant covers the entire alveolar region, decreasing the surface tension in the alveoli 

to prevent alveolar collapse. Human surfactant consists of about 80% phospholipids, 8% neutral lipids 

(cholesterol, triacylglycerol and free fatty acids) and 10% surfactant-specific proteins. The most abundant 

component of surfactant is phosphatidylcholine (PC), which accounts for 70%–80% of the total amount 

of lipids. Approximately 50% of PC is saturated in the dipalmitoylated form (DPPC) [156]. Furthermore, 

four surfactant-associated proteins have been described: The hydrophilic SP-A and SP-D and the 

hydrophobic SP-B and SP-C [157]. SP-A and SP-D are collectins, which play a fundamental role in host 

defence by facilitating phagocytosis of various bacterial and viral pathogens. On the other hand, SP-B 

and SP-C promote the rapid adsorption of the surfactant phospholipids at the air-liquid interface and 

maintain the stability of the lung system by influencing the molecular ordering of the phospholipid 

layer [156,158]. 

Possible transformations of the AgNPs when they come into contact with the lung surfactant have to 

be addressed because any interactions could both disrupt the physiological surfactant function, as well 

as altering their subsequent cellular effects. So far, only a few studies have investigated the stability of 

AgNPs in environments fully representative of the lung. For example, Stebounova et al., studied the 

stability of two types of AgNPs, PVP-coated and polymer-coated, in artificial interstitial and lysosomal 

fluids [28]. Their experimental results and the extended Derjaguin-Landau-Verwey-Overbeek 

(DLVO) model calculations showed that PVP-capped AgNPs precipitated but polymer-coated 

AgNPs, with a higher negative surface charge, were more stable in the simulated fluids. However, these 

simulated fluids were lacking any surfactant components. A few other studies have examined the 

colloidal stabilization of other types of NPs in rat bronchoalveolar lavage (BAL) [159], phosphate 

buffered saline (PBS) containing bovine serum albumin (BSA) and DPPC [160,161] or semisynthetic 

lung fluids consisting of DPPC, palmitoyl-oleoyl-phosphatidylglycerol and SP-B (70:30:1 w/w/w) [162]. 

These studies found that NPs were well-dispersed in the presence of DPPC and proteins and that 
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synthetic lung fluid was as effective as BAL in dispersing the NPs. Recently, the stability of citrate-capped 

AgNPs in DPPC was investigated as a function of pH (Figure 4) [23]. A decrease in pH was found to 

accelerate the kinetics of Ag+ ion release but also promoted particle aggregation and coarsening. DPPC 

however, delayed the release of Ag+ ions, without significantly altering the total amount of Ag+ released 

after two weeks. By coating the AgNPs, DPPC improved their dispersion and inhibited aggregation and 

coarsening. This may allow AgNPs to enter cells more easily, leading to a greater ROS formation within 

cells, reduced cell viability and increased DNA damage. 

Figure 4. (a,b) BF-TEM images of 20 nm citrate-coated AgNPs incubated in a perchlorate 

pH 3 solution, in the presence of DPPC, for one day. Incubation of AgNPs in solutions 

containing DPPC resulted to a significant increase of the amorphous layer thickness around 

the particles, which implies the formation of DPPC layer(s) on the surface of AgNPs. The 

samples were negatively stained with uranyl acetate to enhance the contrast of lipid coating. 

The high affinity of electron dense uranyl ions to the carboxyl groups of citrate and the 

phosphate groups of DPPC results in dark contrast. Therefore, the outside layer of AgNPs, 

showing dark contrast, is likely to be the polar groups of DPPC facing the aqueous environment, 

whereas the hydrophilic heads of the inner layer of DPPC likely interact with the citrate 

layer; (c) Ag+ ion release from AgNPs incubated in perchlorate solutions at pH 3, 5 or 7,  

in the presence and absence of DPPC. The DPPC coating of AgNPs may serve as a 

semipermeable layer, delaying the release of Ag+ ions but without significantly altering the 

total amount of Ag+ released after two weeks; (d) A schematic illustration of a model of 

DPPC bilayer structure on the surface of AgNPs. The DPPC surfactant molecule consists of 

a trimethyl ammonium bounded to an acidic phosphate, providing a hydrophilic zwitterionic 

headgroup and two hydrophobic fatty acid tails comprised by 16 hydrocarbons. There is 

likely a formation of a lipid bilayer structure on the surface of citrate coated AgNPs, with 

hydrophobic tails associating with each other, whereas the hydrophilic groups are oriented 

towards the aqueous environment and the citrate layer, respectively. Adapted with permission 

from [23]. Copyright 2013 American Chemical Society. 
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The coating of AgNPs by phospholipids could have serious implications on pulmonary homeostasis 

by interfering with biophysical surfactant function. One study, for example, investigated the effect of 

gold nanoparticles (AuNPs) as a model metal air pollutant on the surfactant function of a semisynthetic 

surfactant, composed of DPPC, palmitoyl-oleoyl-phosphatidylglycerol (POPG), and SP-B (70:30:1 

w/w/w) [162]. AuNPs markedly inhibited the adsorption of pulmonary surfactant at the air-liquid 

interface, induced a dysfunction during film compression and inhibited the re-spreading during film 

expansion. Since AuNPs were shown to be coated by phospholipids, the authors speculated that these 

coated particles could adsorb at the air-liquid interface and thereby inhibit the adsorption of free 

phospholipids. Furthermore, how the binding of surfactant components on AgNPs may affect their 

toxicity is not known. Research on other types of nanomaterials has shown, for instance, that a bovine 

surfactant preparation (Survanta) and SP-A increased the uptake of TiO2 particles into primary rat 

alveolar macrophages [163]. Konduru et al., showed that single walled carbon nanotubes (SWCNTs) 

could bind phosphatidylserine (PS), which facilitated their recognition and internalization by several 

types of phagocytic cells, such as mouse RAW264.7 macrophages, primary monocyte-derived human 

macrophages and dendritic cells and primary rat brain microglia [164]. Bound surfactant components 

could also affect the intracellular response to AgNPs. Although there are currently no data on AgNPs, 
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studies on other systems have emphasised the importance of the NP-surfactant interactions.  

For example, recent findings demonstrated that pre-coating multi-walled carbon nanotubes (MWCNTs) 

with Curosurf® evoked an increase in ROS, inflammatory chemokine release and apoptosis in human 

monocyte derived macrophages [165]. An increased ROS production by normal human primary 

bronchial epithelial cells and A549 type II alveolar epithelial cells was also reported for single-walled 

carbon nanotubes (SWCNTs) dispersed in DPPC [166]. Moreover, coating various types of NPs with 

the surfactant-associated proteins SP-A and SP-D, led to the agglomeration of the particles [97,98]. The 

selective binding of SP-A and SP-D to carbon nanotubes [99], the adsorption of SP-A on metal oxide 

NPs [97] and the adsorption of SP-D on AuNPs [98] has already been shown. Recently, Ruge et al., 

revealed a pronounced binding of SP-A to hydrophobic magnetite nanoparticles (mNPs) whereas SP-D 

preferentially adsorbed on hydrophilic mNPs [100]. These findings stress the need to further understand 

possible interactions between AgNPs and components of the lung surfactant and how these could affect 

cellular uptake, clearance, translocation and toxic effects in the lung. 

4.4. Internalization of AgNPs by Cells and Transformation Inside the Cell 

Uptake, internalization and transformation of AgNPs inside cells can be used to predict their potential 

bioreactivity. The pathways by which NPs enter cells can vary based on the cell type, chemical composition 

of the NP surface [153], particle size and agglomeration state [117]. Endocytosis is a form of active 

transport in which cells take up objects by enclosing them in vesicles or vacuoles pinched off from  

their cytoplasmic membrane [167]. The endocytotic processes that enclose NPs in membrane vesicles  

include phagocytosis, pinocytosis, and caveolae-dependent or clathrin-mediated endocytosis [168–171]. 

Phagocytosis is typically restricted to specialized mammalian cells, like macrophages, and involves the 

ingestion of large particles by large vesicles called phagosomes (diameter > 250 nm) [172]. Smaller particles, 

ranging from a few up to hundreds of nanometres are internalized by pinocytosis or macropinocytosis, 

which occurs in almost all cell types. Energy-dependent clathrin-mediated endocytosis is probably the 

primary characterized mechanism for the cellular uptake of NPs [173]. Greulich et al., investigated the 

uptake of 50 nm PVP-coated AgNPs by human mesenchymal stem cells and their intracellular 

distribution [174]. Their results demonstrated that clathrin-mediated endocytosis and macropinocytosis 

were the primary uptake mechanisms. In another study, Haase et al., suggested that THP-1 macrophages 

may internalize AgNPs through both phagocytic and non-phagocytic mechanisms [117]. TEM imaging 

revealed aggregated AgNPs in vesicles but also individual particles distributed throughout the cytoplasm 

without being surrounded by membrane envelopes. The authors speculated that aggregated AgNPs are 

incorporated via phagocytosis while single NPs enter cells via non-phagocytic routes. Other authors have 

also suggested that NPs are able to enter cells by direct penetration of the cell membrane via diffusion, 

membrane fluidity, passing through ion-channels or by adhesive interactions (electrostatic forces, Van 

der Waals- or steric interactions) [175,176], but these mechanisms are controversial. Moreover, there is 

currently limited understanding on the cellular fate of NPs after they enter cells. After endocytosis, NPs 

should normally reside in membrane-bound vesicles [177,178], i.e., endosomes that would later evolve 

into lysosomes or autophagosomes. Some studies, however, also report the presence of NPs in the 

cytosol [128], in mitochondria [179], and in the nucleus [15,117,118]. The mechanisms through which 
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NPs can escape from endosomes are not understood, but seem to depend on the core composition [180], 

surface composition [181], charge [182] and shape of the NPs [183,184]. 

The surface charge of NPs can largely influence the uptake mechanism by cells. In general, due to 

the negatively charged character of the cell plasma membrane, cationic NPs are internalized more 

efficiently than neutral or anionic NPs [185]. Macropinocytosis seems to be the dominant mechanism 

for the uptake of positively charged NPs, while a clathrin-and caveolae-independent endocytosis may 

mainly contribute to the uptake of negatively charged NPs [186]. For example, bare AuNPs (positively 

charged) were taken up by macropinocytosis and clathrin- and caveolin-mediated endocytosis, whereas 

PEG-coated AuNPs (negatively charged) mostly entered cells by caveolin- and/or clathrin-mediated 

endocytosis, but not by macropinocytosis [187]. The shape of nanomaterials is another important factor 

that can determine their uptake mechanism. This can have important implications on the long-term 

consequences of nanomaterial exposure; for example since frustrated phagocytosis is considered as an 

important factor in the initiation of an inflammatory response due to exposure to fibres with a high aspect 

ratio. Comparisons with asbestos fibres in the lung and the induction of mesothelioma have been made 

to both AgNWs and multi-walled carbon nanotubes with high aspect ratios [188,189]. In a recent study, 

backscatter scanning electron microscopy (BSE) was used to investigate the cut-off length for the 

frustrated phagocytosis of AgNWs in vitro and in vivo [21]. While in vitro frustrated phagocytosis by 

THP-1 macrophages could be observed with fibres ≥14 μm, in vivo studies showed incomplete uptake 

at a fibre length of ≥10 μm. The same group had shown that inflammation in the pleural space after 

intrapleural injection of AgNWs in mice occurred at a length ≥5 μm [189]. Therefore, the onset of 

inflammation could not be correlated with the onset of frustrated phagocytosis. However, the limited 

resolution of the technique used did not allow for any quantitative analysis of dissolution or changes to 

the AgNP morphology and chemistry after cellular uptake. 

The amount and rate of uptake of AgNPs by the cells can differ by several orders of magnitude 

depending on the size, shape, surface charge, and surface functionalization of the particles [190]. 

Analytical techniques such as ICP-MS, ICP-OES or AAS are often used to quantify the amount of 

AgNPs taken up by cells. However, attention should be paid to the protocol used for the digestion of 

tissue samples, since some procedures commonly used can lead to low Ag recoveries due to AgCl 

precipitation [191]. Furthermore, the use of these techniques does not efficiently distinguish between 

AgNPs attached to the cellular membrane and those internalized by the cells. To overcome this 

limitation, AgNPs labelled with a fluorescein derivative (DTAF) were used to quantify cellular uptake 

by macrophages (RAW 264.7) after 3 h exposure. TEM and confocal microscopy were used to confirm 

the localization of AgNPs in the cellular cytoplasm [192]. Confocal microscopy was also employed by 

Cronholm et al., who detected AgNPs in the cytosol in 80% of the investigated cells [118]. When 

developing a methodology based on fluorescently-labelled NPs, however, it is important to keep in mind 

that the attachment of a fluorochrome to the NP surface may alter the physicochemical properties of 

AgNPs, thus influencing their cellular uptake, or the label may detach from the NPs inside cells, leading 

to artefacts. Pratsinis et al., employed dark-field microscopy to visualize the intracellular localization of 

AgNPs of different sizes [193]. Both 5.7 and 16.8 nm AgNPs were efficiently taken up by mouse 

macrophages after 24 h exposure. Their results also indicated that NP agglomeration had taken place 

following cell internalization. In another study, macrophages were exposed to 5 and 100 nm PVP-coated 

AgNPs [110]. Using TEM and optical ultra-resolution imaging, a lower amount of 5 nm PVP-coated 
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AgNPs was detected inside macrophage cells compared to 100 nm particles. However, a higher 

cytotoxicity was induced by the smaller sized AgNPs (LD50 was 6.25 µg/mL for 5 nm AgNPs and  

25 µg/mL for 100 nm AgNPs). The authors suggested that the techniques used didn’t provide the spatial 

resolution needed to visualize the 5 nm AgNPs inside cells. However, additional data on the solubility 

of AgNPs would be necessary in order to confirm whether the observed cytotoxicity was due to higher 

dissolution, as would be expected due to the increased surface area to volume ratio. 

Figure 5. Changes in the morphology and chemistry of AgNWs as a function of time, after 

their uptake by TT1 epithelial cells at 1 h (a–c), 24 h (d,e) and seven days (f–i), following a 

pulsed exposure, using unstained cell sections. (ES = extracellular space; C = cytoplasm;  

N = nucleus) (a) HAADF-STEM image of an AgNW inside the cell cytoplasm showing 

particles surrounding the tip of the AgNW; (b) A corresponding higher resolution  

HAADF-STEM image depicts the boxed area in (a); The insert in (b) shows a higher 

magnification image of the AgNW edge; (c) STEM-EDX spectra taken from the corresponding 

areas 1–3 marked in (b); Ag(L) peaks and S(K) peaks were detected in the STEM-EDX 

spectra of these small particles, indicating the formation of Ag2S (d,e) HAADF-STEM 

images, where image (e) depicts the boxed area in (d), showing that dissolution and 

sulphidation of the AgNWs was more substantial after 24 h (f–i) HAADF-STEM images, 

where (g) depicts the boxed area in (f); (h) An HRTEM image of the boxed area in image 

(g). The particles had a lattice spacing of 0.29 nm, close to the mono-clinic structure of Ag2S 

(-112) (i) SAED pattern from the circled area in (g), using a selected area aperture size of 

~130 nm. The interplanar spacings measured from the SAED patterns were consistent with 

bulk monoclinic Ag2S. Adapted with permission from [123]. Copyright 2013 The Royal 

Society of Chemistry. 
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In order to visualize the distribution and chemistry of AgNPs inside cells, a combination of electron 

microscopy techniques (TEM, SEM and dual beam FIB combined with EDX analysis) has been applied 

in a number of studies. In a study by Park et al., no presence of AgNPs was detected in damaged 

cells, suggesting that the acute toxicity of these NPs was due to their intracellular dissolution [194]. 

Vanwinkle et al., observed an intracellular size reduction of AgNPs in a rat type I-like alveolar epithelial 

cell line by TEM [195]. On the contrary, Carlson et al., concluded that 55 nm AgNPs (unspecified 

“hydrocarbon” coating) did not dissolve after uptake by a rat alveolar macrophage cell line [106]. 

TEM imaging showed that AgNPs remained at the same size, even when they were inside cellular 

compartments responsible for digestive processes, such as vacuoles. In another study, 20–40 nm AgNPs 

were found as agglomerates inside A549 lung cells [118]. Moreover, a change in particle morphology 

was observed by TEM, as smaller particles had formed close to the original AgNPs inside cells.  

The authors suggested that these small particles could have been formed due to the precipitation of silver 

salts/complexes following release of Ag+ ions intracellularly, or resulting from a re-nucleation of 

AgNPs. Since no chemical analysis of these smaller particles was performed, however, these hypotheses 

could not be tested. In our recent work, we employed high resolution analytical TEM techniques to 

elucidate the cellular uptake and reactivity of AgNWs inside a human alveolar epithelial type 1-like cell 

line (Figure 5) [123]. AgNWs were found in the cytoplasm and membrane-bound vesicles by bright field 

TEM (BF-TEM). However, we observed that staining agents, such as osmium tetroxide and potassium 

ferricyanide, which are frequently used during biological sample preparation for TEM (to enhance the 

electron density of cellular compartments and organelles), caused substantial changes to the morphology 

and chemistry of AgNWs. Therefore, we eliminated heavy metal staining processes and took precautions 

to avoid AgNW sulphidation in ambient air and in the cell culture medium [143]. High angle annular 

dark field (HAADF) scanning transmission electron microscopy (STEM), a technique which is highly 

sensitive to local variations in the atomic number within a sample, and energy-dispersive X-ray 

spectroscopy (EDX) were used to observe the morphological and chemical features of individual 

AgNWs within TT1 cells. These techniques provided compelling evidence that Ag+ is released from 

AgNWs inside epithelial cells and that Ag+ ions subsequently precipitate as Ag2S. We suggested that 

this process occurred by the action of sulphide species including H2S, HS− and S2− inside cells. Cell 

viability studies showed no evidence of cytotoxicity and reactive oxygen species were not observed on 

exposure of cells to AgNWs. We therefore proposed that Ag2S formation reduces the amount of 

bioavailable free Ag+, significantly limiting short-term toxicological effects. These findings underline 
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the importance of careful experimental design and sample preparation and the use of a combination  

of characterization techniques in order to understand transformations of AgNPs inside cells, and the 

consequences on the bioreactivity of the particles. One of the main challenges is the ability to measure 

the amount of “free” ionic and particulate Ag in the biological milieu. The use of ICP-MS to measure 

the concentration of Ag+ ions or AgNPs within cells [60] is limited by the fact that ICP-MS detects the 

total metal content without distinguishing between metal oxidation states. Therefore, the development 

of methods for the quantification of oxidation rates of AgNPs inside cells is crucial for future research. 

In our group, fluorescent dyes and confocal microscopy were employed to visualize the amount of ionic 

Zn2+ released from ZnO NWs inside human macrophages [196]. The development of a sensitive and 

selective colorimetric Ag+ detection method, however, is still under research. Application of similar 

methods would provide valuable insight into the mechanisms by which AgNPs exert their biological 

effects and help de-convolute the effects of Ag+ ions and Ag particles. 

5. Conclusions 

The available literature data strongly suggest that silver nanomaterials are a potential health hazard. 

Therefore, their increased production and use in consumer products must be accompanied by appropriate 

risk assessment processes and the design of regulatory frameworks that protect public health. In vivo 

studies have revealed the inflammatory potential of AgNPs in the lungs and that prolonged exposures 

could lead to the development of pulmonary function abnormalities. Following inhalation, AgNPs were 

discovered to translocate to the blood circulation and were subsequently distributed throughout the main 

organs. Meanwhile, evidence of genotoxicity has also been reported. Moreover, the toxicity of 

AgNPs has been demonstrated in vitro for several different types of alveolar cells (e.g., epithelial and 

macrophages). The toxicological outcomes upon exposure to Ag nanomaterials include oxidative stress, 

lipid peroxidation, inhibition of mitochondrial activity, damage to DNA, and cell apoptosis. However,  

a predictive toxicological paradigm for AgNP toxicity, which translates their in vitro cellular effects to 

their in vivo toxicological potential, has not been successfully established. Several discrepancies still 

exist between the published results, in part due to the lack of sufficient controls over the cellular systems 

investigated and the particles tested. This highlights the need to develop valid in vitro systems and 

standardized inter-laboratory or international methods in the future. The use of accurate characterization 

techniques and the development of advanced nanometrology protocols, to analyse the nanomaterials in 

their near native state in the lung, in particular dynamic events, will be crucial in order to elucidate the 

mechanisms of biological action of inhaled silver nanomaterials. 

To achieve this, advances in several areas need to be made. First, there is a lack of data on the 

magnitude of exposure to AgNPs both in the workplace and during use of consumer products containing 

AgNPs. The environmental concentrations of AgNPs will have to be quantified, in order to inform the 

selection of appropriate doses in toxicological studies. In the past, unrealistically high doses have been 

used in an effort to determine the mechanisms of biological action of AgNPs. Accurate dosimetry in 

laboratory studies of the effects of inhaled particles has been, and still is, a subject of concern. For 

instance, a predictive NP deposition model has shown that the amount of inhaled NPs depositing per 

unit surface area of the alveolar region was several orders of magnitude lower than doses routinely used 

in in vitro studies with alveolar epithelial cells [190]. Moreover, viable in vitro alternatives to in vivo 
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testing need to be developed, that will provide a holistic understanding of the “bionano” systems. The 

selection of cell types to be tested is crucial in this case, since the toxic effects of AgNPs clearly depend 

on the type of cell encountered. Approaches relying on multiple cell co-cultures and experimental setups 

that can be used at the air-liquid interface need to be further developed, to represent realistic exposure 

scenarios of AgNP inhalation. Moreover, these systems will have to integrate surfactant interactions, in 

order to accurately mimic the in vivo situation. 

Furthermore, to elucidate the mechanisms of biological action of AgNPs, characterization of the 

particles at all stages of the in vitro experiment is crucial. AgNPs are highly dynamic systems  

and their properties can dramatically change when incubated in biological media. Examining the 

effects of cell culture media (ionic salts and proteins) and the lung surfactant (lipids and proteins) on 

the physicochemistry of AgNPs is essential in order to understand the characteristics of the system that 

the cells encounter. Experimental techniques commonly used for the characterization of AgNPs in the 

past have to be scrutinized, since many of them have been shown to possess limitations. Accurate 

characterization of the particles should rely on several complementary techniques across biological and 

physical sciences disciplines. In this area, cryo- and high resolution analytical transmission electron 

microscopy techniques have been shown to be extremely useful, providing spatially resolved 

information on the morphology and chemistry of AgNPs. 

Finally, characterization of AgNPs should also take place at the particle-cell interface. Investigating 

possible transformations of the particles within the cellular environment can provide valuable 

information about the interactions of AgNPs with cellular components and the mode of their biological 

action. For instance, there is no agreed consensus whether bioreactivity is exerted by AgNPs themselves, 

by Ag+ ions released from their surface or by a synergistic effect between AgNPs and Ag+ ions. Novel 

approaches based on the correlative application of high spatial and energy resolution analytical 

microscopy techniques, and the development of new metrology methods to quantify the amount of 

intracellular Ag+ ions, may offer an improved understanding of the mechanisms by which AgNPs 

interact with cells. Understanding which properties of AgNPs drive their bioreactivity will guide the 

regulation of these materials, provide guidelines for their safe handling and enable the design of safe 

consumer products. 
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