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Abstract: Engineered nanomaterials (ENMs) have gained huge importance in technological
advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs)
have become one of the most explored nanotechnology-derived nanostructures and have been
intensively investigated for their unique physicochemical properties. The widespread commercial
and biomedical application of nanosilver include its use as a catalyst and an optical receptor in
cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical
instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs
with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health.
In the present review, after giving an overview of ENMs, we discuss the current advances on the
physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro
and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated
the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo
biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs.
Though there has been an increase in the number of studies in this area, more investigations are
required to understand the mechanisms of toxicity following various modes of exposure to AgNPs.
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1. Introduction

Nanotechnology

The concept of novel nanoscale technology was introduced in 1959 in a lecture of physicist
Richard Feynman entitled “There is plenty of room at the bottom,” which discussed the importance
of manipulating and controlling things at the atomic scale [1]. The term nanotechnology was first
introduced by Professor Norio Taniguchi in 1974, and the American engineer Kim Eric Drexler
popularized the concept of molecular nanotechnology by using it in his 1986 book Engines of Creation;
The Coming Era of Nanotechnology [1]. However, it was only after the inventions of instruments for
imaging surfaces at atomic level—the scanning tunneling microscope in 1981, which was followed
by the atomic force microscope—that the growth of nanotechnology was sparked in the modern
era [1]. The emerging and exponential nanotechnology involves the manipulation, design and precision
placement of atoms and molecules at the nanoscale level [1]. Over the past two decades, nanotechnology
has witnessed breakthroughs in the fields of medicine, environment, therapeutics, drug development,
and biotechnology.
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A major element of nanotechnology comprises engineered nanomaterials (ENMs). According to
European commission, NMs are “a natural, incidental or manufactured material containing particles in
an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles
in the number size distribution, one or more external dimensions is in the size range of 1–100 nm” [2].
NMs-containing consumer products include cosmetics, electronics, kitchenware, textiles and sporting
goods [3]. This wide utilization is due to unique properties of NMs, such as their small size, large
surface area to volume ratio, high reactivity, high carrier capacity, and easy variation of surface
properties [3]. The same unique properties that led to their widespread applications raise questions
about potential environmental and health effects that might result from occupational exposures during
the manufacture and use of NMs at the consumer end [4]. The toxic effect of NMs on humans has
recently gained much attention in the health industry [5,6]. Most exposure to airborne NMs occurs
in the workplace during the manufacture of these materials, the formulation of them into products,
their transport, or their handling in the storage facilities [7]. Additionally, widespread consumer
exposure via oral inhalation and direct contact with ENM-containing products is likely to occur [7].
Subsequently, the small size of this type of particle facilitates its translocation from natural barriers
such as the gastrointestinal tract (GIT), lungs, or skin, and this translocation can induce acute and
chronic toxic effects [8].

In spite of several advantages of nanoscale materials, their potential health hazards cannot be
overlooked due to their uncontrollable use, discharge to the natural environment and potential toxic
effects. Hence, nanotoxicology warrants intensive research studies in make the use of NMs more
convenient and environment friendly. Some of the most commonly studied NMs include fullerenes,
carbon nanotubes (CNTs), silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), titanium oxide
nanoparticles (TiO2), zinc oxide nanoparticles, iron oxide (FeO), and silica nanoparticles [9]. Among
these, AgNPs have gained strong popularity among researchers over the past few decades [9]. Initial
investigations on AgNPs were more focused on synthesizing and characterizing them by using chemical
approaches [10]. However, current works have been more concentrated on their biological effects and
applications for several purposes [11]. AgNPs are also known to have unique properties in terms of
toxicity, surface plasmon resonance, and electrical resistance [11]. Based on these, intensive works have
been conducted to investigate their properties and potential applications for several purposes such
as antimicrobial agents in wound dressings, water disinfectants, electronic devices, and anticancer
agents [11,12].

Previous review papers have addressed the toxicological properties of AgNPs during their use
as antimicrobial agents for textiles, dental biomaterials, and bio-detectors, as well as during their
syntheses [13–18]. Recent reviews have covered topics such as their biosynthesis by using plant extracts
for antimicrobial applications, biocidal properties, and cytotoxicity based on their physiochemical
properties such as size, concentration and coating [19–21]. Moreover, the chemical and toxicological
interactions of AgNPs with other metal NPs such as Ag, Fe, and TiO2 were also discussed by
Sharma et al. [22]. An important factor regarding the potential health impact of AgNPs is their various
routes of exposure. In this regard, the potential toxic effects of AgNPs after oral exposure were also
thoroughly discussed by Gaillet et al. [23]. However, other major routes including respiratory, dermal
and intravenous exposure have not been covered in previous review articles. In our present paper,
we summarize the existing physical, chemical, and biological synthetic approaches of AgNPs, followed
by a description on their characterization techniques and applications. Notably, our paper aims to
report the most recent update and important studies on the toxic effect of AgNPs following various
routes of exposure including oral, inhalation, dermal, and intravenous administration. Moreover,
important in vitro and in vivo pathophysiological effects at the site of exposure and in remote and
distant organs following exposure are highlighted. To our knowledge, no other previous reviews have
structurally presented these topics so far. We conducted an extensive literature search of bibliographic
databases (e.g., PubMed, Google Scholar, Medline, and Web of Science) by using different keywords
and combinations of keywords (AgNPs, biodistribution, in vitro toxicity, in vivo toxicity, pulmonary
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exposure, inhalation, instillation, oral exposure, dermal exposure and organ toxicity) to retrieve the
relevant information.

2. Silver Nanoparticles (AgNPs)

Of all the ENMs developed and characterized so far, AgNPs has assumed a significant position
due to their potential uses in commercial applications [12,24]. Silver, symbolized as Ag, is a lustrous,
soft, ductile and malleable metal that has the highest electrical conductivity of all metals and is widely
used in electrical appliances [25]. This precious metal is chemically inactive, stable in water, and does
not oxidize in air—hence, it is used in the manufacturing of coins, ornaments and jewelry [25]. Silver
can be obtained from pure deposits as well as from silver ores such as horn silver and argentite. Most
silver is derived as a by-product along with deposits of ores containing gold, copper, and lead [25].
It is estimated that nearly 320 tons of nanoparticulate form of Ag are manufactured every year and
used in nanomedical imaging, biosensing and food products [21]. AgNPs exhibit special properties
relative to their bulk components due to their unique physicochemical properties including their
small size, greater surface area, surface chemistry, shape, particle morphology, particle composition,
coating/capping, agglomeration, rate of particle dissolution, particle reactivity in solution, efficiency of
ion release, and type of reducing agents used for the synthesis of AgNPs [12,26]. In addition, AgNPs
are also well known for their antimicrobial, optical, electrical, and catalytic properties [11]. Owing
to their unique properties, AgNPs have been extensively used in household utensils, food storage,
the health care industry, environmental applications, and biomedical applications such as wound
dressings, surgical instruments, and disinfectants [26]. Furthermore, due to their optical activities,
these NPs have been used in catalysis, electronics and biosensors [26].

2.1. AgNPs Synthesis and Characterization

Numerous methods have been adopted for the synthesis of AgNPs in order to meet these
increasing requirements. The conventional physical method of synthesis includes spark discharge
and pyrolysis [27,28]. A chemical method that can be a top–down or bottom–up approach involves
three main components: metal precursors, reducing agents and stabilizing/capping agents [12].
The common approach is usually chemical reduction by organic or inorganic reducing agents, such
as sodium citrate, ascorbate, sodium borohydride, elemental hydrogen, polyol process, Tollens
reagent, N, N-dimethylformamide, and polyethylene glycol-block copolymer [12]. Other procedures
include cryochemical synthesis, laser ablation, lithography, electrochemical reduction, laser irradiation,
sono-decomposition and thermal decomposition [12]. The major advantage of the chemical method is
its high yield unlike the physical method, which has a low yield [10]. However, contrary to the physical
method, the chemical method is extremely expensive, toxic and hazardous [10]. In order to overcome
the later limitations, the biologically-mediated synthesis of NPs has emerged as a better option. This
simple, cost effective and environment friendly approach uses biological systems including bacteria,
fungi, plant extracts, and small biomolecules like vitamins, amino acids and enzymes for the synthesis
of AgNPs [29]. The green approach is widely accepted due to the availability of a vast array of
biological resources, a decreased time requirement, high density, stability, and the ready solubility of
prepared NPs in water [29].

The characterization of AgNPs is a very crucial step to evaluate the functional effect of synthesized
particles [12]. It has been documented in various studies that the biological activity of AgNPs depends
on morphology, structure, size, shape, charge and coating/capping, chemical composition, redox
potential, particle dissolution, ion release, and degree of aggregation [21,30–33]. Like all other NPs,
these parameters can be determined by using various analytical techniques, such as dynamic light
scattering (DLS), zeta potential, and advanced microscopic techniques such as atomic force microscopy,
scanning electron microscopy (SEM) and transmission electron microscopy (TEM), UV-vis spectroscopy,
X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron
spectroscopy (XPS) [12,34]. To capture the concept of importance of AgNPs characterization, it must
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be noted that from a toxicological perspective, studies that used similar AgNPs provided by the same
manufacturer demonstrated different results. For example, a repeated exposure study by Vandebriel
RJ et al. [35] in rats showed that AgNPs are cytotoxic to various cells. On the other hand, Boudreau
M.D et al. [36], using similar particles, showed the dose-dependent accumulation of AgNPs in various
tissues of rats, without causing significant cytotoxicity. Moreover, some published nanotoxicity
studies have reported characteristics of the particles by using only manufacturer’s data without
investigators to confirm their found characteristics or by using single analytical tool that provides
limited information about the particle-type being studied [35,37–39]. This brings in the importance of
the adequate physicochemical characterization of AgNPs prior to undertaking toxicity assessment
studies. In addition, a standardized measurement approach like the application of validated methods
and the use of reference materials that are specific to AgNPs needs to be more developed in order to
assure the comparability of results among toxicity studies that used similar AgNPs.

2.2. AgNPs Physicochemical Properties

Size is an important property that influence the NPs uptake and effect. In this regard, a review
study reported that the common sizes of AgNPs used in general applications ranging from 1 to
10 nm [40]. The reason behind this is that smaller particles have been found to display better
antimicrobial and cytotoxic activity, as demonstrated in various studies [38,41,42]. Furthermore, as
the particle size gets smaller, the specific surface area increases and, hence, a greater proportion of
its atoms is displayed on the surface [4] This implies that for the same mass of an NP, biological
interactions and toxicity are more dependent on particle number and surface area than on particle
mass. The properties of AgNPs can be further enhanced by the functionalization of NPs by using
various coatings that in turn influence NPs’ surface charge, solubility, and/or hydrophobicity. There
is considerable literature that has suggested that the fate and toxicity of AgNPs are determined by
their types of coating [43,44]. Various types of surface coatings applied to AgNPs, particularly to
improve their biocompatibility and stability against agglomeration are trisodium citrate (CT-AgNP),
sodium bis(2-ethylhexyl) sulfosuccinate, cetyltrimethylammonium bromide, polyvinylpyrrolidone
(PVP-AgNP), poly(L-lysine), bovine serum albumin, Brij 35 and Tween 20 [45]. Among the latter, CT
and PVP coatings are the most commonly used as stabilizing agents [40]. Furthermore, the coating also
modifies their charge, which again influences their toxic effect in cells. For example, positively charged
NPs are considered more suitable drug delivery tools for anticancer drugs because they can stay for a
long time in the blood stream compared to negatively charged particles [12]. Shape-dependent effects
were also reported in studies by using varying sized AgNPs. For instance, silver nanocubes showed
greater antibacterial effect against Escherichia coli compared to spheres and wires in a study that used
55 nm AgNPs [46]. Pal. S et al. [47] also successfully demonstrated a shape-dependent interaction with
E. coli where truncated a triangular-shaped AgNP had stronger biocidal action than spherical and
rod shaped AgNPs. Contrarily, Actis et al. [48] reported no biocidal effect on Staphylococcus aureus
after using spherical, triangular and cuboid AgNPs. Cellular uptake and biological responses are also
defined by the agglomeration state of NPs, and there is sufficient evidence that interaction of the AgNPs
with biological media and biomolecules can lead to particle agglomeration and aggregation [49,50].
Though the easy penetration of agglomerated AgNPs in mesenchymal stems cells and nuclei have been
reported in several studies, reduced cytotoxicity has also been evident with agglomerated particles
compared to free AgNPs [49,51]. A good amount of research has also been conducted on various types
of surface corona resulting from interfacial interactions between AgNPs and biological fluids [20]. This
has included studies involving both single and complex molecule protein coronas like bovine and
human serum albumin, tubulin, ubiquitin, and fetal bovine serum [52]. The formation of a corona,
depending on composition, has been shown to interfere with AgNPs’ dissolution to Ag ions and, thus,
their toxicity [52]. Researchers have also successfully established the importance of various AgNP
formulation during synthesis with respect to biomedical applications [53]. For example, the loading of
AgNPs inside multiwalled carbon nanotubes has demonstrated an improved targeting of AgNPs to
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sperm cells and, hence, the potential for development as diagnostic tools for infertility management [54].
Similarly, Bilal et al. [55] synthesized an AgNPs-loaded chitosan-alginate construct that interestingly
showed excellent biocompatibility with normal cell line (L929) and cytotoxicity to cancer cells (HeLa
cells). Azizi et al. [56] formulated albumin-coated AgNPs with the aim of developing new anticancer
agents and showed that the latter was taken specifically by tumor cells and induced apoptosis.

2.3. AgNPs Application and Mechanism of Action

Among various metal salts and NMs that are known to be effective in inhibiting the growth of
many bacteria, AgNPs are noteworthy for their strong inhibitory and bactericidal effects [57,58]. The use
of AgNPs as well as Ag salts in catheters, cuts, burns and wounds to protect them against infection has
been well established [59–62]. However, the exact mechanism underlying the antimicrobial effects of
AgNPs is still unresolved, though the literature has suggested that these particles can interact with the
membranes of bacteria [15,63]. A potential proposed pathway is that AgNPs, upon interaction with
bacteria, induce reactive oxygen species and free radicals, thus damaging the intracellular organelles
and modulating the intracellular signaling pathways towards apoptosis [64]. Another widely accepted
mechanism of bacterial cytotoxicity is the adhesion of AgNPs to the bacterial wall, followed by the
infiltration of the particles, with bacterial cell membrane damage leading to the leakage of cellular
contents and death [63,65]. In this context, the antimicrobial activity assessment of small sized AgNPs
(12 nm) by Das et al. [66] demonstrated these NPs to be excellent inhibitors against both Gram-positive
and Gram-negative bacteria, including Staphylococcus bacillus, Staphylococcus aureus, and Pseudomonas
aeruginosa. This indicates that both the membrane thickness and surface charge facilitates particle
attachment onto the cell membrane [67]. Finally, the large surface area of AgNPs releasing Ag+ ions is
another crucial factor that contributes to the cytotoxic activity. As it is well established, smaller AgNPs
have a faster rate of silver ion (Ag+) dissolution in the surrounding microenvironment due to their larger
surface area to volume ratio and, hence, an increased bioavailability, enhanced distribution, and toxicity
of Ag compared with larger NPs [68,69]. Furthermore, Ag+ ions’ release rate is dependent on a number
of factors including the size, shape, concentration, capping agent and colloidal state of NPs [70,71].
In particular, the rate of Ag+ ion release has been shown to be associated with the presence of chlorine,
thiols, sulfur, and oxygen [14]. Released Ag+ ions are suggested to interact with respiratory chain
proteins on the membrane, interrupt intracellular O2 reduction, and induce reactive oxygen species
(ROS) production, thus causing cellular oxidative stress in microbes and death [72]. AgNPs are also
familiar for their antifungal, antiviral and anti-inflammatory activity [71]. Several studies have reported
the potent anti-fungal activity of AgNPs against several phytopathogenic fungi (e.g., Alternaria alternate,
Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinereal and Curvularia lunata)
as well as human pathogenic fungi (e.g., Candida and Trichoderma sp) [73,74]. Likewise, AgNPs have
demonstrated efficient inhibitory activities against several viruses including human immunodeficiency
virus, hepatitis B virus, herpes simplex virus, human parainfluenza virus, peste des petits ruminants
virus, and bean yellow mosaic virus, a plant pathogenic virus [75–79]. Inflammation is an early
immunological response against foreign particles by tissue, and, interestingly, AgNPs have been
recently recognized to play important roles as anti-inflammatory agents. Studies evaluating the
anti-inflammatory effect of AgNPs have shown a significant reduction in wound inflammation,
a modulation of fibrogenic cytokines, a down regulation of pro-inflammatory cytokines, and apoptosis
in inflammatory cells [61,80,81].

3. Routes of Exposure and Biodistribution

The major routes of entry of NPs are ingestion, inhalation, dermal contact and, directly in systemic
circulation via intraperitoneal (i.p.) or intravenous (i.v.) injection [7]. The various modes of exposure
to AgNPs, their biodistribution, and their mechanisms underlying the effects are illustrated in Figure 1.
As AgNPs are extensively used in various household and biomedical products, the following section
discusses the various potential routes of entry of these NPs.
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Figure 1. Schematic representation of the biodistribution and toxicity of silver nanoparticles (AgNPs)
following various routes of exposure.

After their exposure, AgNPs are able to induce inflammation and oxidative stress at the site of
exposure. Moreover, they can cross various biological barriers and enter the systemic circulation.
Intravenously-administered AgNPs are directly available in circulation. From then onwards, AgNPs
are distributed to various organs and cause organ-specific pathophysiological effects. It remains to be
seen whether the effects observed in the distant organs are due to the direct impact of the translocated
AgNPs and/or particle-induced inflammatory and oxidative stress responses at the site of exposure.
Some abbreviation are as follows: alanine aminotransferase (ALT), aspartate aminotransferase (AST),
brain natriuretic peptide, plasminogen activator inhibitor-1, prothrombin time, activated partial
thromboplastin time, blood–brain barrier.

3.1. Respiratory Exposure

The release of AgNPs in the environment during the manufacturing, washing or disposal of
products enables the NPs to enter the human respiratory system through inhalation [82]. An exposure
assessment in an NMs manufacturing facility showed a significant release of AgNPs during processing
as soon as the reactor, dryer and grinder were opened, leading to potential occupational exposure
even for wet production processes [83]. Similar studies evaluating workplace exposure and health
hazard have reported that concentrations of AgNPs in the processes of manufacturing and integration
of AgNPs into various consumer products can reach up to 1.35 µg/m3 [84,85]. Several healthcare,
hygiene and antibacterial spray products containing AgNPs have now entered in our daily use.
Nazarenko et al. [86] and Lorenz et al. [87] reported that the use of nanotechnology-based consumer
sprays containing AgNPs can lead to the generation of nanosized aerosols and the release of NPs near
the human breathing zone. Furthermore, Ag-treated textiles can be a source of AgNPs in washing
solutions when laundering fabrics, regardless of either conventional Ag or nano Ag treatment [88].
A recent study that evaluated the effluent from a commercially available silver nanowashing machine
showed that AgNPs, at an average concentration of 11µg/L, were released in the environment [89].
AgNPs with a maximum concentration of 145 µg/L were also reported to be released from the outdoor
paints during initial runoff events [90]. An occupational study in a silver manufacturing plant revealed
that AgNPs in the air increases during production, and a peak area concentration of more than
290 µg/m3 could be been detected [84]. The authors suggested the possibility for workers to be exposed
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to airborne AgNPs at concentrations ranging from 0.005 to 0.289 mg/m3. In spite of considerable
studies that have evaluated pulmonary exposure and toxicity, there are still a lack of long-term toxicity
data, consumer exposure data, and human health effect data on AgNPs information. Nevertheless,
an occupational exposure limit of 0.19µg/m3 for AgNPs has recently been proposed based on a
subchronic rat inhalation toxicity study and by taking the human equivalent concentration with
kinetics into consideration [91]. Following inhalation, the transport and deposition of NPs is not
uniform and is influenced by several factors including flow rate, the structure of the airway, pulmonary
function, age, and, most importantly, particle size [82]. Particles smaller than 0.1 µm have been shown
to penetrate deeply into the alveolar region, mainly by diffusion [7,92]. Consequently, due to deeper
particle deposition, the clearance mechanism takes longer and leads to prolonged particle–tissue
interactions and more pathophysiological effects [7]. In addition, translocation in blood capillaries
is relatively easy for particles with a diameter lower than 0.1 µm [7]. The alveolar–capillary barrier
consists of a very thin monolayer of epithelial cells, the endothelial cells of the capillaries, and the
basement membrane between the two cells, and this barrier maintains the homeostasis of the lung [7].
NP penetration has been demonstrated following damage to the epithelial layer of the alveolar capillary
membrane [7,93].

3.2. Oral Exposure

In the food industry, AgNPs are used in packaging and storage in order to increase the shelf
life and quality of food [23]. Moreover, urban and industrial effluents enter the aquatic ecosystem
and accumulate along trophic chains [94]. Thus, the presence of AgNPs in dietary supplements,
water contamination, or food fish and other aquatic organisms provides the potential sources of oral
exposure [23]. Recent studies have also demonstrated that AgNPs incorporated in food packaging can
migrate from packaging into food under several usage conditions [95,96]. Inhalation exposure during
manufacturing also ultimately leads to oral exposure, since particles cleared via the mucociliary escalator
are swallowed and cleared through the GIT. It is estimated that the amount of daily consumption of
silver in humans by ingestion is around 20–80 µg [7]. After ingestion, the GIT serves as a mucosal
barrier that selectively promotes the degradation and uptake of nutrients such as carbohydrates,
peptides, and fats. NPs can act on the mucus layer, translocate to the blood stream and consequently
access each organ upon crossing the epithelium. It has been reported that the uptake of NPs with a
diameter lower than 100 nm occurs mainly by endocytosis in epithelial cells [97]. Within enterocytes,
AgNPs can trigger oxidative stress, DNA damage, and inflammation [7].

3.3. Skin and Parenteral Exposure

Human exposure to AgNPs may also take place through the skin, the largest organ of the
body and the first line of defense between the external environment and the internal environment.
The potential of solid NPs to penetrate healthy and breached human skin, as well as their ability to
diffuse into underlying structures, has been well demonstrated [98,99]. In this context, the use of
AgNPs in cosmetics production has been estimated to reach up to 20%. In addition to cosmetics, dermal
contact to wound dressings and antibacterial textiles has also shown large diffusion of AgNPs [100].
In a laboratory set up, i.v., i.p., and subcutaneous injection enables AgNPs to directly gain access into
systemic circulation. Furthermore, the development of AgNP-based drugs or drug carriers could
enable the direct entry of these particles into the human circulatory system.

Following exposure, the distribution and toxicity of AgNPs is further discussed broadly under
the in vivo toxicity section of this review article. In general, exposure and gender-related differences
in the target tissue AgNP accumulation have been evident in previous research [101–104]. Next to
biodistribution, the assessment of the clearance behavior of NPs is an important indicator of cumulative
toxicity. In this context, there are several studies that have investigated the post exposure clearance
kinetics following subacute inhalation, i.v, and, oral exposure to various sizes of AgNPs and Ag+

ions [104–107]. These studies have revealed silver clearance from most organs after the recovery period,
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which is generally 17 days to four months. However, tissues with biological barriers like the brain and
testes have exhibited a persistence of silver in long term oral exposure studies, suggesting the difficulty
of the silver to be cleared from these organs [106,107]. The persistence of silver in these organs also
enhances chances of increased toxicity.

4. Pathophysiological Effects of AgNPs

The increasing concern about the possible impact of AgNPs on the environment and human
health has directed researchers to focus on the in vitro and in vivo toxicity induced by these particles.

4.1. In Vitro Effects

In vitro cytotoxicity studies are often used to characterize the biological response to AgNPs,
and the results of these studies may be used to identify hazards associated with exposure to AgNPs.
Some important studies that have shown the toxic effects of AgNPs on different cell lines, including
macrophages (RAW 264.7), including bronchial epithelial cells (BEAS-2B), alveolar epithelial cells
(A549), hepatocytes (C3A, HepG2), colon cells (Caco2), skin keratinocytes (HaCaT), human epidermal
keratinocytes (HEKs), erythrocytes, neuroblastoma cells, embryonic kidney cells (HEK293T), porcine
kidney cells (Pk 15), monocytic cells (THP-1), and stem cells [20,108–117], are discussed below.

The exposure of A549 cells to increasing concentrations of AgNPs for 24 h has been to shown
cause morphological changes including cell shrinkage, few cellular extensions, a restricted spreading
pattern, and cell death in a dose-dependent manner [118]. In another study that used the same type of
cells, treatment with 20 nm AgNPs induced DNA damage and the overexpression of metallothioneins
at a concentration of 0.6 nM up to 48 h [119]. Size-dependent changes in cellular morphology were
observed in a rat alveolar macrophage cell line incubated with hydrocarbon-coated AgNPs of different
sizes (15, 30 and 55 nm) [120]. Gliga et al. [31] explored the mechanism of toxicity in BEAS-2B cells
exposed to CT-AgNPs of different particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP-coated and
50 nm uncoated AgNPs. In the latter study, cytotoxicity was evaluated with Alamar Blue and lactate
dehydrogenase (LDH) assay. The Alamar Blue reagent assessed cell viability and proliferation based
on the reduction potential of metabolically active cells. Their results showed cytotoxicity only of the
10 nm particles, independently of surface coating, and toxicity observed was associated with the rate
of intracellular Ag release, a ‘Trojan Horse’ effect. Nguyen et al. [44] exposed a macrophage cell line
to uncoated (20, 40, 60, and 80 nm) and PVP-AgNPs (10, 50, and 75 nm) and found a cell shrinkage
effect due to uncoated particles, whereas cell elongation was evident after treatment with PVP-coated
particles. The exposure of BEAS-2B and RAW 264.7 cell lines to 20 and 110 nm PVP- and CT-Ag-AuNPs
(AgNPs with a gold core) showed that 20 nm Ag-AuNPs induced a significant reduction in cell viability
in the dose range of 6.25–50 µg/mL for 24 h [121]. In addition, significant ROS generation, intracellular
calcium influx, and a decline in mitochondrial membrane potential were also demonstrated in 20 nm
CT- and PVP-AgNPs and 110 nm CT-AgNP-treated cells. Bastos V. et al. [122] also evaluated the
cytotoxicity of 30 nm CT-AgNPs on RAW 264.7 cells by using parameters including viability, oxidative
stress, and cytostaticity at 24 and 48 h of exposure. Their findings revealed decreased cell proliferation
and viability at a concentration of only 75 µg/mL, thereby suggesting the low sensitivity of RAW 264.7
cells to lower doses of AgNPs. Recently, Gliga et al. [116], using a combination of RNA sequence and
functional assays, showed that repeated, low doses (1 µg/mL) and long term exposure (six weeks) of
BEAS-2B cells to 10 and 75 nm CT-AgNPs is profibrotic, indicated by the upregulation of TGFβ1 and
induce epithelial–mesenchymal transition and cell transformation. This evidence suggests that the
observed cellular effects are dose-, size-, coating- and duration of exposure-dependent.

The exposure of 20 nm AgNPs to C3A cells at sublethal concentrations (1.95 µg/106 cells) revealed
size-dependent cytotoxicity, as indicated by elevated LDH levels, an increased release of inflammatory
proteins (interleukin (IL) 8 and tumor necrosis factor (TNF) α), oxidative stress, and a decrease in
albumin synthesis [123]. Cell viability was also evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) assay, a colorimetric assay measuring cell metabolic activity based
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on nicotinamide adenine dinucleotide phosphate -dependent cellular oxidoreductase enzymes,
in human hepatoblastoma HepG2 and mice primary liver cells. Interestingly, AgNPs caused a
concentration-dependent decrease of cell viability in both cell types [124]. A study by Xue et al. [125] in
HepG2 cells demonstrated that AgNPs are able to cause time- (24 and 48 h) and dose-dependent (40, 80,
160 µg/mL) decreases in cell viability, and they are induce cell-cycle arrest in the gap/mitotic phase,
significantly increasing the apoptosis rate and ROS generation. A similar study that used PVP and
CT-AgNPs at concentrations of 1–100 mg/L also showed coating- (with CT causing more effects than
PVP) and dose-dependent reductions in cell viability along with the inhibition of albumin synthesis, as
well as a decrease in alanine transaminase activity and apoptosis in HepG2 cells, thus indicating the
therapeutic potential of the AgNPs against hepatic cancer [126]. Intestinal cells treated with Ag showed
an induction of cytokine release and a higher genotoxicity compared to other inorganic metallic NPs
(TiO2 and silicon dioxide) [127]. Böhmert et al. [128] analyzed the toxicity of AgNPs with a primary
size of 7.02 ± 0.68 nm in Caco-2 cells by using NP concentrations between 1 and 100 µg/ml. A partial
aggregation between digested and not-digested particles was observed by field fractionation (A4F)
combined with DLS and X-ray dispersion at small angles. The authors concluded that AgNPs entered
the GIT barrier without forming large aggregates in digestive fluids. These results confirmed the
importance of body fluids on NP behavior and toxicity.

Samberg et al. [129] assayed the potential cytotoxicity of AgNPs in HEKs cells following 24 h
of exposure and reported that unwashed and uncoated AgNPs caused a significant dose-dependent
decrease of HEK cell viability and an increase in inflammatory cytokines, whereas washed and
carbon-coated AgNPs did not induce any effect. Moreover, an in vitro percutaneous penetration of Ag
study revealed that the accumulation of Ag and silver chloride aggregates of smaller than 1 µm, both
in the epidermis and dermis [130].

NPs readily enter systemic circulation and may interact with circulatory components like blood
cells, the heart, and blood vessels [131–133]. The potential impacts of human exposure to AgNPs
on hemolysis, platelet activity and coagulation have recently gained interest. Studies that used
human erythrocytes have investigated the effects of AgNPs on hemolysis, morphology, and their
uptake [132,134]. In our recent in vitro study, we assessed the effect of the coating and dose of AgNPs
on oxidative damage and eryptosis on mice erythrocytes [111]. Both PVP and CT-AgNPs induced
oxidative stress and increased cytosolic calcium, annexin V binding, and calpain activity. The latter
data may explain the mechanism of hemolysis and eryptosis induced by AgNPs. These NPs could
also prevent platelet responses, as evidenced by the inhibitory effects of AgNPs of different sizes
(13–15 , 30–35, and 40–45 nm) on platelet aggregation [135]. Conversely, Bian et al. [136] recently
compared the AgNPs (<100 nm) with Ag macro particles (5–8 µm) and showed that the former can
promote phosphatidylserine (PS) exposure and microvesicle generation in freshly isolated human
erythrocytes, mainly through ROS generation and intracellular calcium increases, hence suggesting
that AgNPs may have prothrombotic risks by promoting the procoagulant activity of red blood
cells, more importantly at non-hemolytic concentrations (≤100 µg/mL). These discrepancies in results,
though not fully understood, could be related to the different cell types used in studies. The various
blood biological effects of AgNPs, such as hemolysis, the interference of plasma coagulation, the
enhancement of platelet aggregation, and the inhibition of lymphocyte proliferation, are size-, coating-
and concentration-dependent [111,137,138]. Lin et al. [139] studied the potential toxicity of AgNPs
on cardiac electrophysiology. The particles caused the concentration-dependent (10−9–10−6 g/mL)
depolarization of resting membrane potential and diminished action potential, subsequently leading
to a loss of excitability in mice cardiac papillary muscle cells in vitro. Milic M et al. [113] investigated
the interaction of CT-AgNPs (13–61 nm) with porcine kidney (Pk15) cells, and compared the effect
of the particles in their ionic form. For both forms of silver, concentration (1–75 mg/L) dependently
decreased the viability of Pk15 cells after 24 h.

Furthermore, AgNPs exhibited an increased toxicity in stem cells, and this was attributed to
their properties such as size, concentration and coating. The biocompatibility of 100 nm AgNPs
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was tested in human mesenchymal stem cells (hMSCs) by Greulich C et al. [140], and there was a
dose-dependent (0.5–50 µg/mL) effect on cytotoxicity exhibited by decreased cell proliferation and
chemotaxis. In addition, He W et al. [141] showed an increased LDH release and ROS production and
reduction in both cell viability and mitochondrial membrane potential in hMSCs exposed to 30 nm
AgNPs. Murine spermatogonial stem cells showed less cell viability, LDH leakage, and prolonged
apoptosis after exposure to 15 nm AgNPs at concentrations of 5, 10, 25, 50, and 100µg/mL [142]. Similarly,
neural stem cells (NSCs) showed an increase in cell death and LDH leakage, an induction of ROS, an
upregulation of the pro-apoptotic Bax protein, and increased in apoptosis when exposed to various
concentrations (0.01–80 µg/mL) of PVP-Ag-NPs [143]. In the latter study, AgNPs induced neurotoxicity
was compared to Ag+ ions, and the authors demonstrated that AgNPs caused cell apoptosis by
inducing intracellular ROS generation coupled with c-Jun N-terminal kinases phosphorylation, while
Ag ions caused cell necrosis via the alteration of cell membrane integrity and direct binding with
cellular thiol groups.

Results of in vitro studies have indicated that AgNPs are toxic to the mammalian cells that
are derived from the skin, the liver, the lung, the brain, the vascular system and reproductive
organs [144]. The cytotoxicity of AgNPs depends on their size, shape, surface charge, coating/capping
agent, dosage, oxidation state, agglomeration and type of pathogens against which their toxicity is
investigated [42,108,145,146]. Despite these studies, the toxicological of AgNPs mechanism is still
unclear. Several studies have reported DNA damage and apoptosis induced by NPs. In this context,
AgNPs have been shown to cause apoptosis in mouse embryonic stem cells [147]. A follow up by
the same group also demonstrated the involvement of AgNPs in the activation of apoptotic markers,
caspase 3 and caspase 9, at concentrations of 50 and 100 µg/mL [148]. DNA damage at a concentration
of 0.1 µg/mL of AgNPs was also reported in a study that investigated chromosomal aberrations
in human mesenchymal cells [149]. Furthermore, the potential of AgNPs to induce genes that are
associated with cell cycle progression, cause chromosomal damage, cell cycle arrest, and cell death
in human BEAS-2B cells, umbilical vein endothelial cells, and hepatocellular liver carcinoma cells at
various concentrations was also reported [144]. In spite of these numerous studies, a major limitation
of the in vitro study of hazard identification with respect to human health is related to the doses used
in in vitro studies, as these doses may not be comparable to realistic exposure doses in human. Hence,
this necessitates in vivo toxicity research, a review of which is presented in the following section based
on potential routes of exposure.

4.2. In Vivo Toxicity

In vivo biodistribution and toxicity studies in rats and mice have demonstrated that AgNPs that
are administered by inhalation, ingestion or i.v./i.p. injection are subsequently detected in blood and
cause toxicity in several organs including the lung, the liver, the kidney, the intestine and the brain.

Inhalation is a proposed major route of exposure, not only during manufacturing of Ag-containing
materials but also during the use of aerosolized products. Tables 1 and 2 summarize the important
toxicity and biodistribution studies of AgNPs in rodents following pulmonary exposure via inhalation
and intratracheal (i.t.) instillation, respectively. The data from these studies showed diverse outcomes
related to biodistribution and remote organ toxicity. Some studies showed no induction of adverse
effects [150,151], while other studies reported adverse effects varying from a minimal inflammatory
response to the presence of inflammatory lesions in the lungs [103,104,152,153]. For instance, a 28-day
inhalation toxicity study on rats showed no significant changes in the hematology and blood
biochemistry in either the male or female rats following exposure to 11–14 nm AgNPs at concentrations
of 1.73× 104/cm3, 1.27× 105/cm3 and 1.32× 106 particles/cm3 [151]. Hyun et al. [154] also exposed rats to
12–15 nm AgNPs for similar durations and doses and showed no remarkable histopathological changes
in the nasal cavity and the lung in the NPs exposed group compared to the control group. Nevertheless,
Lee et al. [155] found that a short term (14 days) nose-only exposure of mice to 20 nm AgNPs at
concentration of 1.91 × 107 particles/cm3 led to alterations in brain gene expression. Sub-chronic
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(90 days) inhalation studies showed mild, dose-dependent pulmonary inflammation and alterations in
pulmonary function in rats exposed to 18 nm AgNPs [153]. In addition, inhaled AgNPs may also enter
systemic circulation to become distributed to extra-pulmonary organs such as the liver and the brain,
as demonstrated in studies that used ~15 nm NPs at concentrations of 1–3 × 106 particles/cm3 [151,156].
A 90 days, an inhalation study by Sung et al. showed alterations in lung function and inflammatory
responses in rats exposed to 18 nm AgNPs [153]. Additionally, the accumulation of Ag in the lungs and
the liver were more evident in rats after 90 days of inhalation [103]. Silver accumulation has been also
observed in the brain, the olfactory bulb, the kidney and the spleen [103,157,158]. Moreover, AgNPs
(18–20 nm) were also shown to reach and cross mouse placenta in an inhalation study, where pregnant
females were exposed to freshly produced aerosols for either 1 or 4 h/day during the first 15 days of
gestation at a particle number concentration of 3.80 × 107 part/cm3 [159].

Table 1. Toxicity and distribution of AgNPs following pulmonary exposure in rodents via inhalation.

Size Dose Model End-Point
Measurement Effect Tissue

Accumulation References

11–14 nm

1.73 × 104/cm3

(low dose),
1.27 × 105/cm3

(middle dose),
(1.32 × 106

particles/cm3

(high dose)

Sprague–Dawley
rats

Inhalation 6 h/day,
5 days/week, for

4 weeks, sacrificed
1 day post last

exposure

AgNPs concentration
below the American

Conference of
Governmental

Industrial Hygienists
silver dust limit

(100 µg/m3 did not
produce significant

toxic effects.

Lu, Li, Br, Ob [151]

18 nm

0.7 × 106

particles/cm3 (low
dose), 1.4 × 106

particles /cm3

(middle dose), and
2.9 × 106

particles/cm3 (high
dose)

Sprague–Dawley
rats

Inhalation 6 h/day,
5 days/week, for

90 days, sacrificed
1 day post last

exposure

Subchronic exposure to
AgNPs compromised

the lung function.
N/A [153]

18 nm

0.6 × 106

particle/cm3, 49
µg/m3(low dose),

1.4 × 106

particle/cm3,
133 µg/m3 (middle
dose) and 3.0 × 106

particle/cm3,
515 µg/m3 (high

dose)

Sprague–Dawley
rats

Inhalation 6 h/day,
5 days/week, for

90 days, sacrificed
1 day post last

exposure

Silver accumulation in
kidney was

gender-dependent.
Dose-dependent

increase of bile duct
hyperplasia in

AgNP-exposed liver.

Lu, Li, Br, Ob,
Ki [103]

10 nm
(PVP-coated)

3.3 ± 0.5 mg/m3 or
31 µg/g lung

Male C57Bl/6
mice

Inhalation 4 h/day,
5 days a week, for
10 days, sacrifice

at 1 hr and 21 days
post last exposure

Subacute inhalation of
nanosilver induced
minimal pulmonary

toxicity.

Lu [152]

15 nm; 410
nm

179 µg/m3 and
167 µg/m3 or

7.9 × 106

particles/mm3 and
118 particles/mm3

for 15 and 410,
respectively

Male Fischer
rats

Inhalation 6 h/day,
4 consecutive

days, sacrifice at 1
and 7 days post

exposure

Size-dependent effect
on pulmonary toxicity

after inhalation of
similar mass

concentration of 15 and
410 nm AgNPs.

Lu, Li [158]

15 nm 8, 28 µg

BrownNorway
and

Sprague–Dawley
rats

Inhalation
3 h/1 day and

3 h/4 days.
Sacrifice at 1 and
7 days post last

exposure

AgNPs induced an
acute pulmonary

neutrophilic
inflammation with the

production of
proinflammatory and

pro-neutrophilic
cytokines.

Lu [160]



Int. J. Mol. Sci. 2020, 21, 2375 12 of 31

Table 1. Cont.

Size Dose Model End-Point
Measurement Effect Tissue

Accumulation References

20 nm;
110 nm

(CT-coated)

7.2 ± 0.8 mg/m3 and
5.3 ± 1.0 mg/m3 or
86 and 53 µg/rat for

C20 and C110,
respectively

Male
Sprague–Dawley

rats

Inhalation 6 h/1
day, sacrifice at 1,
7, 21, and 56 days

postexposure

Delayed peak and
short-lived

inflammatory and
cytotoxic effects in
lungs with greater

response due to smaller
sized nanoparticles.

N/A [161]

18–20 nm 3.80× 107 part.
/cm−3

Female
C57BL/6 mice

Inhalation for
1 h/day or 4 h/day,
for first 15 days of

gestation,
sacrificed 4 h post

last exposure

Increased number of
resorbed fetuses

associated with reduced
estrogen plasma levels,
in the 4 h/day exposed

mothers.

Lu, Sp, Li, Pl [159]

Abbreviations: lung (Lu), liver (Li), spleen (Sp), kidney (Ki), olfactory bulb (Ob), brain (Br), placenta (Pl),
polyvinylpyrrolidone (PVP), and citrate (CT).

Table 2. Toxicity and distribution of AgNPs following pulmonary exposure in rodents via
intratracheal instillation.

Size Dose Model End-Point
Measurement Effect Tissue

Accumulation References

20 nm; 110 nm
(PVP- and
CT-coated)

0.5, 1 mg/kg
Male

Sprague–Dawley
rats

Single i.t.
instillation,

sacrifice at 1, 7
and 21 days

post exposure

Coating- and size-dependent
AgNPs retention in lungs.

PVP-coated AgNPs had less
retention over time and larger
particles were more rapidly
cleared from large airways

than smaller particles.

Lu [162]

20 nm; 110 nm
(PVP- and
CT-coated)

0.1, 0.5, 1
mg/kg

Male
Sprague–Dawley

rats

Single i.t.
instillation,

sacrifice at 1, 7
and 21 days

post exposure

Smaller sized AgNPs
produced more inflammatory

and cytotoxic response.
Larger particles produce

lasting effects post 21 days
instillation.

N/A [163]

20 nm
(CT-capped) 1 mg/kg

Male
Sprague–Dawley

rats

Single i.t.
instillation,
sacrifice at 1
and 7 days

post exposure

AgNP resulted in
exacerbation of cardiac

ischemic-reperfusion injury.
N/A [164]

20 nm; 110 nm 1 mg/kg
Male

Sprague–Dawley
rats

Single i.t.
instillation,
sacrifice at 1
and 7 days

post exposure

Both sizes of AgNP resulted
in exacerbation cardiac I/R

injury 1 day following
instillation independent of

capping agent. Persistence of
injury was greater for 110 nm
PVP-capped AgNP following

7 days instillation.

N/A [165]

50 nm; 200 nm
(PVP-coated)

0.1875, 0.375,
0.75, 1.5, 3

mg/kg

Female Wistar
rats

Single i.t.
instillation,

sacrifice at 3
and 21 days

post exposure

Focal accumulation of Ag in
peripheral organs along with

transient inflammation in
lung.

Li, Sp, Ki [157]

50 nm; 200 nm
(PVP- and
CT-coated)

0.05, 0.5, 2.5
mg/kg

Female BALB/C
mice

Single i.t.
instillation,

sacrifice 1 day
post

instillation

Size-, dose- and
coating-dependent

pro-inflammatory effects in
healthy and sensitized lungs

following pulmonary
exposure to AgNPs.

N/A [100]

10 nm 0.05, 0.5, 5
mg/kg BALB/C mice

Single i.t.
instillation,
sacrifice at 1
and 7 days

post exposure

Oxidative stress, DNA
damage, apoptosis in heart.

Induced prothrombotic
events and altered

coagulation markers.

N/A [166]

Abbreviations: lung (Lu), liver (Li), spleen (Sp), kidney (Ki), intratracheal (i.t.), polyvinylpyrrolidone (PVP),
and citrate (CT).
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In several cases, a gender-dependent difference for AgNPs accumulation in kidneys has been
reported, with females exhibiting a higher concentration than males [101,153,167]. One possible
explanation for the sex differences in the distribution of Ag may be hormonal regulation in the rat
kidney [36]. A gender-dependent difference was also reported in terms of the persistence of pulmonary
inflammation and a decrease in lung function in male rats following the termination of exposure, while
females showed a gradual improvement in lung inflammation following the cessation of exposure [104].
However, the exact mechanism of sex-related differences is still not clear.

The potential mechanisms of the cardiovascular effects of lung-deposited particles were previously
discussed by Nemmar et al. [168]. In this context, Holland et al. [164] investigated the effect of 20 nm
AgNPs on cardiovascular injury and showed the exacerbation of cardiac ischemic-reperfusion injury
following a single i.t. instillation in rats. The authors further evaluated the impact of the size (20 and
110 nm) and coating (PVP and CT) of AgNPs, and they demonstrated that the acute effect was size-
and coating-independent, whereas the persistence of injury was greater for 110 nm PVP-AgNPs [165].
A significant dose-dependent effect of pulmonary-exposed PVP- and CT-AgNPs on cardiovascular
homeostasis was also demonstrated in our recent study [166]. The mechanism through which lung
injury occurs and how the physicochemical properties of inhaled AgNPs affect their interactions
with the lung have recently begun to be investigated in vivo [100,158,162,163]. Along with in vitro
studies, in vivo results have suggested that size, coating and dose affect pulmonary inflammation and
cellular toxicity.

As mentioned above, besides respiratory exposure, consumer exposure to AgNPs via ingestion
can also occur due to the incorporation of AgNP into products such as food containers and dietary
supplements. Table 3 summarizes the important toxicity and biodistribution studies of AgNPs in
rodents via oral exposure. The deposition of orally-exposed AgNPs in the GIT has been widely
demonstrated in previous studies [36,169]. Jeong et al. [170] showed an increase of goblet cells in
the intestine, together with a high mucus granule release in mice orally-treated with AgNPs (60 nm)
at a concentration of 30 mg/kg bw/day for 28 days. In addition, AgNPs (5–20 nm) that were orally
administrated for 21 days in mice (20 mg/kg of body weight) disrupted epithelial cell microvilli
and intestinal glands [106]. The distribution of PVP-AgNPs (14 nm) to multiple organs including
the intestine, the liver, the kidney, the lung and the brain following oral administration have been
reported [169]. Several other investigators also showed that oral exposure to AgNPs may lead to
liver, intestinal and neuronal damage [171–173]. Cases of argyria (a condition characterized by an
irreversible gray or bluish gray pigmentation of the skin), irreversible neurologic toxicity, and death
have been reported upon the long-term ingestion of colloidal silver [174]. The liver appears to be a
major accumulation site of circulatory AgNPs [175]. In fact, PVP-AgNPs (20–30 nm) have been shown
to increase oxidative stress, enhance autophagy, and deplete insulin signaling pathways following
oral exposure for 90 days in the liver of male rats [173]. Changes in blood parameters indicated
by a significant elevation of ALT, AST, and hepatoxicity, shown by histological damages (necrosis,
hepatocytic inflammation, and the resultant aggregation of lymphocytes in liver tissue) were also
observed in a study that evaluated the toxic effect of 14 days of oral exposure to AgNPs (40 nm) at doses
20 and 50 ppm in BALB/C mice [176]. Moreover, Tiwari et al. [177] determined the effect of 60 days
AgNPs (10–40 nm) treatment on the kidneys of female Wistar rats at doses of 50 and 200 ppm, and they
demonstrated significant mitochondrial damage, increased levels of serum creatinine, and early toxicity
markers such as KIM-1, clusterin and osteopontin.
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Table 3. Toxicity and biodistribution of AgNPs in rodents via oral exposure.

Size Dose mg/kg Model End-Point
Measurement Effect Tissue

Accumulation References

56 nm 30, 125, 500 F344 rats

Daily exposure
for 90 days,

sacrifice 24 h
post last
exposure

Accumulation of silver in
kidneys was gender-dependent,
with a 2-fold increase in female
kidneys. Liver is the target of

silver toxicity for both male and
female rats.

Li, Ki, Br, Lu,
Bl [102]

15 nm; 20
nm 90

Male
Sprague

Dawley rats

Daily exposure
28 days, sacrifice
24 h, 1 week, 8
weeks post last

exposure

Main target organ for AgNPs and
AgNO3 upon oral exposure are
the liver and spleen. Silver was
cleared from all organs after 8

weeks post dosing except brain
and testes.

Li, Sp, Te, Ki,
Br, Lu, Bl, Blr,

Ht
[106]

20 nm 820
Male

Sprague
Dawley rats

Daily exposure
for 81 days,

sacrifice 24 h
post last
exposure

AgNPs induces liver and cardiac
oxidative stress and mild

inflammatory response in liver.
N/A [178]

20, nm; 110
nm (PVP-

and
CT-coated)

0.1, 1, 10
Male

C57BL/6NCrl
mice

3 days exposure,
sacrifice at 1 and

7 days post
exposure

Acutely ingested AgNP,
irrespective of size or coating, are
well-tolerated in rodents even in

markedly high doses and
associated with predominant

fecal accumulation.

Absence of
tissue

accumulation
[179]

10 nm; 75
nm; 110 nm 9, 18, 36 Sprague

Dawley rats

Daily exposure
for 13 weeks.
Sacrifice 24 h

post last
exposure

Silver accumulation in tissues
showed a size-dependent
relationship 10>75>110.

Statistically significant difference
in distribution and accumulation
of silver in male and female rats.

No toxic effect on blood,
reproductive and genetic system

tested was observed.

Ki, Sp, Li, Ht,
Ut [36]

20–30 nm
(PVP-coated) 50, 100, 200

Male
Sprague

Dawley rats

Daily exposure
for 90 days,

sacrifice 24 h
post last
exposure

Though AgNPs accumulated in
hepatic and ileum cells, no
harmful effects in liver and

kidney, as well as no
histopathological, hematological

and biochemical markers
changes was observed.

Il, Li, Ki, Br,
Th, Spl [180]

20–30 nm
(PVP-coated) 50, 100, 200

Male
Sprague

Dawley rats

Daily exposure
for 90 days,

sacrifice 24 h
post last
exposure

High dose showed an increase of
sperm morphology

abnormalities.
N/A [181]

10 ± 4 nm
(CT-capped) 0.2 Male Wistar

rats

Daily exposure
for 14 days,

sacrifice 24 h
post exposure

Prolonged low dose AgNPs
exposure induced oxidative

stress in brain but not in liver.
N/A [182]

91.71 ± 1.6
nm 0.5 Male Wistar

rats

Daily exposure
for 45 days,

sacrificed 24 h
post exposure

AgNPs caused significant
oxidative stress compared to

TiO2NP with similar dose
concentration.

Bl, Li, Ki [183]

20 nm; 110
nm 10

Pregnant
Sprague

Dawley rats

Single exposure,
sacrificed at 24 h

and 48 h post
exposure

Silver enters and crosses placenta
regardless of route and form of

silver.

Ce, LI, Pl, Ki,
Bl [184]

20–30 nm
(PVP-coated) 50, 100, 200

Male
Sprague

Dawley rats

Daily exposure
for 90 days,

sacrifice 24 h
post last
exposure

High dose of AgNPs induced
hepatocellular damage by
increased ROS production,
enhanced autophagy and
depleted insulin signaling

pathway.

N/A [173]

Abbreviations: lung (Lu), liver (Li), spleen (Sp), kidney (Ki), brain (Br), heart (Ht), bladder (Bl), uterus (Ut), thymus
(Th), cecum (Ce), placenta (Pl), polyvinylpyrrolidone (PVP), and citrate (CT).
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The use of AgNPs in wound dressings and other applications designed to regulate skin microbiome
composition is an established strategy that has been shown to inhibit a broad range of bacteria, including
Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus [57,81]. Numerous reports have
indicated that AgNPs promote wound healing by decreasing the inflammatory response [185,186].
Nevertheless, an aspect that remains sparsely researched is the possibility of the sensitization of the
skin by these NPs. It is well known that patients with wounds are at particular risk of developing
either an allergic or irritant contact dermatitis, and silver compounds are widely used in wound
care. However, so far, there have been very few confirmed cases of contact dermatitis secondary
to silver-containing wound products like silver sulfadiazine and skin markers that contain silver
nitrate [187,188]. Contrary, there is considerable evidence for the significant transdermal penetration of
AgNPs into capillaries during the use of surgical dressings, textiles, and cosmetics [189,190]. In order
to elucidate the mechanism of cytotoxicity, Samberg et al. [129] evaluated the potential ability of
AgNPs to penetrate porcine skin and showed the existence of the focal inflammation and localization
of AgNPs on the surface and in the upper stratum corneum layers of porcine skin. Acute and sub-acute
dermal studies conducted by Korani et al. [6] suggested a correlation between dermal exposure, tissue
accumulation of AgNPs (100 nm), and dose-dependent histopathological abnormalities in the skin, all
of which was exhibited by a reduced thickness of the papillary layer and the epidermis. Compared to
animals treated with a single dose, animals that were subjected to sub-chronic exposure showed a
considerable accumulation of AgNPs, as well as a dose-dependent toxic response in several organs,
including the spleen, liver and skin [191].

Another potential route of AgNPs entry in the case of biomedical applications includes parenteral
administration. A summary of important toxicity and biodistribution studies of AgNP in rodents via
exposure of i.v. injection is given in Table 4. In a recent study, comparing the biodistribution and
toxicological examinations after repeated i.v. administration of AgNPs and AuNPs in mice showed a
higher deposition of AgNPs in the heart, the lung, and the kidney than that of AuNPs [175]. Moreover,
the AgNPs induced adverse effects in a dose-dependent manner (the concentrations tested were 4,
10, 20, and 40 mg/kg) [175]. Another study, following the subcutaneous administration of AgNPs of
different sizes in rats also revealed that the particles translocated to the blood circulation and were
distributed throughout the main organs, especially in the kidney, the liver, the spleen, the brain and
the lung [131]. The results also suggested the potential of AgNPs to cross the blood–brain barrier
and to induce astrocyte swelling and neuronal degeneration [131]. A few studies have reported the
transfer of AgNPs across the placenta in rats and mice [192,193]. Following the i.v. administration
of 10 nm AgNPs at a dose of 66 µg Ag/mouse to pregnant animals on gestational days 7, 8 and 9,
Ag accumulation was revealed in all examined organs, with the highest accumulation being in the
maternal liver, spleen and visceral yolk sac and the lowest concentrations being in the embryos [192].
Another study comparing administration methods (i.v. versus i.p.) showed a similar localization of Ag
in the liver and the spleen for both methods [193]. However, Ag was more quickly excreted from the
body with i.v. administration, as compared to i.p. administration. The latter study also showed that
the AgNPs could cross the placental and the blood–testes barriers, thus resulting in an accumulation in
the fetus and the testes, respectively [193].
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Table 4. Toxicity and biodistribution of AgNPs in rodents via exposure through intravenous injection.

Size Dose Model End-Point
Measurement Effect Tissue

Accumulation References

15–40 nm 4, 10, 20, 40
mg/kg

Male Wistar
rats

32 days i.v,
sacrifice 24 h
post last i.v

administration

AgNPs in doses <10mg/kg is safe,
while >20mg/kg is toxic. Li, Ki [194]

21.8 nm 7.5, 30, 120
mg/kg ICR mice

Single i.v,
parameters
measured at

1,7,14 days post
injection

Inflammatory reactions in lung
and liver cells were induced in
mice treated at the high dose of

AgNPs. Gender-related
differences in distribution and

elimination of AgNPs,
elimination in female is longer

than the males.

Sp, Li, Lu, Ki [195]

20 nm; 200
nm 5 mg/kg Male Wistar

rats

Single i.v,
sacrifice at 1, 7,
28 days post i.v
administration

High tissue concentration of
silver in tissues of 20 nm group
as compared to 200 nm groups

Li, Sp, Ki, Lu,
Br, Ur, Fe [196]

7.2 ± 3.3 nm 5, 10, 45
mg/kg

Male
Sprague–Dawley

rats

Daily tail vein
injection for 3
consecutive

days,
parameters

measured at 1
and 3rd day

Decrease in body weight and
locomotor activity. N/A [197]

20, nm; 100
nm

0.0082,
0.0025, 0.074,
0.22, 0.67, 2,

6 mg/kg

Wistar rats

28 days,
repeated i.v,

sacrifice at 24 h
post last
injection

Immune system is the most
sensitive parameter affected by

AgNPs; reduced thymus weight,
increased spleen weight and
spleen cell number, strongly
reduced NK cell activity, and

reduced IFN-γ production were
observed.

N/A [37]

20 nm

0.0082,
0.0025, 0.074,
0.22, 0.67, 2,

6 mg/kg

Male Wistar
rats

28 days,
repeated i.v,

sacrifice at 24 h
post last
injection

AgNPs suppress the functional
immune system. N/A [35]

10 nm
(CT-coated) 1 mg/kg CD1 mice

IV
administration,

once every 3
days, sacrifice at
15, 60 120 days

post initial
exposure

AgNPs induced toxicity to male
reproduction, altered Leydig cell
function, increased testosterone

level.

Te [198]

10 nm;
75 nm; 110

nm
(CT-coated)

0.1 mg/kg
Female
BALB/C

mice

Single dose
injection

sacrifice at 4h, 1,
3 or 7 days post
injection. Multi

dose: i.v
injection on day

1, 4 and 10,
sacrifice at 7

days post last
injection

Injection of a single dose of
AgNPs induced a less toxicity in
liver and lung tissues than that

induced by multi-dose injections.
The toxic effect of AgNPs was

time-dependent.

N/A [199]

10 nm;
40 nm,

100 nm (PVP-
or

CT-coated)

10 mg/kg Male CD-1
(ICR) mice

Single i.v,
sacrifice at 24 h
post injection

10 nm AgNP group showed
increased silver distribution and

overt hepatobiliary toxicity
compared to larger ones.

Sp, Li, Lu, Ki,
Bl, Br [68]

3 ± 1.57 nm 11.4–13.3
mg/kg

Male
KunMing

mice

i.v. injection 2
times/week for 4
weeks, sacrificed
at 1, 28, 56 days
post injection

AgNPs preferentially
accumulated in all major organs
compared to other metallic NPs.

Li, Sp, Ki, He,
Lu, Te, Fe, Bl,
In, St, Br, SV

[175]
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Table 4. Cont.

Size Dose Model End-Point
Measurement Effect Tissue

Accumulation References

20 nm;
110 nm 1 mg/kg

Pregnant
Sprague

Dawley rats

Single exposure,
sacrificed at 24
and 48 h post

exposure

Silver crosses the placenta and is
transferred to the fetus regardless

of the form of silver.

Sp, Pl, Li, Lu,
Ce, Bl, Ki [184]

6.3–629 nm 5 mg/kg
Female
Sprague

Dawley rats

Single exposure,
sacrificed at 24 h

Histopathologically, AgNPs
caused mild irritation in thymus

and spleen and significantly
increased chromosome breakage

and polyploidy cell rates.

Lu, Sp. Li, Ki,
Th, Ht [200]

20 nm;
110 nm (PVP

or CT)
701.75 µg/kg

Pregnant
female

Sprague
Dawley rats

Single i.v
administration

Exposure to CT-AgNPs is
associated with changes in fetal

growth and increased contractile
force in both uterine and aortic

vessels.

N/A [201]

Abbreviations: lung (Lu), liver (Li), spleen (Sp), kidney (Ki), brain (Br), heart (Ht), bladder (Bl), uterus (Ut),
thymus (Th), cecum (Ce), placenta (Pl), intestine (It), stomach (St), feces (Fe), urine (Ur), intravenous (i.v.),
polyvinylpyrrolidone (PVP), and citrate (CT).

5. Knowledge Gaps in Human and Environmental Risk Assessment

For all NPs studies, a crucial issue remains the composition, particle surface area, surface chemistry,
and the careful, accurate characterization of particle size and morphologic features, especially in the
physiological environment [202]. Moreover, equally important to the latter is the control of assays
and assay conditions [202]. It is only with the complete characterization of NPs and the appropriate
control of assays that the results of reported studies can be comparable with those of other studies
conducted with similar NMs [68,203]. Unfortunately, the characterization of materials, especially
following in vivo applications, is still inadequate for many published studies. In this regard, though
several characterizing tools have been developed, each has its own limitations. For instance, DLS
is the most commonly used tool, especially in studies that adopt limited characterization steps,
due to its accessibility, low cost, and easy handling [204]. However, its disadvantages include low
resolution, multiple light scattering, sedimentation, a lack of selectivity, and a relatively low signal
strength, particularly in complex biological media such as in plasma [204]. Likewise, zeta potential
is affected not only by the properties of NPs but also by the nature of the solution, such as pH and
ionic strength [204]. Moreover, the understanding of operating principles, as well as dealings with
critical issues like sample preparation and data interpretation, proposes challenges to the application
of these characterization techniques. As the outcome of particle effects is largely governed by the NP’s
physicochemical properties, the thorough characterization of AgNPs is extremely important, especially
when investigating in vivo effects following various routes of contact.

Toxicokinetic studies of NPs including absorption, distribution, metabolism and elimination have
provided important data related to their in vivo behavior and risk assessment. In this context, there are
very limited data on AgNPs’ toxicokinetic properties, particularly metabolism and clearance. Though
several of the studies discussed in this review have demonstrated organ distribution following the
translocation of AgNPs, it is not yet clear whether the distribution and effects observed were due to
their particulate forms, ionic forms, or a combination of both forms. In order to find out whether
the distribution of AgNPs were in ionic or particulate forms, Lee JH et al. [205] recently investigated
the toxicokinetic of i.v.-administered AgNPs (10 nm) and AuNPs (14 nm), either separately or in
combination, and evaluated NP clearance after a four-week recovery period. Interestingly, their data
revealed that the co-administration of AgNPs with AuNPs of a similar size distribution not only
decreased NPs’ distribution to organs, thus indicating a competitive cellular uptake, but also confirmed
the particulate form of NP tissue distribution rather than ionic form [205]. Another potential form
suggested is the distribution in secondary particle form, because NPs can interact with proteins like
thiol after dissolution in ionic form. The latter was demonstrated by Liu et al. [206], who suggested that
the newly formed secondary AgNPs circulated in systemic circulation and photoreduced to metallic
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silver, eventually contributing to agyria silver deposits in light-affected skin areas. Another study
that used silver nitrates or AgNPs also demonstrated the formation of similar secondary AgNPs [106].
This in fact gives another dimension to research, as the detected AgNPs in tissues could not only be
the product of exposed nanotechnology but could also have been due to any chemical forms of silver
exposure that eventually transformed into secondary AgNPs. A parallel controversy pertains to the
tissue clearance of accumulated silver. In spite of studies that have evaluated silver clearance with
different exposure routes, exposure periods, and recovery periods, there not yet a clear understanding
of whether the ionic or particulate form is eliminated from tissues.

Another aspect that has not been studied much is the impeding effects of AgNPs on susceptible
populations like pulmonary disorders, obesity, hypertension, and diabetes. It is well established that
the impact of air pollution is aggravated in patients with pre-existing cardiorespiratory diseases, such as
asthma, and chronic respiratory diseases, such as chronic obstructive pulmonary disease, pneumonia,
cystic fibrosis, and ischemic heart diseases [207]. A recent study also reported the exacerbation of
autoimmune diseases to short term exposure to particulate matter (PM10 and PM2.5) [208]. However,
information in regard to the effect of AgNP exposure on susceptible populations is very much limited.
The pathophysiological effects of the latter could be well studied by using animal models of increased
susceptibility, e.g., hypertension and diabetes, changes in blood biochemistry, acute phase response,
and hepatic pathology. In this context, Ramirez-Lee et al. [209] recently evaluated the cardiovascular
effect of 15 nm AgNPs by using isolated perfused hearts from male, spontaneously hypertensive
rats. The authors concluded that hypertension intensified AgNP-induced cardiotoxicity due to an
observed reduction in NO and an increase in oxidative stress, leading to increased vasoconstriction
and myocardial contractility. Jia et al. [210] studied the effect of orally-exposed PVP-AgNPs (30 nm) in
overweight mice and showed the progression of fatty liver disease from steatosis to steatohepatitis.
The mechanisms proposed in the latter study were the activation of Kupffer cells, the enhancement
of hepatic inflammation, and the suppression of fatty acid oxidation. Kermanizadeh, A. et al. [211]
investigated AgNP-induced hepatic pathology in models representative of pre-existing alcoholic
liver disease. Their data showed that following oral exposure, AgNP-induced hepatic effects were
aggravated in the alcohol-pretreated mice in comparison to controls with regards to an organ-specific
inflammatory response.

The evaluation of trans-generational impact is also an important point to understand the long-term
effect of NPs on human health and the environment. In this context, Hartmann et al. [212], assessed the
impact of pristine and waste water-borne AgNPs on the aquatic invertebrate Daphnia magna in a multi
generation approach that covered six generations. The authors showed that while pristine AgNPs
caused a significant reduction in the mean number of offspring compared with the control, the waste
water-borne AgNPs had no effects on reproduction in any generation. Raj et al. [213] investigated
impact of ingested AgNPs (20–100 nm) on the adult and larval stages of Drosophila. Their results
demonstrated a significant reduction of survival, longevity, ovary size, and egg laying capability in
flies fed with AgNPs compared with a control [213]. The latter effects persisted in the next generation
without AgNP feeding, thereby suggesting the transgenerational effects of AgNPs. Despite these
findings, the in vivo transgenerational effects of AgNPs involving higher mammalian systems or
humans still remains the least explored area of NP research.

Another aspect that lacks detailed research is the effect of AgNPs on humans via various routes
of exposure. In this regard, very few studies have attempted to investigate whether AgNPs can
penetrate physically and functionally intact human skin [99,214]. George et al. [99] demonstrated
the in vivo penetration of AgNPs (10–40 nm) by using healthy human participants with normal skin.
Their data suggested that AgNPs, applied as nanocrystalline silver dressing for four-to-six days, can
penetrate beyond the stratum corneum and reach as deep as the reticular dermis. A controlled, cross
over time exposure (three, seven, and 14 days) study of orally dosed (10 ppm) commercial AgNPs
(5–10 nm) demonstrated the absence of any changes in human metabolic, hematologic, urine, and
physical findings or imaging morphology [215]. However, AgNP toxicology research with respect
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to susceptible individual and human exposure thus far remains understudied, and these areas are
particularly important with regard to NP risk assessment.

The increasing concern about the possible impact of AgNPs on the environment and, subsequently,
human health has directed researchers to focus on the in vitro and in vivo toxicity induced by
these particles.

6. Conclusions and Recommendations for Future Studies

This paper critically reviewed and structurally presented the toxicity and biodistribution studies
of AgNPs following various routes of exposure. Our conclusions drawn from these studies are
listed below:

• The cytotoxic effects of AgNPs, documented in in vitro studies in various cell lines, are governed
by factors such as size, shape, coating, dose and cell type.

• Toxicity and biodistribution studies, in vivo, following various routes of exposure, like inhalation,
instillation, oral, dermal and intravenous, have established Ag translocation, accumulation, and
toxicity to various organs.

• Both the local and distant organ effects are influenced by particle size, coating, route and duration
of exposure, doses, and end point measurement time.

• There is lack of adequate and standard characterization techniques that could be adapted for
studies that evaluate the toxicity of AgNPs in order to make the results of one study comparable
to another by using similar NPs.

• The mechanisms of action of AgNPs are still not well understood, and there is lack of information
on the potential effects of AgNP exposure on animal models of enhanced susceptibility, such as
hypertension, diabetes, and asthma.

Owing to the evidence provided in this review, there are still gaps in the risk assessment of the Ag
in the form of NPs both for humans and the environment. For example, it is still not clear to what
extent the intact AgNPs themselves can enter the human body, whether the AgNPs undergo changes
in the physiological environment, if the Ag+ ions released from the NPs absorbed, or if the effect
observed is due to tge AgNP-induced inflammatory response or due to the ions released or due to
the nanoparticulate from itself. Since no clear pathway has been proven to be the most important
mechanism of AgNP-induced pathophysiological effects, we have some recommendation for future
research listed below.

• In order to overcome the limitation of a single method of particle characterization and to efficiently
evaluate the functional effect of synthesized particles, the characterization of AgNPs should be
done by using multiple relevant techniques.

• AgNPs’ characteristics should be evaluated in an appropriate medium because interactions with a
biological fluid can alter NPs’ properties, intake, and cellular effects.

• There is a need for extensive data on the biodistribution and accumulation of AgNPs, and these
data should take AgNPs’ various physicochemical properties into consideration in order to get a
concrete idea on the local and distant tissue toxicity of AgNPs, as well as the mechanisms behind
the toxicity.

• Appropriate techniques and methodologies have to be constructed in order to estimate Ag+

ions originating from AgNPs in vivo and to calculate AgNPs’ surface ionization fraction in
various tissues.

• AgNPs effect on animal models with pre-existing diseases like asthma, obesity, hypertension, and
diabetes needs to be carried out, as toxicological consequences might be aggravated in animal
models of enhanced susceptibility.
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• Multi-generation studies assessing the transgenerational impact of AgNPs in higher mammalian
systems needs to be carried out in order to identify the potential long-term effects of AgNPs in a
more realistic scenario.

• Multidisciplinary investigations taking in account long term exposure, variable routes of exposure,
and the dosing of AgNPs should be conducted in humans in order to ascertain the human
toxicity threshold.
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Abbreviations

AuNPs Gold nanoparticles
AgNPs Silver nanoparticles
Bl Bladder
Br Brain
Ce Caecum
CNTs Carbon nanotubes
CT Citrate
ENMs Engineered nanomaterials
Fe Feces
FeO Iron Oxide
Ht Heart
It Intestine
i.p. Intra-peritoneal
i.t. Intra-tracheal
i.v. Intra-venous
Ki Kidney
LDH Lactate Dehydrogenase
Lu Lung
Li Liver
NM Nanomaterials
Pl Placenta
PVP Polyvinylpyrrolidone
ROS Reactive Oxygen Species
Sp Spleen
St Stomach
Th Thymus
TiO2 Titanium Oxide
Ur Urine
Ut Uterus
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