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ABSTRACT: The Km value for tamoxifen is 1.2 mM for
mouse FMO1 (human FMO1 is not expressed in
adults) and 1.4 mM for human FMO3, with no detect-
able activity being expressed toward tamoxifen by
FMO5 from either mouse or human. These data are
derived from experiments using 3H-tamoxifen as sub-
strate in which the product, tamoxifen N-oxide, was
measured directly. It was not possible to derive mean-
ingful data from the measurement of NADPH con-
sumption because Escherichia coli preparations, in the
presence of tamoxifen, regardless of whether the E. coli
was expressing an FMO isoform, consumed large
amounts of NADPH without the appearance of tam-
oxifen N-oxide or other discernable product. q 2000
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2000
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INTRODUCTION

Tamoxifen is a widely used anti-estrogenic drug
for the treatment of breast cancer, which may also have
a role as a breast cancer chemopreventive agent [1]).
However, epidemiological studies have demonstrated
that tamoxifen is associated with a small increase in
the incidence of endometrial cancers. Although the
mechanism of carcinogenic activity is not fully under-
stood, tamoxifen metabolites, which bind covalently to
protein [2–4] and to DNA [5–8] have been identified.
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Most recently, nearly 50% of women treated with tam-
oxifen were demonstrated to have tamoxifen-DNA ad-
ducts in endometrial tissue, which established the po-
tential genotoxicity of this drug [9].

Four major metabolites of tamoxifen are the result
of oxidative metabolism by cytochrome P450 (CYP)
and flavin containing monooxygenases (FMO). These
metabolites include N-desmethyl-tamoxifen, 4-OH-
tamoxifen, tamoxifen-N-oxide, and 3,4 dihydroxyta-
moxifen. Metabolism studies using expression systems
have demonstrated that CYP3A is primarily responsi-
ble for the formation of N-desmethyl-tamoxifen [10–
11] and that CYP2D6 is solely responsible for the pro-
duction of 4-OH-tamoxifen (the putative active
anticancer tamoxifen metabolite) [12]. Studies using
heat inhibition and antibodies to NADPH-P450 reduc-
tase showed that FMOs were primarily responsible for
the production of tamoxifen-N-oxide [13], although the
specific isoforms involved in its formation were not
identified. The purpose of the present study was to
determine, using mouse and human isoforms of FMO,
which isoforms had the greatest involvement in the
production of tamoxifen-N-oxide.

MATERIALS AND METHODS

Tamoxifen Incubations

Escherichia coli JM109 cells transformed with pJL-2
(pJL) and human FMO isoforms 3 (pJL-FMO3h) and 5
(pJL-FMO5h) were provided by R.M. Philpot (NIEHS,
Research Triangle Park). The isolation and character-
ization of mouse FMO isoforms 1 (pJL-FMO1m) and 5
(pJL-FMO5m) were previously described by Cherring-
ton et al. [14]. Briefly, single colonies were added to 5
mL of LB-ampicillin (50 lg/mL; LB-Amp) for over-
night growth at 378C. These cultures were added to 500
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TABLE 1. NADPH Consumption of E. coli Preparations in
the Presence of Tamoxifen

E. coli Preparation
NADPH Consumption
(nmole/min/mg protein)

Empty
`tamoxifen 16.4
1tamoxifen 0.6

Expressing FMO1
`tamoxifen 14.7
1tamoxifen 1.8

TABLE 2. Tamoxifen Michaelis Constants for FMO Iso-
forms Expressed in E. Coli

FMO1 FMO3 FMO5

Mouse 1.2 mM Inactiveb Inactiveb

Human a 1.43 mM Inactiveb

aFMO1 is a fetal isoform in humans and is not expressed in adult human
liver.

bNo activity at substrate concentrations up to 1.5 mM

mL LB-Amp and grown at 378C for 3 hours until an
OD600 reading of 0.5 was obtained. After the cultures
were cooled to room temperature, isopropyl-thio-b-D-
galactoside was added to a final concentration of 1
mM, and the cultures grown overnight at 308C with
shaking at 150 rpm. Subcellular fractions were then
prepared as described by Lawton and Philpot [15]. Pro-
tein content of the microsomal fraction was deter-
mined using the BCA protein kit.

NADPH oxidations were performed essentially as
described previously [16] using tamoxifen as substrate.
Briefly, sample and reference cuvettes contained a 1 mL
reaction mixture containing 0.1 M Tricine/KOH, (pH
8.4), 0.1 mM EDTA, 0.06 mM DTT, 0.1 mM NADPH,
50–200 lg microsomal protein, and 100 nmole tamoxi-
fen (sample cuvette only). The incubation mixture was
measured at 378C for 2 minutes using a Shimadzu dou-
ble beam spectrophotometer.

Tamoxifen metabolism was also monitored using
[3H] tamoxifen. One mL incubations were conducted
in 13 2 100 mm test tubes containing 100 lg micro-
somal protein, 0.1 M Tricine/KOH (pH 8.4), 0.1 mM
EDTA, 0.1 mM NADPH, and [3H ]tamoxifen (80,000
dpm and 25–200 nmole) in 5 ll ethanol. Reactions were
initiated by adding NADPH, and incubations were
conducted for 1 hour at 378C. The reactions were ter-
minated by the addition of 1 mL methanol, and the
incubate evaporated at room temperature under a
stream of nitrogen. The residue was brought up in 100
ll methanol and applied to Whatman silica gel plates
(LK5DF), which were developed in chloro-
form:methanol:ammonium hydroxide (80:20:0.5) as
described by Mani et al. [10]. Lanes on the plates were

scraped in 1 cm sections and counted by liquid scin-
tillation. The only radioactive peak on the plate other
than tamoxifen was identified as tamoxifen N-oxide by
cochromatography with synthetic radioinert tamoxi-
fen N-oxide.

RESULTS AND DISCUSSION

Spectrophotometric determinations of NADPH
oxidation activity have been used extensively in our
laboratory to determine FMO activity toward a variety
of substrates. Previous studies examining the stoichi-
ometry of substrate addition, NADPH oxidation, and
O2 consumption have validated this quantitation
method for a variety of FMO substrates [17,18]. Use of
this method in the case of tamoxifen incubations with
E. coli-expressed FMOs, however, resulted in high rates
of NADPH oxidation that were independent of
whether an FMO isoform was present in the incubation
(Table 1). Closer analysis of the products of the reac-
tion, using radiolabeled tamoxifen, revealed that in the
absence of FMO, no product was formed. Our specu-
lation is that E. coli proteins are involved in futile cy-
cling of NADPH in the presence of tamoxifen.

In order to determine the rate of N-oxide forma-
tion, radiolabeled tamoxifen was incubated with each
FMO isoform. Product formation was determined by
counting radioactive spots on thin-layer plates. The
only metabolite observed in any of these assays was
tamoxifen-N-oxide. The rate of N-oxide formation, at
the same concentration of tamoxifen used in the
NADPH oxidation assays, was 4.5 nmole/min/mg
protein; approximately 30% of the NADPH oxidation
rate. Km values for tamoxifen using mouse and human
isoforms 1, 3, and 5 are shown in Table 2. The Km for
tamoxifen was 1.2 mM for mouse FMO1 and 1.4 mM
for human FMO3. No detectable activities toward tam-
oxifen were determined for FMO5 from either species.
Since FMO1 is not expressed in adult human tissues,
the majority of tamoxifen N-oxide formed in humans
is likely to be the result of FMO3 expression.
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