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Background: N -methyl-D-aspartate (NMDA) receptor hypofunction has been implicated
in the pathophysiology of schizophrenia and its associated neurocognitive impairments.
The high rate of cigarette smoking in schizophrenia raises questions about how nicotine
modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined
the modulatory effects of brain nicotinic acetylcholine receptor (nAChR) stimulation on
NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR
agonist, and ketamine, a non-competitive NMDA receptor antagonist, on behavioral and
neurophysiological measures in healthy human volunteers.

Methods: From an initial sample of 17 subjects (age range 18–55 years), 8 subjects suc-
cessfully completed 4 test sessions, each separated by at least 3 days, during which
they received ketamine or placebo and two injections of nicotine or placebo in a double-
blind, counterbalanced manner. Schizophrenia-like effects Positive and Negative Syndrome
Scale, perceptual alterations Clinician Administered Dissociative Symptoms Scale, sub-
jective effects Visual Analog Scale and auditory event-related brain potentials (mismatch
negativity, MMN; P300) were assessed during each test session.

Results: Consistent with existing studies, ketamine induced transient schizophrenia-like
behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it
was elicited by a target (P3b) or novel (P3a) stimulus, while nicotine only reduced the ampli-
tude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions
of ketamine and nicotine were not significant. While nicotine significantly reduced MMN
amplitude, ketamine did not.

Conclusion: Nicotine failed to modulate ketamine-induced neurophysiological and behav-
ioral effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and
nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and
nAChR in the generation of P3b and P3a, respectively.

Keywords: schizophrenia, nicotine, ketamine, N -methyl-D-aspartate receptor, nicotinic acetylcholine receptor,
event-related potential, mismatch negativity, P300

INTRODUCTION
Several lines of evidence support a glutamatergic hypothesis of
schizophrenia involving N -methyl-d-aspartate (NMDA) receptor
hypofunction (1–7). Studies with the NMDA receptor antagonist,
ketamine, in healthy human subjects have been a cornerstone of
the glutamatergic hypothesis of schizophrenia, producing clinical
symptoms and cognitive impairments similar to those observed
in schizophrenia (4, 5, 7–13). Nicotine has been shown to have
cognitive enhancing effects in some (14–16), although not all (17,
18), studies. It has been suggested that the high rate of cigarette
smoking in schizophrenia patients may reflect their efforts to use
nicotine to “self-medicate” (19–21). In the present, exploratory

study, we examined the interactive effects of ketamine and nicotine
in healthy volunteers in order to determine whether impairments
in brain function mediated by NMDA receptor hypofunction can
be ameliorated by nicotine.

PARALLEL EFFECTS OF KETAMINE AND SCHIZOPHRENIA ON CLINICAL,
COGNITIVE, AND NEUROPHYSIOLOGICAL FUNCTION
When administered at subanesthetic doses, ketamine produces an
array of transient effects in healthy humans that resemble the posi-
tive and negative symptoms and cognitive deficits of schizophrenia
(4, 7–13, 22–26). Ketamine has also been shown to produce some
of the event-related brain potential (ERP) abnormalities observed
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in schizophrenia including reductions of two ERP components
associated with controlled and automatic processing of deviant
stimuli, P300 and mismatch negativity (MMN), as described
below.

P300 is a positive voltage ERP component occurring about
300 ms following infrequent deviant stimuli interspersed among
frequent “standard” stimuli, typically elicited in auditory or visual
“oddball” tasks (27). P300 has been posited to reflect allocation of
attentional resources (28–30), stimulus categorization (31), and
contextual updating of working memory (32). Multiple brain
regions have been implicated as neural generators of the P300,
including the temporo-parietal junction and prefrontal cortex (33,
34). P300 comprises two subcomponents, the P3b and P3a that are
differentially present depending on task conditions (27, 35–38).
The P3b is primarily elicited by infrequent target stimuli, reflects
top-down allocation of attention, and has a parietal scalp maxi-
mum (27, 36, 37). The P3a is primarily elicited by an infrequent
non-target distractor or novel stimuli in an oddball sequence,
reflects bottom-up orienting of attention, and has a fronto-central
scalp maximum (27, 38–41).

P300 amplitude reduction, particularly auditory P3b, is one
of the most widely replicated brain abnormalities observed in
patients with schizophrenia (42, 43), although it is also reduced in
a number of other psychiatric and neurological disorders (44, 45).
Furthermore, several studies have shown that ketamine reduces
P300 amplitude in healthy volunteers (46–51), consistent with the
possibility that NMDA receptor hypofunction contributes to P300
amplitude reduction in schizophrenia. Interestingly, in the Knott
et al. (47) study, the reduction of P300 amplitude by ketamine was
only evident in the subgroup of non-smokers, consistent with a
possible protective effect of nicotine.

Mismatch negativity is a negative ERP component elicited auto-
matically by infrequent deviant auditory stimuli randomly inter-
spersed among frequent “standard” stimuli (52, 53). MMN has
been widely interpreted to reflect auditory sensory echoic memory
because the detection of deviance requires an online representa-
tion of what has recently been “standard” in the auditory stream
(52). More recently, interpretations of the MMN have empha-
sized its reflection of both short-term (seconds) and long-term
(minutes to hours) synaptic plasticity in the service of auditory
sensory/perceptual learning since the amplitude of the MMN to
a deviant stimulus increases as a function of the number of rep-
etitions of the preceding standard stimulus (54, 55). From this
perspective, memory traces of the recent auditory past code pre-
dictions of future auditory events, with the MMN signaling a
prediction error, when the auditory expectancy is violated by a
deviant stimulus (54–56). Auditory deviance along a number of
dimensions elicits MMN, including pitch, duration, intensity, and
location, among others (52, 57). MMN generators have been local-
ized to the auditory cortex and to the frontal lobes (52). MMN
is considered to be largely pre-attentive (52), and it is typically
elicited while subjects perform a distractor task.

Mismatch negativity has been shown to be reduced in
schizophrenia, particularly the duration-deviant MMN (58–60).
Moreover, MMN abnormalities, relative to P300 abnormalities,
appear to be more specific to schizophrenia (61, 62). Non-
competitive NMDA receptor antagonism by phencyclidine (PCP)

and ketamine has been shown to reduce MMN in non-human
primates (63, 64) and healthy volunteers (26, 46, 65–68), respec-
tively. However, some studies failed to find an effect of ketamine
on MMN (50) or showed the effect to depend on the type of
auditory deviance or the underlying cortical source examined (65,
67). Recently, Knott and colleagues (66) reported that reduction of
MMN with ketamine was only seen in people with a predisposition
to experience auditory hallucinations and delusions. Moreover,
this effect was blocked when these subjects were chewing nicotine
gum, consistent with a possible protective effect of nicotine (66).

EFFECTS OF NICOTINE ON NEUROCOGNITIVE AND
NEUROPHYSIOLOGICAL FUNCTION
Nicotine has been shown to enhance cognitive functions including
attention, episodic memory, and working memory in humans in
some (14–16, 69, 70), but not all (17, 18), studies. The effects of
nicotine administration or smoking on neurophysiological mea-
sures related to processing of deviant stimuli have been examined
in a number of studies (71, 72). In experienced tobacco users,
cigarette smoking or nicotine administration has been shown to
increase P300 amplitude (73–75), especially in non-smokers (47),
and/or to reduce P300 latency (74, 76, 77). However, some stud-
ies have failed to show such effects (78–81) or have found effects
on visual, but not auditory, P300 (77). In addition, some studies
(75, 82, 83), but not others (84), have shown reduced P300 ampli-
tudes in chronic smokers, suggesting a distinction between the
effects of acute and chronic exposure to nicotine. Indeed, Knott
and colleagues reported that the enhancement of P300 produced
by nicotine administration was only evident in non-smokers (47).

Regarding MMN, some studies have reported that nicotine or
nicotinic agonists increase MMN amplitude (85–88) or shorten
MMN latency (86, 89, 90), whereas others have failed to show
such amplitude increases (89–91) or latency reductions (66, 88,
91) with nicotine administration.

NICOTINE AND SCHIZOPHRENIA
There is a high prevalence of cigarette smoking among patients
with schizophrenia (92–95). This may reflect an effort by schizo-
phrenia patients to “self-medicate” clinical symptoms and a num-
ber of neurocognitive impairments including deficits in attention
and memory (19) and deficient sensory gating (96). Thus, there is
significant interest in developing nicotinic acetylcholine receptor
(nAChR) agonists to target the neurocognitive symptoms of schiz-
ophrenia. Indeed, an alpha7 nicotinic agonist, 3-[(2,4-dimethoxy)
benzylidene] Anabaseine (DMXAB) has been shown to produce
significant improvements in cognitive function and P50 sensory
gating in patients with schizophrenia (97).

Several studies have examined the effects of nicotine adminis-
tration on MMN in patients with schizophrenia. Regarding MMN
amplitude, a study of schizophrenic smokers showed that nico-
tine increases the amplitude and the latency of duration-deviant
MMN, but shows no effect on frequency-deviant MMN (98).
An earlier study from the same group examined the effects of
nicotine on a mixed sample of smoking and non-smoking schiz-
ophrenia patients with high levels of auditory hallucinations and
found no effects on MMN amplitudes in response to duration,
frequency, and intensity deviants, although the latency of the
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intensity-deviant MMN was shortened by nicotine (99). Another
study of non-smoking schizophrenia patients failed to show any
effect of nicotine on a frequency-deviant MMN (90).

NICOTINIC RECEPTOR MODULATION OF GLUTAMATERGIC
NEUROTRANSMISSION
One possible mechanism by which nAChR agonists might enhance
neurocognitive and neurophysiological function is facilitating glu-
tamatergic neurotransmission via presynaptic nAChR (100) or
via GABA interneurons (101, 102). Nicotine or nAChR agonists
have been shown to facilitate glutamatergic transmission in rat
prefrontal cortex (103, 104) and hippocampus (105). Specifically
relevant to this study, nicotine attenuates or reverses memory and
attentional deficits induced by the NMDA receptor antagonist
MK-801 (dizocilpine) in rats (106, 107). Moreover, dizocilpine
blocked nicotinic enhancement of memory consolidation in mice
(108). Knott et al. (47) examined the effects of nicotine and a
sub-perceptual dose of ketamine on P300 in men and women,
smokers and non-smokers. In non-smokers, ketamine reduced
P300, an effect that did not interact with nicotine. However, in
the third assessment block, following the drug infusion, nico-
tine increased P300 amplitude on its own but further reduced
P300 when combined with ketamine. In a subsequent study,
Knott and colleagues (66) found that ketamine reduces the ampli-
tude of MMN in healthy individuals with a high propensity
toward hallucinatory experiences and/or delusional thinking, an
effect that was blocked by nicotine. Similar effects were not evi-
dent in individuals with a low propensity toward these psychotic
symptoms.

THE RATIONALE AND HYPOTHESES FOR CURRENT STUDY
It is difficult to isolate and study the NMDA receptor hypofunction
and its consequences in schizophrenia. The ketamine paradigm in
healthy subjects offers a pharmacological model for investigat-
ing nicotine’s effect on putative NMDA receptor hypofunction
in schizophrenia. Specifically, this study examined the effects of
nAChR activation on NMDA receptor hypofunction by investi-
gating the interactions of ketamine, a non-competitive NMDA
receptor antagonist, and nicotine, a nAChR agonist, when admin-
istered to healthy volunteers in a placebo-controlled study over
four test days. The neurophysiological outcome measures, chosen
based on their established sensitivity to schizophrenia, consisted
of: (1) two variants of the auditory P300, the P3b elicited by tar-
get stimuli and the P3a elicited by novel distractor stimuli, and
(2) the MMN elicited automatically by a duration-deviant audi-
tory stimulus. The primary and secondary hypotheses were that
nicotine would attenuate the neurophysiological abnormalities
and schizophrenia-like clinical symptoms induced by ketamine,
respectively.

MATERIALS AND METHODS
RESEARCH PARTICIPANTS
The study was approved by the Institutional Review Boards of
VA Connecticut Healthcare System (West Haven, CT, USA) and
Yale University School of Medicine (New Haven, CT, USA). Sub-
jects were recruited via public advertisements and were paid for
their study participation. Written informed consent was obtained

from all subjects. Smokers who were not interested in quitting
and lifetime non-smokers who had tried nicotine in the past were
both invited to participate. Subjects were medically healthy by
physical examination, history, electrocardiography, and laboratory
testing. They had no history of a DSM-IV Axis-I disorder (other
than nicotine dependence), major current or recent (<6 weeks)
life stressors, and first-degree relative with a history of psychosis.
Screening procedures included the Structured Clinical Interview
for DSM-IV, Non-Patient Edition (109), selected sub-tests from
the Wechsler Adult Intelligence Scale (Information, Vocabulary,
Block Design, Picture Completion) to provide an estimate of gen-
eral level of cognitive ability (110), and the Fagerström Test for
Nicotine Dependence (111) to measure the severity of nicotine
dependence in smokers. Subjects were instructed to refrain from
consuming psychoactive substances from 1 week prior to testing
through completion of the study. An outside informant identi-
fied by the subject was interviewed to corroborate information
provided by potential subjects. Urine toxicology testing was per-
formed at screening and on the morning of each test day to rule
out recent illicit substance use. Subjects were instructed to fast
overnight and abstain from smoking after 11:00 p.m. prior to
arrival for each test day. They were excluded if breath carbon
monoxide levels were higher than 10 ppm.

Seventeen subjects participated in at least one test day. Eight
of the 17 subjects scheduled for four test days did not complete
testing: 3 of 5 (60%) non-smokers and 5 of 12 (42%) smokers.
The reasons for discontinuation were mostly related to adverse
effects of ketamine or nicotine (n= 6). Adverse events and study
discontinuations were reported to the VA Connecticut Human
Studies Subcommittee. As with all of our prior ketamine stud-
ies, clinical follow-ups indicated that all adverse events associated
with acute ketamine administration resolved spontaneously with-
out any late appearing or persistent adverse effects. There were
no significant differences in age, sex, education, smoking status,
or Fagerström Nicotine Dependence scores between study com-
pleters and non-completers. Only nine subjects completed all four
test days. Demographic data for these nine completers are pre-
sented in Table 1. Of the nine completers (five men, four women),
one woman was excluded from the ERP analyses because she was
too somnolent and impaired to perform the oddball task or the
MMN distractor task during the Ketamine Alone test day. In addi-
tion, one man was dropped from the ERP MMN analysis because
of technical problems running the MMN paradigm during his
Nicotine Alone test day.

Table 1 | Demographic data for study completers (N = 9).

Variable Number of subjects

Gender (male/female) 5/4

Smoking status (smoker/non-smoker) 7/2

Mean (SD)

Age (years) 29.8 (7.9)

Education (years) 16.8 (3.0)

Fagerström nicotine dependence score 1.78 (2.28)
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TEST DAYS
Across the four test days, subjects received ketamine and nicotine
in a double-blind, randomized, 2× 2 crossover design. On each
test day, subjects received ketamine (a bolus of 0.26 mg/kg over
1 min, followed by maintenance infusion at 0.65 mg/kg/h× 2 h)
or placebo (normal saline). Fifteen minutes after the keta-
mine bolus, subjects received an intravenous infusion of nico-
tine (1.0 µg/kg/min× 10 min) or placebo followed by another
nicotine or placebo injection 70 min later. The reason for two
spaced nicotine injections was to attempt to minimize the pos-
sibility of desensitization that is known to occur with nicotine
exposure. The dose of nicotine administered with each infusion
(1.0 µg/kg/min× 10 min)= 0.7 mg in a 70-kg individual. A regu-
lar cigarette contains about 1.2–1.4 mg nicotine and an average of
0.88 mg of nicotine is delivered to a smoker from each cigarette.
The timing of procedures is detailed in Table 2. Behavioral rat-
ings were obtained at baseline and repeated periodically after the
administration of ketamine and nicotine, but ERP data were col-
lected only once per test day. Plasma ketamine and nicotine levels
were measured after each infusion to rule out any pharmacokinetic
interactions.

BEHAVIORAL MEASURES
The schizophrenia-like clinical symptoms induced by ketamine
were assessed using the Positive and Negative Syndrome Scale
(PANSS) (112). Perceptual alterations were assessed using the
Clinician Administered Dissociative Symptoms Scale (CADSS)
(113). The following subjective states were rated by participants
using 100-mm Visual Analog Scales (VASs) (10): Talkative, Happy,
Drowsy, Tense, Dad, Calm, Depressed, Anxious, Energetic, Fearful,
Mellow, High,Angry, Mania, Irritable, Tired, Hungry, and Craving.

ANALYSIS OF NICOTINE AND KETAMINE LEVELS
Plasma ketamine and norketamine were assayed using the iden-
tical method as described in detail elsewhere (114). Plasma
nicotine concentrations were assayed using reversed-phase high-
performance liquid chromatography (HPLC) based on a modifi-
cation of a previously described method (115, 116). The nicotine
assay involved HPLC/MS operated in the APCI/SIM mode using
deuterated nicotine as an internal standard. After addition of the
internal standard the plasma is deproteinized with sulfosalicylic
acid and the supernatant made alkaline and extracted with hep-
tane methylene chloride 85:15. This solvent is then dried down
via vacuum centrifuge. The residue is redissolved in ethanol and
an aliquot is injected into the HPLC. The HPLC column (Nova
Pak C18 30 cm× 3.9 mm, 4 µm) is run in the isocratic mode using
methanol acetonitrile ammonium formate (pH 4.0) 32.5:42.5:35.0
as mobile phase. The standard curve encompassing a range of 1–
200 ng/ml was linear with negligible intercept. Plasma controls
containing 4, 40, and 80 ng/ml nicotine in six consecutive runs
demonstrated an inter-assay relative standard deviation RSD of
8.6, 7.4, and 8.3%, respectively.

ERP MEASURES
Electroencephalography (EEG) data were recorded using a 23-
channel Physiometrix electrode cap. The cap included one ground
electrode placed on the forehead (FPz), and the mean of freely

Table 2 | Study procedures.

Time (minutes) Procedure

−110 IV lines and EEG leads placed, PANSS, CADSS, VAS,

VS, plasma cotinine level, breath carbon monoxide,

urine toxicology, training for AX-CPT

−20 Ketamine or placebo bolus plus infusion

−19 VS, PANSS, CADSS, VAS

−5 VS

0 Nicotine or placebo

+3 VS

+5 AX-CPT, ERP recording for MMN, periodic VS

+35 Plasma ketamine and nicotine levels, VS, PANSS,

CADSS, VAS

+58 VS

+60 Nicotine or placebo

+63 VS

+65 ERP recording for P300, periodic VS

+98 Plasma ketamine and nicotine levels

+100 VS

+110 PANSS, CADSS, VAS, VS

+180 PANSS, CADSS, VAS, VS

+240 VS, discharge

PANSS, Positive and Negative Syndrome Scale; CADSS, Clinician Administered

Dissociative Symptoms Scale; VAS, Visual Analog Scale; VS, vital signs; MMN,

mismatch negativity; AX-CPT, AX-Continuous Performance Test.

placed bilateral earlobe electrodes served as the reference channel.
Vertical and horizontal electro-oculograms (VEOGs and HEOGs)
were recorded and used to correct EEG data for eye blink and
eye-movement artifacts. Electrode impedances were maintained
at <5 kΩ. The data were recorded using Neuroscan Synamps
amplifiers, which were calibrated prior to each session. Data were
acquired using a 0.05–100-Hz band pass filter, and the sampling
rate was 1000 Hz.

P300 was elicited during an auditory oddball target detec-
tion task. Three types of stimuli were delivered through Etymotic
ER-3A insert earphones: (1) standard tones: 500 Hz pure tones
(rise/fall 5 ms; 50 ms duration), (2) target tones: 1000 Hz pure
tones (rise/fall 5 ms; 50 ms duration), and (3) novel distractor
sounds, selected from a corpus of novel sounds (average duration
of 250 ms) developed by Friedman et al. (117). All auditory stimuli
were presented at an identical sound pressure level (~80 dB SPL
C scale). The task was presented in three blocks. Each block com-
prised of 150 pseudo-randomized stimuli (80% standards, 10%
targets, 10% novel distractors) presented with a stimulus onset
asynchrony (SOA) of 1250 ms. Subjects were instructed to press
a response button with the index finger of their dominant hand
each time a target tone occurred, giving equal emphasis to speed
and accuracy.

For the MMN paradigm, subjects were presented with a
pseudorandom sequence of standard tones (90% probability;
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633 Hz; 5 ms rise/fall time; 50 ms duration) and duration-deviant
tones (10% probability; 633 Hz, 5 ms rise/fall time, 100 ms dura-
tion) presented at 80 dB SPL, with a 510-ms SOA. A long duration-
deviant MMN paradigm was chosen because of some evidence
that it may more sensitive to the effect of schizophrenia than other
types of MMN (58, 60, 61). The MMN paradigm was presented in
two blocks, with each block comprising 783 standard tones and 87
deviant tones. These tones were presented binaurally through ear-
phone inserts, while subjects performed a visual AX-Continuous
Performance Task (AX-CPT) (118). Because several of the behav-
ioral performance files from this task were irretrievably corrupted
resulting in many subjects with missing behavioral performance
data, the AX-CPT performance data were not analyzed in the cur-
rent study. Thus, the AX-CPT essentially served as the distractor
task during MMN recording.

ERP DATA PROCESSING
As the MMN and P300 measures generally achieve their maximum
amplitudes along the midline and do not typically show hemi-
spheric lateralization, EEG data from the midline fronto-central
sites (Fz, Cz) and fronto-central-parietal sites (Fz, Cz, Pz) were
analyzed for the MMN and P300 components, respectively. The
processing pipeline for the P300 elicited during the three-stimulus
auditory oddball task involved the following steps: continuous
data were separated into 1000 ms epochs time-locked to stimulus
onset, with a 100-ms pre-stimulus baseline. VEOG and HEOG

data were used to correct EEG for eye-movements and blinks
with a regression-based algorithm (119). After baseline correc-
tion, epochs containing artifacts (voltages exceeding ±100 µV)
were rejected. P300 was identified as the most positive peak in a
235- to 400-ms time window following stimulus onset; however,
because target P3b and novelty P3a have different topographies,
different rules were used for identifying their peaks. The target
P3b peak was first identified at Pz, then a 50-ms window (±25 ms)
surrounding this peak’s latency was used to identify target P3b
peaks at other sites. Novelty P3a showed more scalp variability in
peak latency than target P3b, particularly at frontal sites, leading
us to adopt a more flexible peak identification approach. Novelty
P3a peaks were first identified at all central and parietal sites. From
the range of peak latencies obtained at central sites (C3, Cz, C4),
minimum and maximum latencies were identified. By subtract-
ing 50 ms from the minimum and adding 50 ms to the maximum,
the search window for identification of P3a peaks at frontal sites
was defined. Somewhat early latency cut-off (400 ms) for auditory
P300s was chosen to avoid picking the second late positive compo-
nent, which peaked around 550 ms (see Figure 1). Peak amplitudes
and latencies for target P3b and novelty P3a were extracted from
electrodes Fz, Cz, and Pz for statistical analyses.

The same eye-movement correction and artifact rejection cri-
teria used in the P300 data processing pipeline were applied to
the MMN standard and deviant trials, but these data were seg-
mented into 550 ms epochs and baseline corrected using the 50-ms

FIGURE 1 | Event-related brain potential grand average waveforms
(left) and corresponding topographic maps (right) are shown for
placebo (black), ketamine alone (red), nicotine alone (blue), and
ketamine + nicotine (magenta) days. ERPs, overlaid for each test day,
are shown to oddball targets at Pz (top row), to oddball novels at Cz
(middle row), and to difference waveforms (deviants-standards) at Cz. The
oddball target elicited a P3b, the oddball novel elicited a P3a, and the

deviant elicited a MMN, with each peak denoted by an arrow on the ERP
waveforms. Amplitude in microvolts is on the y -axis, and latency in
milliseconds is on the x -axis. Stimulus onset is at 0 ms. Negativity is
plotted down. Scalp topography maps are shown for each test day for each
stimulus, at the peak latency for P3b (top), P3a (middle), and MMN
(bottom). Hot colors indicate positive voltage and cool colors, negative
voltage.
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preceding tone onset. Standard and deviant trials remaining after
artifact rejection were averaged separately, and the resulting ERP
for the standard was subtracted from the deviant to create a differ-
ence wave. MMN was identified as the most negative peak between
90 and 270 ms post-tone onset in the difference wave at elec-
trodes Fz and Cz. Peak amplitudes and latencies were extracted
for statistical analyses.

STATISTICAL ANALYSES
Behavioral data
Initially, behavioral data were examined descriptively using means,
standard deviations, and graphs. Each measure was tested for nor-
mality using Kolmogorov-Smirnov test statistics and normal prob-
ability plots. All PANSS, CADSS, and VAS measures were highly
skewed. Thus, these non-normal behavioral data were first ranked
and then fitted using a mixed-effects model with an unstructured
variance-covariance matrix and p-values adjusted for Analysis of
Variance (ANOVA)-type statistics (ATS). In these models, Keta-
mine (active vs. placebo), Nicotine (active vs. placebo), and Time
(−110,−19,+35,+110, and+180 min) were included as within-
subjects explanatory factors, while Subject was the clustering fac-
tor. Time reflected the time point, in minutes, relative to Time 0
when the first intravenous infusion of active-nicotine or placebo-
nicotine was initiated (see Table 2). All two- and three-way
interactions were modeled. Significant interactions were followed
by appropriate post hoc tests and graphical displays to interpret
the effects. All results were considered statistically significant at
p < 0.05. Bonferroni correction was applied within but not across

domains. Thus, for example, a cut-off alpha level of 0.05/2= 0.025
was used to declare effects significant for the two CADSS ratings
(Subject- and Clinician-Rated).

ERP data
For the ERP data, which were collected once per test day, repeated-
measures ANOVAs were conducted with Ketamine (active vs.
placebo) and Nicotine (active vs. placebo) as within-subjects fac-
tors. The ANOVA models assessing P300 amplitudes and latencies
included two additional within-subjects factors: Deviant Type
(target vs. novel) and Lead (Fz vs. Cz vs. Pz). The ANOVA model
for MMN amplitude and latency included one additional within-
subjects factor: Lead (Fz vs. Cz). Analyses proceeded in a hier-
archical fashion, with higher order interactions being parsed by
examining lower order simple main effects and interactions. Ulti-
mately, condition comparisons were tested with single degree of
freedom contrasts.

RESULTS
BEHAVIORAL DATA
Ketamine produced significant increases in PANSS Total, CADSS
Subject-Rated and Clinician-Rated Perceptual Alterations, and
VAS subjective “High” ratings (see Figure 2). All Ketamine main
effects and Ketamine×Time interactions were significant at
p < 0.0001 (Table 3). Post hoc analyses showed significant effects
of Ketamine at time points −19, +35, and +110 (all p < 0.05)
for each of these measures. There were no significant main effects
of Nicotine. Nor were there any significant Ketamine×Nicotine

FIGURE 2 | Mean and standard errors are plotted for Positive and
Negative Syndrome Scale (PANSS) total scores (upper left),Visual
Analog Scale of subjective states (upper right), subject-rate (lower-left)
and clinician-rated (lower-right) perceptual alterations using the

Clinician Administered Dissociative Symptoms Scale (CADSS). For each
plot, values for each of the four test days are overlaid, for Placebo (black),
Ketamine Alone (red), Nicotine Alone (blue), and Ketamine+Nicotine
(magenta) days.
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Mathalon et al. Nicotine modulation of ketamine effects

or Ketamine×Nicotine×Time interactions for any of these
outcome measures.

P300 AMPLITUDE
Event-related brain potential overlays showing P300 waves and
topographic maps are shown in Figure 1, P300 peak ampli-
tude and latency means are presented in Table 4 and histograms
showing the effects of the drug conditions on P3b and P3a are
shown in Figure 3. Results of the Ketamine×Nicotine×Deviant
Type× Lead repeated-measures ANOVA for P300 amplitude and
latency are presented in Table 5.

In terms of main effects, only the effect of Lead was signifi-
cant, with contrasts indicating equivalent P300 amplitudes at Pz
and Cz that were both larger than P300 amplitude at Fz. In terms
of two-way interactions, there were significant Ketamine× Lead
(p= 0.02) and Deviant Type× Lead (p= 0.001) effects, with a
trend (p= 0.057) toward a Deviant Type×Nicotine effect. The
Ketamine× Lead effect was parsed by examining the main effects
of Ketamine separately for each of the three midline leads, with
results showing ketamine to significantly reduce P300 ampli-
tude at electrode Cz (p= 0.046), but not at Fz (p= 0.384) or Pz
(p= 0.11). This ketamine-induced reduction of midline vertex

Table 4 | Means and standard errors for auditory oddball P300

amplitude and latency across the four test sessions.

Condition Deviant type Lead P300 peak

Amplitude (µV) Latency (ms)

Mean SE Mean SE

Placebo Target P3b Fz 4.232 0.961 283.625 12.659

Cz 8.423 1.213 274.125 9.003

Pz 10.981 0.713 288.500 10.544

Novelty P3a Fz 7.049 1.052 313.125 17.845

Cz 11.409 0.727 277.000 12.694

Pz 11.036 0.727 296.625 14.493

Ketamine

alone

Target P3b Fz 3.043 1.639 338.125 20.994
Cz 5.490 2.337 333.750 21.874

Pz 9.744 1.300 341.500 19.991

Novelty P3a Fz 7.356 0.935 311.125 15.725

Cz 9.973 1.480 289.000 17.537

Pz 8.882 0.886 311.375 13.950

Nicotine

alone

Target P3b Fz 4.698 1.120 292.375 7.426
Cz 8.792 1.671 280.375 9.653

Pz 10.990 1.695 284.000 7.778

Novelty P3a Fz 6.163 0.870 300.375 14.645

Cz 9.142 1.471 269.125 9.875

Pz 8.208 1.331 284.250 13.080

Ketamine+

nicotine

Target P3b Fz 4.126 0.719 311.625 21.304
Cz 6.741 0.736 306.250 21.445

Pz 9.790 1.119 315.000 20.376

Novelty P3a Fz 5.189 0.614 311.875 10.419

Cz 6.364 1.108 280.500 13.340

Pz 5.916 1.185 298.625 13.143

P300 amplitude did not significantly depend on Deviant Type
(p= 0.389). The Deviant Type× Lead effect was parsed by exam-
ining lead effects separately for targets and novels, both of which
were significant. These Lead effects reflected the typical midline
scalp topographies of target P3b amplitude (i.e., Fz < Cz < Pz)
and novelty P3a amplitude (i.e., Fz < Cz=Pz). The Deviant
Type×Nicotine trend was parsed by examining the main effect of
Nicotine for each Deviant Type separately. Nicotine significantly
reduced the amplitude of novelty P3a (p= 0.02) but not target P3b
(p= 0.737). No other main effects or interactions were significant.

P300 LATENCY
There was a significant main effect of Ketamine (p= 0.043) indi-
cating that ketamine delayed P300 latency by 25.44 ms relative to
placebo (Tables 4 and 5). There was also a significant main effect
of Lead (p= 0.018) indicating that P300’s peak latency was signif-
icantly shorter at Cz than at Pz and Fz. No other main effects or
interactions were significant (see Table 5).

MISMATCH NEGATIVITY AMPLITUDE
Event-related brain potential overlays showing MMN differ-
ence waves and topographic maps are shown in Figure 1,
MMN peak amplitude and latency means are presented in
Table 6, and histograms showing the effects of the drug
conditions on MMN are shown in Figure 4. The ANOVA
results for MMN amplitude are presented in Table 7. None
of the main effects were significant, but there were significant
Nicotine×Ketamine and Nicotine×Ketamine× Lead interac-
tions. The Nicotine×Ketamine× Lead three-way interaction was
parsed by examining the Nicotine×Ketamine effect separately for
Fz and Cz. The Nicotine×Ketamine effect was significant at Cz

FIGURE 3 | Mean P300 amplitude across four test days. (A) Mean target
P3b amplitude for each test day. (B) Mean novelty P3a amplitude for each
test day. Error bars indicate standard errors.
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Mathalon et al. Nicotine modulation of ketamine effects

Table 5 | Analysis of variance (ANOVA) of P300 peak amplitudes and latencies.

Effect P300 peak amplitude P300 peak latency

df F p-Value Direction of effect F p-Value Direction of effect

Deviant type (target vs. novel) 1.7 1.33 0.287 2.72 0.143

Nicotine (nicotine vs. placebo-nicotine) 1.7 0.85 0.388 1.12 0.325

Ketamine (ketamine vs. placebo-ketamine) 1.7 3.64 0.098 6.09 0.043 Ketamine > placebo

Lead (Fz vs. Cz vs. Pz) 2.6 61.71 <0.001 Fz < Cz=Pz 8.52 0.018 Cz < Fz=Pz

Deviant type× ketamine 1.7 0.001 0.982 2.21 0.181

Deviant type×nicotine 1.7 5.20 0.057 0.01 0.912

Nicotine effect for targets 1.7 0.12 0.737

Nicotine effect for novels 1.7 9.06 0.020 Nicotine < placebo

Deviant type× lead 2.6 26.95 0.001 4.59 0.062

Lead effect for targets 2.6 53.08 <0.001 Fz < Cz < Pz

Lead effect for novels 1.7 17.69 0.001 Fz < Cz =Pz

Nicotine× ketamine 1.7 0.02 0.900 0.87 0.381

Nicotine× lead 2.6 0.82 0.486 1.40 0.317

Ketamine× lead 2.6 8.04 0.020 0.34 0.723

Ketamine effect at Fz 1.7 0.86 0.384

Ketamine effect at Cz 1.7 5.87 0.046 Ketamine < placebo

Ketamine effect at Pz 1.7 3.34 0.110

Deviant type× ketamine× lead 2.6 1.11 0.389 0.07 0.932

Deviant type×nicotine× lead 2.6 2.01 0.215 0.00 1.000

Deviant type×nicotine× ketamine 1.7 1.02 0.346 0.79 0.405

Nicotine× ketamine× lead 2.6 0.04 0.958 0.33 0.729

Deviant type×nicotine× ketamine× lead 2.6 3.16 0.116 0.21 0.818

ANOVA results are based on mutlivariate assumptions for repeated-measures, and all F-tests are based on Wilks’ Lambda. Follow-up ANOVA results are shown in

italics. Significant p-values are shown in bold.

Table 6 | Means and standard errors for mismatch negativity

amplitude and latency across the four test sessions.

Condition Lead MMN peak

Amplitude (µV) Latency (ms)

Mean SE Mean SE

Placebo Fz −4.591 0.687 196.286 8.216

Cz −4.905 0.604 196.143 7.802

Ketamine alone Fz −4.216 0.949 179.429 11.487

Cz −4.286 1.083 180.143 11.531

Nicotine alone Fz −4.270 0.763 201.143 7.561

Cz −4.239 0.873 194.143 11.754

Ketamine+nicotine Fz −3.890 1.012 177.571 10.040

Cz −4.411 1.152 172.000 11.103

(p= 0.015) but not at Fz (p= 0.347). The Nicotine×Ketamine
effect at Cz and the overall Nicotine×Ketamine two-way inter-
action (averaged over leads) were parsed by examining the main
effect of each drug condition separately for the active and placebo
days of the other drug condition. Nicotine Alone produced a trend

level reduction of MMN amplitude relative to Placebo (p= 0.058
for Cz; p= 0.084 for average of Fz and Cz), but this Nicotine
effect was not evident when Nicotine+Ketamine was compared
to Ketamine Alone. In contrast, Ketamine did not significantly
affect MMN amplitude when administered alone or along with
Nicotine. No other interaction effects were significant.

MISMATCH NEGATIVITY LATENCY
Analysis of variance results for MMN latency are presented in
Table 7. There was a significant main effect of ketamine (p= 0.025)
indicating that ketamine shortened MMN latency by 19.64 ms
relative to placebo. No other main effects or interactions were
significant.

PLASMA DRUG LEVELS
Mean plasma levels for ketamine, norketamine, dehydroketamine,
and nicotine are presented in Table 8. There were no significant
differences in levels of plasma ketamine, norketamine, or dehy-
droketamine levels between the ketamine alone condition and the
ketamine–nicotine condition. In addition, there were no signif-
icant differences in plasma nicotine levels between the nicotine
alone condition and the ketamine–nicotine condition.
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Mathalon et al. Nicotine modulation of ketamine effects

FIGURE 4 | Mean and standard errors for MMN amplitudes recorded at
Cz are plotted for the four test days.

DISCUSSION
The principal findings of the current study are the differential
effects of ketamine and nicotine on MMN and P300, and their
interactive effects on MMN.

EFFECTS OF KETAMINE
Consistent with previous studies (4, 5, 7–13, 120), ketamine
induced transient schizophrenia-like behavioral effects in healthy
subjects. In terms of the electrophysiological measures, ketamine
decreased the amplitude and delayed the latency of P300, regard-
less of whether P300 was elicited by a target or novel stimulus.
The decrease in amplitude is consistent with the other ERP studies
showing ketamine to reduce P300 amplitude at parietal leads (46–
51), although we did not observe the previously reported increase
in novelty P3a at frontal leads with ketamine (51). Our results are
also consistent with a prior study showing ketamine to decrease the
amplitude of the late positive potential in a working memory task
(9). These results provide evidence that glutamatergic neurotrans-
mission at NMDA receptors contribute to P300 generation, both
in response to infrequent target stimuli (P3b) and infrequent novel
stimuli (P3a). Moreover, inasmuch as P300 amplitude reduction
and latency delay are well established in schizophrenia (42, 43,
121, 122), our findings are consistent with the NMDA receptor
hypofunction model of schizophrenia (1–3, 5, 6, 123, 124) and its
possible role in mediating P300 deficits.

The current study did not find ketamine to significantly reduce
MMN amplitude. This conflicts with a number of previous stud-
ies (26, 46, 65–68), but is consistent with some studies that either
failed to show a ketamine effect on MMN (50) or showed the
ketamine-induced MMN reduction to be limited to a subset of
task conditions or cortical source locations (26, 65, 67), or to a sub-
group of subjects (66). The discrepant results across these studies
may be due to differences in the dosage and dosing schedule of

ketamine. For example, the study with the most robust effects (26)
used a high dose of ketamine (0.9 mg/kg), while the study with a
non-significant result (50) used a relatively low dose (0.3 mg/kg).
Heekeren and colleagues (65) also demonstrated dose-dependent
changes in MMN amplitude using two different doses of ketamine
(0.1–0.15 and 0.15–0.20 mg/kg). The absence of a significant ket-
amine effect on MMN in our study may also have been related
to the relatively small size of our subject sample, resulting in
limited power to detect an effect. For the ketamine vs. placebo
effect on MMN amplitude during the placebo-nicotine day, the
effect size (Cohen’s d) was estimated to be −0.43. This effect size,
which appears to be smaller than the effects reported in prior stud-
ies showing ketamine to reduce MMN, would reach significance
(p < 0.05) with a sample of about 25 subjects. This underscores
the limited power in our current study, and points to an effect of
ketamine on MMN that may emerge with moderate sample sizes.

However, it is noteworthy that our sample size was sufficiently
large to detect robust psychotomimetic effects of ketamine, as
well as significant ketamine-induced reductions and delays in
the P300 ERP component. Thus, consistent with the report of
Oranje and colleagues (50), the P300 ERP component appears
to be more sensitive to the effects of NMDA receptor blockade
than the MMN component. In terms of MMN latency, ketamine
reduced MMN latency by about 19 ms. This effect has not been
previously reported to our knowledge, and therefore should be
regarded as preliminary pending replication in future studies.

EFFECTS OF NICOTINE
To our knowledge, this is the first study to show nicotine to
reduce the novelty P300 (P3a) in humans. This unexpected finding
appears to conflict with the plethora of evidence showing nico-
tine to enhance cognitive functions, including attention (14–16).
It is possible to construe the novelty P3a reduction by nicotine
as a reflection of enhanced focus on the target detection task
and reduced susceptibility to distraction by non-target distractors.
However, such an interpretation is not consistent with other evi-
dence showing P3a reduction in patients with schizophrenia (43,
121, 125–128) and patients with frontal lobe lesions (129–131),
two conditions known to be associated with attentional impair-
ments and increased distractibility. Thus, nicotine’s reduction of
the P3a response to novel distractors is unlikely to be a reflection
of its cognitive enhancing effects.

We did not observe significant effects of nicotine on target P300
(P3b), inconsistent with some prior reports showing nicotine to
increase P300 amplitude (47, 73, 74) and decrease P300 latency
(75, 77) in smokers. However, our results are consistent with other
studies reporting no effects of nicotine on P300 (76, 78–80). Our
study was relatively unique in its use of the intravenous route for
nicotine administration, which may partially account for inconsis-
tencies between our results and some prior studies. More generally,
inconsistencies among studies may also be related to differences
in the type of nicotinic agonist and dosage used, differences in
sensory modality of the oddball task used to elicit the P300, and
different representations of smokers and non-smokers in the study
samples.

The differential effects of nicotine on P3a and P3b in our study
is consistent with other evidence that the neuroanatomical (33)
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Table 7 | Analysis of variance (ANOVA) of MMN peak amplitudes and latencies.

Effect df MMN peak amplitude MMN peak latency

F p-Value Direction of effect F p-Value Direction of effect

Nicotine (active-nicotine vs. placebo-nicotine) 1.6 2.04 0.203 0.03 0.875

Ketamine (active ketamine vs. placebo-ketamine) 1.6 0.20 0.668 8.77 0.025 Ketamine < placebo

Lead (Fz vs. Cz) 1.6 1.27 0.302 0.27 0.624

Nicotine× ketamine 1.6 7.04 0.038 0.11 0.756

Nicotine effect during placebo-ketamine 1.6 4.27 0.084 Nicotine < placebo

Nicotine effect during active ketamine 1.6 0.26 0.629

Ketamine effect during placebo-nicotine 1.6 1.28 0.301

Ketamine effect during active-nicotine 1.6 0.47 0.519

Nicotine× lead 1.6 0.01 0.914 1.81 0.227

Ketamine× lead 1.6 0.26 0.627 0.04 0.854

Nicotine× ketamine× lead 1.6 9.50 0.022 0.00 0.972

Nicotine× ketamine at Fz 1.6 1.04 0.347

Nicotine× ketamine at Cz 1.6 11.38 0.015

Nicotine effect during placebo-ketamine 1.6 5.48 0.058 Nicotine < placebo

Nicotine effect during active ketamine 1.6 0.003 0.960 Nicotine≥placebo

Ketamine effect during placebo-nicotine 1.6 1.40 0.281 Ketamine≤placebo

Ketamine effect during active-nicotine 1.6 2.94 0.137 Ketamine≥placebo

ANOVA results are based on mutlivariate assumptions for repeated-measures, and all F-tests are based on Wilks’ Lambda. Follow-up ANOVA results are shown in

italics. Significant p-values are shown in bold.

Table 8 | Plasma ketamine, norketamine, dehydroketamine and nicotine levels.

Blood level (ng/ml) Time Placebo Ketamine alone Nicotine alone Ketamine + nicotine

Ketamine +35 174.91 (59.92) 171.22 (62.21)

+98 222.40 (57.55) 229.78 (64.52)

Norketamine +35 70.82 (32.61) 73.78 (40.92)

+98 147.20 (52.21) 138.67 (45.92)

Dehydroketamine +35 16.09 (9.86) 17.78 (9.04)

+98 42.20 (19.77) 42.33 (23.52)

Nicotine +35 6.92 (3.23) 10.18 (4.31)

+98 6.65 (2.63) 12.93 (7.01)

Ketamine levels were assayed only on the days that subjects received ketamine (ketamine alone and ketamine+ nicotine) and nicotine was assayed only on the days

that subjects received nicotine (nicotine alone and nicotine+ ketamine).

and neurochemical (71) underpinnings of P3a and P3b are at least
partially dissociable. Polich and Criado (71) proposed dopamin-
ergic/frontal processes for P3a generation and locus coeruleus-
mediated noradrenergic/parietal processes for P3b generation.
Evidence for this includes demonstrations that chronic abuse of
different street drugs are associated with differential effects on P3a
and P3b amplitudes (71). Nonetheless, roles for nicotinic cholin-
ergic neurotransmission, as well as glutamatergic neurotransmis-
sion, have not figured prominently in prior neurochemical models
of P300 generation.

Nicotine alone produced a trend level reduction of MMN
amplitude, but this effect was not evident when comparing the
Nicotine+Ketamine condition to Ketamine alone. These results
conflict with some prior studies showing nicotine or nicotinic

agonists to enhance MMN amplitude in response to duration
(85), frequency (86, 87), or inter-stimulus interval (88) deviants
in healthy volunteers, and similarly failed to corroborate studies
showing nicotine to enhance duration-deviant MMN amplitude
in schizophrenia patients (98). One possible reason for the discrep-
ancy between our findings and those reported previously is that
our study used an intravenous route of nicotine administration
whereas prior studies used either gum (85, 88, 98) or a trans-
dermal patch (87). While differences in the pharmacokinetics and
pharmacodynamics between intravenous vs. gum and transdermal
routes of administration have not been systematically studied’, it is
likely that time to onset of action and peak levels achieved would
differ between these modes of nicotine delivery, and such differ-
ences could account for variability in the effects of nicotine on
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MMN. At the same time, it should be noted that a number of
studies using gum (47, 99) or transdermal patches (89, 90) failed
to demonstrate an enhancement of MMN amplitude by nicotine.
Moreover, the fact that our study focused on duration-deviant
MMN, in part because of evidence that it is more sensitive to
schizophrenia than other types of MMN (58, 60, 61) cannot be
the reason we failed to observe enhancement by nicotine, since at
least two prior studies have shown the amplitude of the duration-
deviant MMN to be increased by nicotine [Ref. (85, 98); but, see
Ref. (99)].

COMBINED EFFECT OF KETAMINE AND NICOTINE
Discordant with the study hypothesis, nicotine did not improve
either the behavioral or neurophysiological abnormalities induced
by ketamine. Of the many drugs tested in the ketamine model,
few have been shown to reduce the schizophrenia-like behav-
ioral and cognitive effects of ketamine in healthy human sub-
jects. Lamotrigine, but not haloperidol or lorazepam, has been
shown to reduce some of the behavioral and cognitive symp-
toms induced by ketamine in healthy volunteers (132–134). With
previous findings from animal and human studies document-
ing cognitive enhancing effects of nicotine in humans (135–138)
and animals (139, 140), including animal data showing nicotine
to ameliorate NMDA-antagonist induced cognitive deficits (106,
107) or NMDA-antagonists to block cognitive enhancing effects
of nicotine (108), it was surprising that nicotine did not show
any tendency to reverse ketamine’s psychotomimetic or cognitive
ERP effects. Inconsistencies among studies may be due to differ-
ences in nicotine dose, rate, and route of nicotine administration,
and the smoking status of the subjects tested. Importantly, our
results are consistent with other studies showing that nicotine did
not block ketamine’s deleterious effects on P300 (47) or on neu-
rocognitive test performance (141) in humans, suggesting that any
pro-cognitive effects of nicotine may not be able to overcome the
impairments produced by NMDA receptor blockade. However,
our results were not consistent with a prior study that showed nico-
tine to prevent ketamine’s reduction on MMN amplitude, an effect
that was only observed in the subgroup of healthy volunteers with
a high propensity to have hallucinatory experiences (66). How-
ever, this prior study used a substantially lower dose of ketamine
than used in the current study, and nicotine was administered with
chewing gum rather than the intravenous route employed here.

LIMITATIONS
The main limitations of the current study include the small sample
size, the high dropout rate, the heterogeneous smoking status of
our sample, and the use of only one dose of nicotine. Future stud-
ies aimed at elucidating the effects of nicotine on patients with
schizophrenia by using pharmacological models of psychosis in
healthy volunteers must consider the fact that the large majority
of schizophrenia patients are significantly dependent on nicotine.
Accordingly, for studies about nAChR function to be relevant to
schizophrenia, heavy smokers need to be included in the sub-
ject sample. However, the inclusion of nicotine-dependent heavy
smokers in such studies raises the question of when to schedule
the nicotine challenge relative to the timing of their last ciga-
rette. Studying smokers who have been asked to abstain from

smoking for several hours or more prior to study onset would
mean studying them in a nicotine-withdrawal state. On the other
hand, studying smokers who have smoked recently and are in
a nicotine-satiated state may obscure the effects of intravenous
nicotine. Further complicating this issue, studying non-smokers
would result in high dropout routes because nicotine is generally
unpleasant to non-smokers. Moreover, data from non-smokers
may not generalize to schizophrenia patients, most of whom are
heavy smokers.

In conclusion, the results of this study suggest that activation of
nACH receptors does not influence ketamine’s psychotomimetic
effects or physiological effects on MMN and P300 in healthy
human volunteers. However, ketamine and nicotine appear to have
independent effects on P3a, P3b, and MMN suggesting differen-
tial effects of nACH and NMDA receptor systems on these ERP
components. Moreover, this is the first study to report a significant
reduction in P3a amplitude by nicotine.
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