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Abstract

In this second of two articles on second messenger/signal transduction
cascades in major mood disorders, we will review the evidence in support
of intracellular dysfunction and its rectification in the etiopathogenesis
and treatment of bipolar disorder (BD). The importance of these cascades
is highlighted by lithium’s (the gold standard in BD
psychopharmacology) ability to inhibit multiple critical loci in second
messenger/signal transduction cascades including protein kinase C
(involved in the IP /PIP  pathway) and GSK-3β (canonically identified
in the Wnt/Fz/Dvl/GSK-3β cascade). As a result, and like major
depressive disorder (MDD), more recent pathophysiological studies and
rational therapeutic targets have been directed at these and other
intracellular mediators. Even in the past decade, intracellular dysfunction
in numerous neuroprotective/apoptotic cascades appears important in the
pathophysiology and may be a future target for pharmacological
interventions of BD.

Keywords: Bipolar disorder, signal transduction, second messenger,
intracellular cascades, mood stabilizers, lithium

Introduction

Like the other major mood disorder, major depressive disorder (MDD),
pathophysiological and psychopharmacological research in bipolar
disorder (BD) have encompassed monoamine (serotonin, norepinephrine,
dopamine) and amino acid (γ-aminobutyric acid, glutamate)–based
neurotransmission. However, as early as the 1970s, lithium (a cell-
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permeant cation with minimal reactivity at cell surface receptors)
reduced brain inositol levels  [presumably via the inhibition of protein
kinase C (PKC)] and was speculated to have state-specific, mood-
stabilizing effects on second messenger/signal transduction cascades.
Lithium is still the standard of care in the treatment of BD, especially in
antimanic and maintenance therapies.  The antiepileptic drugs valproic
acid and carbamazepine, although chemically dissimilar to lithium, also
have profound effects on intracellular pathways to stabilize mood.

Like other neuropsychiatric disorders, BD arises from complex and still
poorly understood abnormalities at the molecular, cellular, and circuit
levels. As in other neuropsychiatric disorders, these multitiered
abnormalities are likely responsible for BD’s signs and symptoms:
elevated/expansive or irritable mood, impaired circadian rhythmicity,
increased goal-directed activity, decreased cognitive control, increased
impulsivity, and frequent risk-taking behaviors, eg, sexual indiscretions
and reckless substance misuse. As was done with the first review in this
series, this article will summarize our current state of knowledge of
second messenger/signal transduction cascades in the etiopathogenesis of
BD. We will then discuss what is known about the mechanism of action
of the aforementioned mood stabilizers. Finally, we will illuminate
potential future directions and rational therapeutic targets in BD.

Second Messenger/Signal Transduction
Cascades

The following second messenger/signal transduction cascades will be
discussed in sequence: cyclic adenosine monophosphate (cAMP)/protein
kinase A (PKA)/cAMP-response element binding protein (CREB);
extracellular regulated kinase (ERK)/mitogen-activated protein kinase
(MAPK); phosphoinositide (PI)/protein kinase C (PKC); Wnt/frizzled
(Fz)/disheveled (Dvl)/glycogen synthase kinase-3 beta (GSK-3β); and
mitochondrial (pro- and anti-apoptotic) cascades. Although it certainly is
as important in bipolar as in unipolar depression, we will not discuss
neurotrophic signaling here in detail other than as an extracellular stimuli
for intracellular cascades; the interested reader is referred to our
extensive discussion of neutrophins in the first article in this series. And,
as in the first part, we will also not discuss extracellular
neurotransmission (via classic neurotransmitters, neuropeptides, or other
neuroendocrine mechanisms) except as the means of stimulating or
inhibiting intracellular signal transduction/second messenger pathways.

cAMP/PKA/CREB

As may be surmised from the wealth of data in unipolar depression and
preclinical models of despair, the cAMP/PKA/CREB pathway is also
affected in BD. However, in contrast to preclinical models and unipolar
depression, this cascade is upregulated/overactive in BD, especially in
mania (Table 1). Levels of the stimulatory G protein linked to this
cascade, G , are increased in postmortem bipolar brain (Table 1).  As
detected by coimmunoprecipitation with total brain homogenates, there is
increased heterotrimeric G protein complex (Gαβγ) association relative to
age, sex, and postmortem-interval matched controls.  The increased
levels/activity of this cascade have also been replicated in peripheral
samples.  Unfortunately, some of the aforementioned studies report
conflicting results both based on the phase of illness and the specific
patient population. Next, adenylyl cyclase activity (both basal and
stimulated) is enhanced in postmortem samples from bipolar patients,
which increases production of the second messenger cyclic adenosine

1

2

3–6

s 7,8

8

9–11

Postmortem cerebral cortex Gs alpha-subunit levels
are elevated in bipolar affective disorder.[Brain Res. 1991]

Receptor-mediated activation of G proteins is
increased in postmortem brains of bipolar affective[J Neurochem. 1996]

Mononuclear leukocyte levels of G proteins in
depressed patients with bipolar disorder or major[Am J Psychiatry. 1994]

Abnormal G protein alpha(s) - and alpha(i2)-subunit
mRNA expression in bipolar affective disorder.[Mol Psychiatry. 1998]

Increased cyclic AMP-dependent protein kinase
activity in postmortem brain from patients with bipolar[J Neurochem. 1999]

Altered cAMP-dependent protein kinase subunit
immunolabeling in post-mortem brain from patients[J Neurochem. 2003]

Protein kinase A activity in platelets from patients with
bipolar disorder. [J Affect Disord. 2003]

The cAMP-dependent protein kinase A and brain-
derived neurotrophic factor expression in lymphoblast[J Affect Disord. 2004]

Gene expression analysis of bipolar disorder reveals
downregulation of the ubiquitin cycle and alterations in[Mol Psychiatry. 2006]

Genetic association of cyclic AMP signaling genes
with bipolar disorder. [Transl Psychiatry. 2012]

Chronic treatment with mood stabilizers increases
membrane GRK3 in rat frontal cortex.[Biol Psychiatry. 2007]

Review  Signaling: cellular insights into the
pathophysiology of bipolar disorder.[Biol Psychiatry. 2000]

Review  Physiological roles for G protein-regulated
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monophosphate (cAMP). The catalytic subunit of protein kinase A
(PKA) and cAMP-stimulated PKA activity are also increased in BD
brain.  Like linked G proteins, increased PKA activity has been
observed in peripheral blood platelets and lymphoblasts, even in the
absence of mood stabilizers.  CREBP1 [a cAMP-response element
binding (CREB) protein interactor] expression is reduced in BD
postmortem orbitofrontal cortex,  but, to date, there have been no
reports of CREB levels and/or transcriptional activity in BD or animal
models of the disorder, eg, psychostimulant-induced hyperlocomotion.
Finally, a recent multiple rare variant genetic analysis identified several
single nucleotide polymorphisms (SNPs) in related signaling genes
[including several variants of phosphodiesterase (PDE)10A] in bipolar I
disorder (BDI). Moreover, several SNP × SNP interactions among these
signaling genes multiplicatively increased the genetic risk of BDI in this
sample.  However, the relationship of these PDE10A SNPs is
speculative at best without evidence of dysregulation in cAMP levels and
impairment in cAMP-stimulated PKA activity.

Traditional mood stabilizers normalize activity in the cAMP/PKA/CREB
second messenger/signal transduction cascade. Lithium and the
antiepileptic drug carbamazepine promote the cytosol-to-plasma
membrane translocation of G-protein receptor kinase-3 (GRK3), a
serine/threonine kinase implicated in the homologous desensitization of
G-protein coupled receptors.  GRK3’s plasma membrane translocation
may dampen receptor overactivation in bipolar brain. Chronic lithium
administration also affects adenylyl cyclase activity, ie, an increase in
basal activity while inhibiting receptor-mediated overactivation.  (Of
note, these are total cytosolic AC activity assays and may not reflect
differences in activity in specific AC subtypes and/or in different
subcellular microdomains. ) There are conflicting results of lithium’s
effect on CREB in preclinical studies.  (This intersects with our
discussion of the ERK/MAPK second messenger/signal transduction
cascade below to affect CREB phosphorylation, nuclear translocation,
and CRE-mediated gene transcription.)

Although structurally dissimilar to lithium, valproic acid’s antimanic
effects may also result from alterations in the cAMP/PKA/CREB second
messenger/signal transduction cascade. Chronic valproic acid
administration decreased the expression of β -adrenergic receptors and
postreceptor-mediated cAMP generation.  In a microarray study of rats
exposed to intraperitoneal valproic acid (200 mg/kg), many genes
implicated in G-protein–mediated signaling (including the catalytic
subunit of PKA and CREB) were up- or downregulated at least 1.4-fold
relative to untreated controls.  Real-time quantitative polymerase chain
reaction (PCR) in an independent sample validated these microarray
expression differences. Nonetheless, the aforementioned studies were
conducted in cell lines and rodents, and these results have yet to be

Table 1
Pathophysiological impairments of second messenger/signal
transduction cascades in bipolar disorder (BD)
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adenylyl cyclase isoforms: insights from knockout and[Neurosignals. 2009]

Lithium increases transcription factor binding to AP-1
and cyclic AMP-responsive element in cultured[J Neurochem. 1997]

Reduced CREB phosphorylation after chronic lithium
treatment is associated with down-regulation of CaM[Int J Neuropsychopharmacol. 2007]

Effects of valproic acid on beta-adrenergic receptors,
G-proteins, and adenylyl cyclase in rat C6 glioma[Neuropsychopharmacology. 1996]

Microarray analysis of rat brain gene expression after
chronic administration of sodium valproate.[Brain Res Bull. 2005]

Inhibitory effects of anticonvulsant drugs on cyclic
nucleotide accumulation in brain. [Ann Neurol. 1979]

Carbamazepine distinguishes between adenosine
receptors that mediate different second messenger[Eur J Pharmacol. 1991]

Chronic carbamazepine administration attenuates
dopamine D2-like receptor-initiated signaling via[Neurochem Res. 2008]

Effect of carbamazepine on cyclic nucleotides in CSF
of patients with affective illness. [Biol Psychiatry. 1982]

Comparative analysis of the effects of four mood
stabilizers in SH-SY5Y cells and in primary neurons.[Bipolar Disord. 2005]

The role of p38 MAPK in valproic acid induced
microglia apoptosis. [Neurosci Lett. 2010]

Selective G2/M arrest in a p53(Val135)-transformed
cell line induced by lithium is mediated through an[Life Sci. 2012]

The role of the extracellular signal-regulated kinase
signaling pathway in mood modulation.[J Neurosci. 2003]

Reduced frontal cortex inositol levels in postmortem
brain of suicide victims and patients with bipolar[Am J Psychiatry. 1997]

The phosphoinositide signal transduction system is
impaired in bipolar affective disorder brain.[J Neurochem. 1996]

Elevated platelet membrane phosphatidylinositol-4,5-
bisphosphate in bipolar mania.[Am J Psychiatry. 1993]

A genome-wide association study implicates
diacylglycerol kinase eta (DGKH) and several other[Mol Psychiatry. 2008]
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translated into bipolar patients. Therefore, valproic acid’s antimanic
mechanism of action in humans still remains poorly understood.

Albeit equally dissimilar in structure to lithium and valproic acid,
carbamazepine has analogous biochemical and cell biological effects. In
addition to promoting the cytosol-to-cell membrane translocation of
GRK-3, carbamazepine has been shown to decrease basal and stimulated
cAMP production in rodents.  Also, like valproic acid, chronic
administration in rodents decreased dopamine (D ) receptor activity (as
displayed by quinpirole-mediated inhibition of arachidonic acid
production/signaling).  Finally, in mania, carbamazepine decreased
cAMP levels in cerebrospinal fluid.

ERK/MAPK

The ERK/MAPK pathway has also been investigated in BD and
preclinical models. As mentioned, there is significant overlap in the
cAMP/PKA/CREB and ERK/MAPK second messenger/signal
transduction cascades to converge on CREB phosphorylation and CRE-
mediated gene transcription. Unfortunately, there has been minimal
research to date on ERK/MAPK dysregulation in the pathophysiology of
BD (Table 1). However, there have been numerous pharmacological
investigations into the mechanism of action of mood stabilizing
medications. In an immortalized human cell line (SH-SY5Y) and in
primary neuronal cultures, both lithium and valproic acid stimulate the
ERK/MAPK cascade in contrast to other mood stabilizers
(carbamazepine and lamotrigine).  Valproic acid induces microglial
apoptosis in vitro, which relies on p38-stimulated MAPK
phosphorylation [in contrast to other MAPK isoforms, phospho-ERK and
phosphoc-Jun activated kinase (JNK)].  Lithium also enhances the
phosphorylation of p38-MAPK, p53 downregulation, and the reversal of
cell cycle arrest at G2/M in rat fibroblasts and an immortalized p53
mutant cell line.  Next, lithium and valproic acid increased levels of
phospho-ERK in the rodent frontal cortex and hippocampus, and ERK
inhibitors have stimulatory effects similar to D-amphetamine
administration (a rodent model of mania) that are reversed by lithium
pretreatment.  As in other psychiatric and nonpsychiatric disorders, eg,
oncology, the ERK/MAPK cascade is a central regulator of cell survival
and proliferation, which provides novel hypotheses into the mechanistic
underpinnings of the neuroprotective and mitogenic effects of mood
stabilization.

PI/PKC

Phosphoinositide (PI) levels are decreased in BD postmortem prefrontal
cortex,  and stimulated PI turnover is reduced (~50% at all tested
concentrations of GTPγ ) in fractionated occipital cortical membranes
from BD vs. controls (Table 1).  There is evidence of altered PI
signaling in peripheral tissue as well. Interestingly, medication-free
bipolar subjects in a current manic or depressive episode display higher
phosphatidylinositol-4,5-bisphophate (PIP ) levels in platelets.  A
genetic association between BD and the PI/PKC pathway has also been
suggested. In a genome-wide association study (GWAS) of common
SNPs there was a strong correlation between BD diagnosis and the first
intron of diacylglycerol kinase eta (DGKH),  a regulator of PIP  and
diacylglycerol (DAG) production to stimulate PKC and modulate the
expression of members of the transient receptor potential cation channel
family.  Total PKC levels, cytosol-to-plasma membrane
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TRPM2 variants and bipolar disorder risk: confirmation
in a family-based association study.[Bipolar Disord. 2009]

Association of the iPLA2β gene with bipolar disorder
and assessment of its interaction with TRPM2 gene[Psychiatr Genet. 2013]

Enhanced protein kinase C activity and translocation
in bipolar affective disorder brains.[Biol Psychiatry. 1996]

Increased association of brain protein kinase C with
the receptor for activated C kinase-1 (RACK1) in[Biol Psychiatry. 2001]

Altered platelet protein kinase C activity in bipolar
affective disorder, manic episode.[Biol Psychiatry. 1993]

Increased membrane-associated protein kinase C
activity and translocation in blood platelets from[J Psychiatr Res. 1999]

Protein kinase C and phospholipase C activity and
expression of their specific isozymes is decreased and[Neuropsychopharmacology. 2002]

Reduced CREB phosphorylation after chronic lithium
treatment is associated with down-regulation of CaM[Int J Neuropsychopharmacol. 2007]

Altered IMPA2 gene expression and calcium
homeostasis in bipolar disorder. [Mol Psychiatry. 2001]

Lithium decreases membrane-associated protein
kinase C in hippocampus: selectivity for the alpha[J Neurochem. 1993]

Review  Lithium regulates PKC-mediated intracellular
cross-talk and gene expression in the CNS in vivo.[Bipolar Disord. 2000]

Chronic lithium administration alters a prominent PKC
substrate in rat hippocampus. [Brain Res. 1992]

Glutamate receptors as targets of protein kinase C in
the pathophysiology and treatment of animal models[Neuropharmacology. 2009]

Chronic sodium valproate selectively decreases
protein kinase C alpha and epsilon in vitro.[J Neurochem. 1994]

Sodium valproate down-regulates the myristoylated
alanine-rich C kinase substrate (MARCKS) in[J Pharmacol Exp Ther. 1998]

Chronic carbamazepine treatment increases
myristoylated alanine-rich C kinase substrate[Brain Res. 2003]

Protein kinase C inhibition by tamoxifen antagonizes
manic-like behavior in rats: implications for the[Neuropsychobiology. 2007]
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translocation, and enzymatic activity were also increased in postmortem
BD frontal cortex.  The same research group also discovered a
facilitated interaction of PKC with the receptor for activated protein
kinase C (RACK-1) in the frontal cortex.  PKC activity and membrane
translocation are also increased in platelets from patients in a current
manic episode.  Other groups, however, have reported conflicting
observations of PKC. PKC isozyme levels and activity were decreased
with concomitant increases in other members of this pathway, ie,
myristoylated alanine-rich C-kinase substrate (MARCKS), in membrane
and cytosolic fractions from platelets of unmedicated bipolar patients
relative to unmedicated MDD and nondepressed healthy volunteers.  In
pediatric BD, peripheral PKC isozyme levels were reduced at baseline
with concomitant increased activity alone (not isozyme levels) after
successful mood stabilization.

Reduced inositol monophosphatase (IMPase) activity and elevated basal
intracellular calcium (iCa ) have been observed in B lymphoblast cell
lines (BLCLs) in BDI. Interestingly, BDI males with higher basal serum
Ca  have lower levels of IMPase mRNA relative to male BDI subjects
with normal serum Ca , female BDIs, and healthy volunteers.
Postmortem IMPase levels in the temporal cortex, in contrast, were
higher in male BDI subjects relative to age-matched male postmortem
temporal cortex.  PKC overactivation (both increased activity and
membrane localization) and phosphorylation of downstream targets, eg,
GAP43, have been observed in psychostimulant-induced psychomotor
activation. Although these observations are excitingly suggestive of PI
dysfunction, it is important to note that all studies to date have been
performed on relatively small numbers of subjects. It is therefore
imperative to obtain in vivo evidence of pathway dysfunction in the
bipolar brain before definitive conclusions can be drawn.

As mentioned above, mood stabilizer pharmacology has been intimately
tied to the PI/PKC cascade. Lithium-mediated reduction in central
inositol levels has been one of the most formative observations in BD
pharmacology. Lithium was shortly thereafter discovered to be a potent
PKC inhibitor with concomitant decreased phosphorylation of
downstream targets (Figure 1). Preclinical studies have elucidated some
of the molecular players involved in lithium and other mood stabilizers’
biochemical and molecular effects. Chronic lithium treatment reduced
PKC isozymes (α and ε) in the hippocampus and the frontal cortex.
Next, downstream levels and/or activity of PKC substrates are reduced
with chronic lithium treatment, eg, MARCKS.  Lithium decreased
PKC-induced phosphorylation of neurogranin and excitatory
glutamatergic N-methyl-D-aspartate (NMDA) receptors and 2-amino-3-
(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors in
the prefrontal cortex of psychostimulant-exposed rodents. Consistent
with the “kindling hypothesis” of BD pathophysiology, lithium may exert
antimanic effects partially by decreasing excessive glutamatergic
neurotransmission.  Finally, valproic acid had similar biochemical
effects to lithium,  but chronic carbamazepine treatment has been
reported to increase neocortical MARCKS expression.
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Due to lithium’s ability to inhibit PKC, more selective PKC inhibitors
have been sought in BD. Intrerestingly, tamoxifen is the only central
nervous system (CNS)-penetrant medication currently available with
high selectivity for PKC. Tamoxifen attenuated both the behavioral
(decreased locomotion) and biochemical (blunted GAP43
phosphorylation) effects of acute psychostimulants.  In translation,
tamoxifen initially demonstrated efficacy in two small trials for acute
mania.  Then, in two larger, single-site, double-blind, placebo-
controlled mania trials, tamoxifen had a large treatment effect within
only a few days of initiation; it was also well-tolerated at relatively high
doses.  Unfortunately, no study to date has included an active
comparator, ie, an approved antimanic agent such as lithium or valproic
acid. Chronic tamoxifen treatment is also not without side effects.
Nonetheless, we await larger, multisite, placebo-controlled trials of
tamoxifen as either monotherapy (with an active comparator arm) or
adjunctive treatment to traditional mood stabilizers. Although it is an
attractive explanation, it is currently unknown if tamoxifen’s seemingly
antimanic effects are dependent on PKC inhibition. Tamoxifen is also a
powerful antagonist of estrogen receptor stimulation, which is crucial for
its mechanism of action in the treatment of breast and other reproductive
cancers. These anti-apoptotic or even other unidentified effects might
also be critical in mood stabilization. Finally, other alternative strategies
for PKC inhibition, eg, omega-3 fatty acid dietary supplementation, have
been studied in BD with mixed results .

Based on the initial studies with lithum discussed above, IMPase
inhibition has been proposed to induce myoinositol depletion in the
bipolar brain. However, there is little in vitro/vivo evidence to support
this hypothesis. Lithium and antiepileptic mood stabilizers also inhibit
the sodium-dependent myoinositol transporter (SMIT).  Consistent with
this biochemical effect, unmedicated BD patients have elevated SMIT
levels in peripheral neutrophils, which were reduced with both chronic
lithium and valproic acid therapy.  On the other hand, in rodents, SMIT
haploinsufficiency did not cause inositol depletion nor alter lithium-
sensitive behaviors, eg, decreased immobilization on the forced swim
test.  As a result of these conflicting observations, the jury remains out
on the ultimate importance of myoinositol, IMPase, and SMIT in the
pathophysiology and treatment of BD.

Wnt/Fz/Dvl/GSK-3β

The Wnt/Fz/Dvl/GSK-3β pathway has been implicated in the
etiopathogenesis and treatment of BD. In addition to its potent PKC
inhibition (of note, there is PI crosstalk with the Wnt/Fz/Dvl/GSK-3β
pathway), lithium is a powerful inhibitor of GSK-3β phosphorylation
(via its competition with magnesium at an allosteric site).  Valproic
acid  and electro-convulsive seizures  also inhibit GSK-3β in mice.
Interestingly, mice with a GSK-3β serine-to-alanine knock-in mutation
have increased susceptibility to amphetamine-induced hyperlocomotion
and stress-induced despair.  The same study also demonstrated impaired

Figure 1
Canonical signal transduction cascades and mood stabilizer
targets in bipolar disorder. On the left side of the figure,
monoaminergic (serotonin, norepinephrine, and dopamine)
neurotransmitter receptors activates the intracellular
phosphoinositide second ...
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and valproate neuroprotective action on human SY5Y[Neurosci Lett. 2000]

Increased ratio of anti-apoptotic to pro-apoptotic Bcl2
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controlled proof of concept study.[Biol Psychiatry. 2004]
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GSK-3β phosphorylation in stressed wild-type mice and peripheral
samples from bipolar patients.  GSK-3β also plays a crucial role in
circadian rhythmicity, which is often impaired in the earliest stages of
hypo/mania. Therefore, like lithium itself, pharmacologic or genetic
manipulations of GSK-3β may have antimanic, antidepressant, and/or
maintenance effects depending on type of episode.

GSK-3β inhibition results in decreased phosphorylation/stabilization of
β-catenin. This normalizes transcription of multifarious messenger
ribonucleic acids (mRNAs) that affect synaptic transmission, postsynaptic
signaling, and cytoskeletal reorganization in BD brain. Like GSK-3β
modulation, the over-expression of dephosphorylated β-catenin in
rodents had mood stabilizing effects analogous to lithium.  As a result
of these findings, more selective GSK-3β inhibitors, agents to promote
dephosphorylated β-catenin accumulation, and/or the manipulation of
upstream targets in this cascade, ie, Wnt-neutralizing antibodies, and/or
Fz receptor antagonists, are potentially novel molecular targets in BD
treatment.

Mitochondria/cell survival

In the past decade, there has been a burst of interest in mitochondrial-
based cell signaling pathways in BD (Table 1). BD is associated with
increased intracellular Ca , which may be released from intracellular
stores, eg, endoplasmic reticulum and mitochondria, and/or influx
through the stimulation of cell surface receptors. Excessive NMDA
receptor activation via glutamate promotes neuronal cell death
(“excitotoxicity”) (Figure 2). A recent microarray screen in postmortem
BD hippocampus identified the upregulation of numerous pro-apototic
genes and downregulation of antioxidant and anti-apoptotic genes  (
Table 1). In an independent sample of BD patients, the phosphorylation
of the glucocorticoid receptor was decreased (pro-apoptotic), heat shock
protein (Hsp-70) levels were decreased (pro-apoptotic), cytosolic Bax
expression was decreased (anti-apoptotic), and cytosolic cytochrome C
protein was increased (pro-apoptotic) in manic, depressed, and euthymic
cohorts, which suggests a complex relationship to intracellular apoptotic
cascades.  The anti-apoptotic gene B-cell lymphoma-2 (Bcl-2), a
mitochondrial CREB-responsive gene that prevents the release of
cytochrome C and concomitant caspase (proteolytic enzyme) activation,
has been genetically associated with BD in several studies by our group.
First, lymphoblasts from bipolar subjects with the Bcl-2 SNP
rs956572AA displayed decreased Bcl-2 expression and increased IP -
mediated Ca -release relative to the AG/GG genotypes.  The same
SNP was also associated with increased Glx (combined glutamate and
glutamine)/creatine ratio in the anterior cingulate cortex in euthymic
BDI,  which again supports the kindling hypothesis with a further
provocative hypothesis that there may be ongoing excitotoxic cell
damage even when not manic or depressed. Next, a polymorphism in the
promoter (−116G/C) of the Ca -responsive endoplasmic reticulum
stress gene, XBP1, has been implicated in the pathophysiology and
treatment of BD.  This polymorphism affects transcription in response
to stress; valproic acid induces the transcription of the upstream gene
ATF6, which may result in the downregulation of XBP1 expression with
effective treatment.  Although several other studies have confirmed
decreased stress-induced XBP1 expression in peripheral samples from
bipolar patients,  there is conflicting data on the XBP1 −116C/G
SNP and impaired stress-related transcription in BD.
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Although there are reports of pro-apoptotic effects of lithium in
rodents,  the preponderance of data support a neuroprotective role. In
valinomycin (a potassium ionophore)-treated human SY5Y
neuroblastoma cells, lithium decreased the expression of the pro-
apoptotic caspase-3.  In a recent microarray study, lithium responders
were found to selectively downregulate pro-apoptotic transcription, ie,
Bax1 and Bad, and upregulate anti-apoptotic gene expression, ie, Bcl-2
and IRS2, after only one month of treatment.  Interestingly, the
expression profile of lithium-resistance was the converse.  Pramipexole,
a dopamine receptor agonist and downstream inducer of Bcl-2, had
efficacy over placebo in a randomized, double-blind, placebo-controlled
trial in BDII patients maintained on therapeutic levels of lithium or
valproic acid.  Several pharmaceutical companies are attempting to
develop inhibitors of apoptosis for many neuropsychiatric and medical
disorders, which may ultimately find utility in the treatment of BD. Next,
pro-and anti-apoptotic gene regulation may be a useful pharmacogenetic
biomarker of treatment response, which warrants further investigation
earlier in the course of lithium and anti-epileptic mood stabilizer therapy.

Conclusions/Future Directions

In this second of two articles, we have reviewed our current
understanding of intracellular second messenger/signal transduction
pathways in the pathophysiology and treatment of BD. We have
surveyed evidence in support (and, in some cases, in refutation) of
dysfunction in the following intracellular second messenger/signal
transduction cascades: cAMP/PKA/CREB, ERK/MAPK, PI/PKC,
Wnt/Fz/Dvl/GSK-3β, and anti- and pro-apoptotic pathways. There are
several nodes of overlap and discrepancy with MDD and mouse models
of despair, ie, PKC down-regulation in MDD/preclinical models and
upregulation in BD. These differences warrant future diagnostic
exploration and may eventually be exploited by novel treatments such as
more selective PKC inhibitors. As a potential caveat, there have been
relatively few studies directly demonstrating signal transduction
impairment in the bipolar brain and/or response to effective treatment.
Many of these studies have been conducted with rodent models, eg,
psychostimulant-induced hyperlocomotion, or, when studied in humans,
have occurred in small samples with carefully selected patients, eg, on a
particular mood stabilizer, preserved psychosocial functioning, and no
comorbid substance abuse. Therefore, although promising, these animal
and clinical samples may not pertain to typical community bipolar
patients. Moreover, our current technologies also limit our ability to
directly test intracellular pathway dysfunction in the living human brain.

Apoptotic signaling cascades may be uniquely impaired in BD relative to

Figure 2
Neuroprotective/apoptotic intracellular cascades at baseline
and as mitigated by mood stabilizers in BD. The canonical
brain-derived neurotrophic factor (BDNF)/TrkB signaling
pathway is presented to highlight its potent
neurotrophic/mitogenic effects, ...
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other neuropsychiatric disorders such as schizophrenia.  Nevertheless,
there have been few studies that have demonstrated apoptosis in the
human bipolar brain, ie, Kim et al’s  revelation of increased Bax/Bak
and decreased Bcl-2 expression in postmortem BD brain. Expression
differences, however, do not necessarily translate to increased apoptosis,
which has been exemplified by non-apoptotic roles for Bcl-2.

In conclusion, our increasing understanding of intracellular second
messenger/signal transduction pathway dysfunction in BD may
eventually lead to improved diagnostic markers, better predictors of
treatment response, and exciting future therapeutic targets. As a single
example, the genetic manipulation of and/or small-molecule, membrane-
permeant inhibitors of apoptosis are such novel therapeutic targets for
future drug discovery and development.
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Clinical Implications

Bipolar disorder (BD) is a complex, highly-heritable major
mood disorder characterized by episodes of hypo/mania and
depression. Intracellular second messenger/signal
transduction dysfunction in BD was first suggested by
lithium’s ability to inhibit protein kinase C (PKC).
Including the aforementioned, some of the intracellular
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been implicated in BD are the following:
cAMP/PKA/CREB, ERK/MAPK, p11, PI/PKC, and
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Apoptotic/cell survival dysfunction in BD has excited much
interest in mitochondrial-based mechanisms of disease.
Albeit preliminary, BCL-2 and XBP1 polymorphisms may
be influential in BD.
As in the other major mood disorder, major depressive
disorder (MDD), intracellular second messenger/signal
transduction abnormalities in BD and their reversal with
successful treatment may be nosological endophenotypes and
biomarkers of response to, respectively, improve diagnostics
and further development of mood stabilizers with novel
mechanisms of action.
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