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Abstract
Converging translational evidence has implicated elevated immune-inflammatory signaling
activity in the pathoetiology of mood disorders, including major depressive disorder and bipolar
disorder. This is supported in part by cross-sectional evidence for increased levels of
proinflammatory eicosanoids, cytokines and acute-phase proteins during mood episodes, and
prospective longitudinal evidence for the emergence of mood symptoms in response to chronic
immune-inflammatory activation. In addition, mood-stabilizer and atypical antipsychotic
medications downregulate initial components of the immune-inflammatory signaling pathway, and
adjunctive treatment with anti-inflammatory agents augment the therapeutic efficacy of
antidepressant, mood stabilizer and atypical antipsychotic medications. Potential pathogenic
mechanisms linked with elevated immune-inflammatory signaling include perturbations in central
serotonin neurotransmission and progressive white matter pathology. Both heritable genetic
factors and environmental factors including dietary fatty-acid composition may act in concert to
sustain elevated immune-inflammatory signaling. Collectively, these data suggest that elevated
immune-inflammatory signaling is a mechanism that is relevant to the pathoetiology of mood
disorders, and may therefore represent a new therapeutic target for the development of more
effective treatments.
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Major mood disorders including major depressive disorder (MDD) and bipolar disorder
(BD) represent a major public health problem. In the year 2000, the WHO identified MDD
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as the fourth ranked cause of disability and premature death in the world, and projected that
by 2020 MDD will be the second most important cause of disability worldwide after
cardiovascular disease [1,2]. In the USA, the lifetime prevalence rates for MDD are 2–7%,
and up to 16–20% suffer from milder forms of the illness, and the life-time prevalence rates
for BD are estimated at 1.0% for bipolar I disorder (BD-I), 1.1% for BD-II and 2.4% for
subthreshold BD (4.4% total) [3]. The initial onset of mania and MDD most frequently
occurs during childhood and adolescence [4–6], and MDD frequently precedes the initial
onset of mania [7]. Outcomes data indicate that MDD and BD are chronic relapsing and
remitting illnesses associated with significant psychosocial morbidity [8,9] and excess
premature mortality attributable primarily to suicide and cardiovascular-related disorders
[10,11]. There is therefore an urgent need to develop a better understanding of risk and
resilience factors associated with the development and progression of MDD and BD to
inform improvements in treatment and ultimately prevention strategies.

Major advances in the treatment and prevention of mood disorders will be galvanized by the
identification of pathogenic mechanisms conferring vulnerability to pathophysiological
features (i.e., endophenotypes) associated with mood dysregulation. Aggressive efforts have
been devoted to identify associations between susceptibility genes and clinical diagnostic
criteria, although a consistent pattern has yet to emerge owing in part to the polygenic,
heterogeneous and multifactorial nature of these disorders. Indeed, subtotal heritability
estimates for MDD [12–14] and BD [15–17], and large cross-national variations in the life-
time prevalence rates of MDD and BD [18], suggest that both genetic and environmental
factors confer risk for developing these disorders. Accordingly, there is a need to develop a
better understanding of the link among gene–environment interactions, intermediate
endophenotypes and mood dysregulation.

There is a growing body of evidence that suggests that elevated immune-inflammatory
signaling may represent a pathogenic mechanism that contributes to mood and metabolic
dysregulation in MDD and BD. The primary objective of this article is to review
translational evidence implicating immune-inflammatory signaling in the pathophysiology
of mood disorders, and to review the effects of medications used to treat mood symptoms on
immune-inflammatory signaling. In addition, the authors explore potential mechanisms by
which elevated proinflammatory signaling cascades may contribute to prominent
pathophysiological features associated with mood disorders, as well as candidate genetic and
environmental factors that may contribute to immune-inflammatory dysregulation in an
effort to identify candidate therapeutic targets.

Immune-inflammatory status
Immune-inflammatory signaling is mediated, in part, by circulating peripheral blood
mononuclear cells (PBMCs), including lymphocytes, leukocytes, neutrophils as well as
central microglia and astrocytes, and involves an array of interacting signaling molecules. In
brief, the long-chain omega-6 fatty acid arachidonic acid, derived from dietary linoleic acid
via a series of desaturation and elongase reactions, becomes acetylated into the sn-2 position
of membrane phospholipids. Phospholipid-bound arachidonic acid is mobilized via a
calcium-dependent cytosolic isoform of phospholipase A2 (cPLA2), and free arachidonic
acid is a substrate for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins (i.e.,
PGH2), thromboxanes and prostacyclins, as well as lipoxygenase-mediated biosynthesis of
leukotrienes. COX-generated PGH2 is converted to PGE2 via PGE synthase, and PGE2
stimulates the biosynthesis of downstream proinflammatory cytokines including IL-6 at the
level of transcription [19–21]. Proinflammatory cytokines including IL-6, IL-1β and TNF-α
in turn stimulate hepatic biosynthesis of acute-phase proteins including C-reactive protein
(CRP [22–24]). In contrast to arachidonic acid, the long-chain omega-3 (LCn-3) fatty acids,
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including eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3),
are predominantly anti-inflammatory and EPA competes with arachidonic acid for
metabolism by COX enzymes [25]. In addition, COX and lipoxygenase metabolites of DHA
and EPA (i.e., D- and E-series resolvins) have potent inflammation-resolving properties
(Figure 1) [26–29].

Several case–control studies have investigated the immune-inflammatory status of MDD
patients. An early series of studies observed elevated PGE2 levels in the saliva, plasma or
CSF of MDD patients [30–34], and that PGE2 levels were positively associated with
depression symptom severity [32,33]. Because reductions in LCn-3 fatty acids, and
associated elevations in the arachidonic acid/LCn-3 ratio, are associated with elevations in
PLA2 and COX-2 expression and activity [35], it is relevant that a meta-analysis of 14 case–
control fatty acid composition studies found that MDD patients exhibit significant
reductions in LCn-3 fatty acids, and elevations in the arachidonic acid/LCn-3 ratio, in
erythrocytes and plasma [36]. Some studies [37–39], but not all [40], found that the
arachidonic acid/EPA ratio was positively correlated with depression symptom severity.
Several case–control studies have investigated circulating cytokine levels in MDD patients,
and a recent meta-analysis of 24 studies found significantly higher blood concentrations of
IL-6 and TNF-α, and that there were no significant differences for other proinflammatory
(IL-1β, IL-2, IFN-γ) or anti-inflammatory (IL-4, IL-8, IL-10) cytokines [41]. Case–control
studies have also observed higher levels of the acute-phase protein CRP in MDD patients
[41–46], and that higher CRP levels are associated with an increased adjusted risk for past
and current depressive episodes [47–49]. Together, these data suggest that MDD is
associated with abnormal elevations in immune-inflammatory signaling analogous to a
sustained low-grade systemic inflammatory condition.

Several case–control studies have investigated the immune-inflammatory status of patients
diagnosed with BD [50]. A preliminary cross-sectional study found that serum PLA2
activity was elevated in BD patients [51]. Consistent with elevated PLA2-mediated
arachidonic acid mobilization and loss from phospholipids, one study found that erythrocyte
phospholipid arachidonic acid levels were significantly lower in acutely manic patients [52].
Another study found that the arachidonic acid/EPA ratio was positively correlated with
manic symptom severity in a small group (n = 10) of acutely manic patients, and did not
observe any changes in PGE2 levels [53]. The majority of case–control studies have found
that BD patients exhibit greater IL-6, IL-6R, IL-2R, IL-1β and/or TNF-α levels during
depressive and acute manic episodes compared with healthy controls [54–62]. Cross-
sectional studies have also observed greater CRP levels in BD patients during acute mania
and/or a depressive phase compared with healthy controls [63–66]. Some studies [54,67–
69], but not all [57,63], have found that IL-6 or CRP levels are positively correlated with
manic or depression symptom severity. Euthymic BD patients exhibit no differences or
reductions in TNF-α, IL-6 and/or CRP compared with healthy controls [54,63,70], which
may be attributable in part to medication effects (see the below paragraphs). Interestingly,
asymptomatic offspring of BD parents, who are at increased risk for developing a mood
disorder [8], exhibit a PBMC gene expression signature indicative of elevated immune-
inflammatory signaling [60]. Acutely manic patients also exhibit elevated immunoglobulin
and compliment protein levels [65], and BD is associated with increased prevalence of
autoimmunity to pathogenically relevant antigens, including glutamic acid decarboxylase-65
[71] and thyroperoxidase [72]. These data suggest that elevated immune-inflammatory
signaling is observed during both manic and depressive phases of BD, resolves during
euthymia in response to pharmacotherapy and may precede the initial onset of mood
symptoms in BD offspring.
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A smaller number of case–control studies have investigated cytokine levels in the CSF of
MDD and BD patients, and the results have been inconsistent. One study found that
medication-free patients with acute-severe depression had higher CSF concentrations of
IL-1β, lower IL-6 and no change in TNF-α [73]. A second study observed lower CSF
concentrations of IL-6 and IL-6R in medicated geriatric MDD patients [74]. A third study
did not observe altered CSF IL-6 concentrations in medication-free MDD patients [75]. A
fourth study found that medicated euthymic BD patients exhibited greater CSF IL-1β levels,
and lower CSF IL-6 levels, compared with a healthy control [76].

Case–control studies have also investigated the expression of inflammatory signaling
markers in postmortem brain tissue from MDD and/or BD patients. One study found that
cPLA2, membrane PGE synthase and COX-2 were elevated, and COX-1 and cytosolic PGE
synthase reduced, in the postmortem frontal cortex of predominantly medicated BD patients
[77]. A second study did not find changes in COX-1 or COX-2 expression in postmortem
frontal cortex of predominantly medicated patients with MDD or BD, and observed
significant reductions in cytosolic PGE synthase, which was attributable to medication
effects in BD [78]. A third study did not observe any differences in cPLA2 or calcium-
independent phospholipase A2 (iPLA2) in postmortem brains of predominantly lithium-
treated BD patients, but did find that iPLA2 activity was significantly greater in BD patients
with a history of psychosis [79]. Consistent with elevated cPLA2 activity, arachidonic acid
composition was lower in the postmortem frontal cortex of unmedicated BD patients, and
was partially normalized in patients treated with mood-stabilizer medications prior to death
[80]. Another fatty acid composition study did not observe significant alterations in
postmortem cortex arachidonic acid composition in predominantly medicated BD patients
[81]. Regarding postmortem brain cytokine levels, one study found that transmembrane TNF
protein expression was significantly greater in the frontal cortex of predominantly medicated
MDD patients compared with controls [82], and a second study observed higher protein and
mRNA levels of IL-1β and IL-1R, but not TNF-α, in the frontal cortex of predominantly
medicated BD patients [83].

In view of the high prevalence rate of suicide in MDD and BD, it is relevant that CSF IL-6
concentrations were significantly elevated in those who attempted suicide compared with
healthy controls, and there was a significant positive correlation between CSF IL-6 levels
and depression symptom severity [84]. A postmortem brain study observed a trend for
greater TNF-α expression in the frontal cortex of female suicide victims, no changes in
IL-1β, IL-5 or IL-6 expression, greater IL-4 mRNA expression in female suicide victims,
and greater IL-13 mRNA expression in male suicide victims [85]. A second postmortem
brain study found that IL-6, IL-1β, and TNF-α mRNA and protein levels were significantly
higher in the frontal cortex of male and female adolescent suicide victims [86]. Postmortem
brain fatty acid composition studies have not observed significant alterations in arachidonic
acid composition in adult suicide victims [87], and that the arachidonic acid/DHA ratio was
inversely correlated with age at death in adolescent controls but not in suicides [88].
Erythrocyte or plasma LCn-3 composition was found to be significantly reduced in suicidal
patients [89,90], and a prospective study found that low baseline plasma DHA composition
was a significant predictor of future suicide attempts in medication-free MDD patients [91].

Additional evidence implicating inflammation in the pathoetiology of mood dysregulation
comes from prospective studies of human subjects chronically administered the
proinflammatory cytokine IFN-α for the treatment of infectious diseases including hepatitis
C. Approximately 30% of subjects receiving chronic IFN-α therapy develop clinically
significant depression, which typically responds to conventional antidepressant medications
[92–94], and approximately 25% of patients exhibit hypomanic and manic features,
including irritability, sleep disturbances, labile anger and hyperactivity [95–98]. Depressive
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symptoms resulting from IFN-α treatment are associated with greater treatment-emergent
increases in plasma IL-6 concentrations [99]. Moreover, IFN-α treatment is associated with
elevations in CSF IL-6 concentrations, which are inversely correlated with CSF levels of the
serotonin metabolite 5-hydroxyindoleacetic acid (5-HIA A), and CSF 5-HIAA
concentrations were a significant predictor of depressive symptoms [100]. A subset of
healthy subjects treated with the endotoxin Salmonella abortusequi also exhibit symptoms of
depression and anxiety, which were correlated with increases in plasma IL-6 and TNF-α
[101]. Another study found that elevations in IL-6 levels in response to influenza
vaccination were amplified and prolonged in elderly patients with depressive symptoms
[102]. This body of evidence suggests that repeated activation of immune-inflammatory
signaling networks can precipitate depression and/or manic-like symptoms in a subset of
human patients.

Consistent with these clinical observations, a body of preclinical evidence suggests that
elevated immune-inflammatory cytokine production increases behavioral indices of sickness
and depression in rodents [103], whereas TNF-α receptor [104] and IL-6 [105] knockout
mice exhibit reduced behavioral indices of depression. In rhesus monkeys, 4-week IFN-α
administration led to elevations in plasma IL-6 concentrations and a persistent increase in
anxiety- and depressive-like behavior in a subset of animals [106]. Consistent with a
sensitization mechanism, repeated exposure to TNF-α is associated with an enduring
enhancement of behavioral, neurochemical and neuroendocrine responses to a second TNF-
α injection [107]. Dietary-induced reductions in n-3 fatty acids, and associated elevations in
the arachidonic acid/DHA ratio, are associated with elevated PLA2 and COX-2 expression
and activity in rat brain [35], elevated constitutive IL-6, TNF-α and CRP concentrations in
rat plasma [108], greater lipopolysaccharide (LPS)-stimulated elevations in IL-6 in rodent
plasma [109], and elevated behavioral indices of depression and aggression [110]. The
olfactory bulbectomized rat model of depression is associated with elevated central PLA2
activity and proinflammatory PGE2 production [111,112], and the Flinders Sensitive Line
rat model of depression is associated with greater regional brain arachidonic acid levels, and
associated elevations in the arachidonic acid/DHA ratio [113]. These preclinical studies
support a positive association between elevated immune-inflammatory signaling and
depressive-like behavioral symptoms in animals, and suggest mediation by both
environmental (i.e., dietary n-3 fatty acid intake) and genetic (i.e., inbred rat strains) factors.

Although beyond the scope of this review, elevated immune-inflammatory signaling has
long been recognized to play a pivotal role in the etiology and progression of
cardiovascular- and circulatory-related disorders [114], and MDD and BD are both
associated with excess premature mortality attributable in part to these disorders [10,11].
Elevated CRP levels are an independent predictor of cardiovascular events and mortality
[115], and use of low-dose aspirin, a COX-1 inhibitor, is associated with significant risk
reduction among men with elevated CRP levels [116]. Elevated IL-6 levels may also be
associated with elevated risk for developing coronary artery disease [117–119], and multiple
lines of evidence suggest that the low LCn-3 fatty acid status exhibited by MDD and BD
patients places them at increased risk for sudden cardiac death [120,121]. Furthermore, BD
patients exhibit a high prevalence of obesity and metabolic syndrome [122–126], both of
which are associated with elevated immune-inflammatory signaling [127,128]. Life-time
and current prevalence rates of asthma, a chronic inflammatory disorder, are elevated in
patients with mood disorders, particularly BD [129]. These data suggest that elevated
immune-inflammatory signaling may be associated with prominent medical comorbidities
frequently observed in MDD and BD patients.
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Medication effects
Selective serotonin reuptake inhibitors (SSRIs) are currently a first-line treatment for mood
symptoms in children, adolescents and adults with MDD, although a subset of patients fail
to achieve symptomatic remission following chronic SSRI treatment [130]. Although
controversial, SSRI medications may also increase risk of self-injury and suicidal ideation in
a subset of pediatric and adolescent MDD patients [131]. Moreover, an emerging body of
evidence suggests that treatment with antidepressants, particularly those with noradrenergic
augmenting effects, may precipitate and possibly accelerate the onset of mania and suicidal
ideation in susceptible children and adolescents [132–135]. Double-blind placebo-controlled
clinical trials have found that mood-stabilizer medications that exhibit efficacy in adult BD
patients, including lithium and valproic acid, have limited efficacy in the treatment of
depressive mood symptoms in youth at very high risk for developing mania [136,137].
Chronic valproic acid treatment is also associated with weigh gain and insulin resistance in
youth [138]. Atypical antipsychotic medications, including olanzapine, risperidone and
quetiapine, are efficacious for the treatment and management of manic symptoms [139–
141], and are used as adjunctive therapy in treatment-resistant depression, but are associated
with clinically significant metabolic side-effects including excess weight gain and insulin
resistance [142,143]. These findings highlight the urgent need to develop evidence-based
treatments for mood disorders with improved efficacy, safety and tolerability.

Although some evidence suggests that antidepressant medications interact with immune-
inflammatory signaling pathways, the results have been inconsistent and the mechanisms
remain poorly understood [144]. Basic science studies have found that different
antidepressant medications suppress LPS-induced production of proinflammatory cytokines
including TNF-α and IL-6 [145], and reduce the development of cytokine-induced
depressive-like behavior in rodents [146]. An in vitro study found that tricyclic and SSRI
antidepressants blunted cytokine-induced PGE2 production in human synovial cells [147].
However, rodent studies have also found that the tricyclic desipramine, a noradrenergic
reuptake inhibitor, increases IL-1β mRNA levels in the rat hypothalamus [148], and chronic
treatment with different classes of antidepressants upregulate PLA2-mediated arachidonic
acid turnover in rat brain [149,150]. Because the effects of antidepressants on PLA2-
mediated arachidonic acid turnover are opposite to those of mood-stabilizer medications
[151], this mechanism may contribute to antidepressant-induced manic switching observed
in BD patients [150,152].

Clinical studies have found that subchronic treatment with SSRI medications do not
significantly alter serum IL-6 or IL-1β concentrations in MDD patients [153,154], and that
greater IL-6 and CRP levels may be associated with antidepressant treatment resistance
[155,156]. Another study found that greater pretreatment CRP levels in MDD patients were
significantly reduced following 6-week antidepressant treatment in both responders and
nonresponders [45]. Adjunctive treatment with celecoxib, a selective COX-2 inhibitor, was
found to augment the therapeutic efficacy of the noradrenergic reuptake inhibitor reboxetine
in MDD patients [157,158]. A 6-week controlled trial found that adjunctive treatment with
celecoxib also augmented the therapeutic efficacy of fluoxetine in MDD patients [159].
Adjunctive treatment with acetylsalicylic acid (aspirin), a COX-1 inhibitor, increased
remission rates when added to fluoxetine in MDD patients previously nonresponsive to
fluoxetine alone [160]. Adjunctive LCn-3 fatty acids augmented the therapeutic efficacy of
fluoxetine [161] and citalopram [162] in MDD patients, and reduced symptom severity in
MDD patients that were refractory to standard antidepressant treatment [163]. These
preliminary clinical findings suggest that adjunctive treatment with anti-inflammatory agents
augment the therapeutic efficacy of anti-depressant medications, and suggest that
antidepressants may act on downstream neurochemical consequences of elevated immune-
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inflammatory signaling (i.e., decreasing serotonin turnover) rather than direct effects on
signaling activity.

A common mechanism of action of mood-stabilizer medications, including lithium chloride
and the anticonvulsants valproic acid and carbamazepine, is the downregulation of cPLA2-
mediated arachidonic acid mobilization from phospholipids and associated reductions in
COX-2-mediated PGE2 production in rat brain [151]. Consistent with reductions in cPLA2-
mediated arachidonic acid mobilization and loss, chronic lithium treatment is associated
with elevated arachidonic acid composition in rodent erythrocytes and regional brain [164].
This body of preclinical evidence supports the ‘arachidonic acid cascade’ hypothesis, which
posits that the therapeutic actions of mood-stabilizer medications are mediated in part by
COX-2 substrate (arachidonic acid) sequestration in phospholipids and associated reductions
in PGE2 production [165]. A recent study found that neuroinflammation elicited by chronic
intracerebroventricular administration of the endotoxin LPS was associated with elevated
central cPLA2 activity and PGE2 production, and this response was significantly blunted in
rats chronically treated with lithium [166]. The implication of these findings is that
elevations in arachidonic acid→PGE2 biosynthesis leading to neuroinflammation are a
pathogenic mechanism underlying the development BD [167].

In general agreement with these preclinical findings, emerging clinical evidence suggests
that mood-stabilizer medications downregulate proinflammatory signaling pathways in BD
patients. An ex vivo study found that LPS-stimulated PBMC IL-6 production was greater in
medication-free BD patients compared with healthy controls, and that this response was
attenuated in lithium-treated patients [168]. A second study found that lithium-treated BD
patients exhibited fewer IL-6-secreting PBMCs compared with healthy controls, and that the
number of IL-6-secreting cells decreased significantly in medication-naive BD patients
following chronic lithium treatment [70]. In rapid cycling BD patients, serum IL-2R and
IL-6R were increased compared with healthy controls, and decreased significantly following
4-week lithium treatment [169]. Another study found that 6-week lithium and/or valproate
treatment significantly reduced elevated IL-6R and IL-6, but not TNF-α, levels in BD
patients [56], whereas another study did not observe significant alterations in elevated IL-6R
and IL-2R in manic patients following 2-week valproate treatment [55]. Preliminary
evidence further suggests that adjunctive treatment with anti-inflammatory agents, including
celecoxib [170], aspirin [171] and LCn-3 fatty acids [172,173], augment the therapeutic
efficacy of mood-stabilizer medications.

Atypical antipsychotic medications are high-affinity antagonists at serotonin 5-HT2A/C and
dopamine D2 receptors [174], both of which are positively coupled to cPLA2 [175–180].
Chronic treatment with olanzapine or clozapine decreased cPLA2-mediated arachidonic acid
turnover in cortical phospholipids, and decrease COX-2 activity and PGE2 concentrations, in
rat brain [181,182]. Preclinical studies have also found that atypical antipsychotic
medications significantly attenuate greater IL-6 and TNF-α production in microglia cells
following IFN-γ exposure [183,184], and in mice following peripheral LPS administration
[185]. Chronic risperidone normalized constitutively elevated plasma IL-6, TNF-α and CRP
levels in LCn-3 fatty acid-deficient rats [186]. Clinical studies suggest that antipsychotic
medications may have immunosuppressive properties in schizophrenic patients, although the
results have been inconsistent [187]. Adjunctive treatment with the COX-2 inhibitor
celecoxib was superior to risperidone alone for reducing symptom severity in schizophrenic
patients [188]. Adjunctive LCn-3 fatty acid (EPA) supplementation was also found to
accelerate treatment response, improve tolerability and permitted a 20% reduction in
atypical antipsychotic dose in first-episode psychotic patients [189]. Together, these data
suggest that atypical antipsychotic medications, such as mood stabilizers, suppress immune-
inflammatory signaling activity.
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Pathogenic mechanisms
Central serotonin (5-HT) neurotransmission has repeatedly been implicated in the
pathophysiology [190] and treatment [191] of MDD. Medication-free MDD patients exhibit
reduced indices of serotonin synthesis [192], and significantly greater internal, jugular veno-
arterial plasma content of 5-HIAA relative to healthy controls [193]. In contrast, chronic
treatment with the SSRI fluoxetine significantly decreases the 5-HIAA content in CSF of
MDD patients [193–197] and serotonin turnover (i.e, 5-HIAA/5-HT ratio) in rat frontal
cortex [198,199]. Preclinical studies have found that peripheral administration of IL-6
significantly increases extra-cellular serotonin concentrations and serotonin turnover in rat
brain [200,201]. Moreover, central 5-HIAA levels were elevated following peripheral
administration of IL-1β or TNF-α [202], and chronic peripheral administration of IFN-α
increased serotonin turnover in rat frontal cortex [203]. Prior LPS exposure resulted in
greater increases in amygdala 5-HIAA levels in response to a second TNF-α injection [204].
Furthermore, chronic dietary LCn-3 fatty acid deficiency is associated with constitutive
elevations in plasma IL-6, which are positively correlated with serotonin turnover in rat
brain [108]. These and other data suggest that elevated peripheral cytokine production may
be sufficient to alter central serotonin metabolism in a direction that is opposite to that
produced by SSRI medications.

Several independent findings have implicated hypothalamic–pituitary–adrenal (HPA) axis
dysregulation in the pathophysiology of mood disorders [205,206], and emerging preclinical
evidence suggests that proinflammatory cytokines alter HPA axis activity and reactivity.
Specifically, acute cytokine stimulation by LPS induces the expression and release of
corticotropin-releasing hormone, adrenocorticotropic hormone and corticosterone in rats
[200,207,208]. Acute and chronic stress is associated with elevations in central and/or
peripheral proinflammatory cytokine levels including IL-1β and IL-6 [148,209]. Consistent
with a cross-sensitization of HPA-axis reactivity and immune-inflammatory signaling, prior
exposure to stressors sensitize the neuroinflammatory response to peripheral and central
immune challenge [210], and prior LPS exposure is associated with greater HPA axis
reactivity (i.e., plasma corticosterone levels) in response to second TNF-α injection [204].
Cytokines have also been found to decrease glucocorticoid receptor expression and nuclear
translocation, leading to the desensitization of glucocorticoid receptor-mediated negative
feedback on the HPA axis [211]. It is also of interest that LCn-3 fatty acid supplementation
significantly blunted LPS-induced elevations in plasma cortisol and adrenocorticotropic
hormone levels in human subjects [212,213]. These preliminary findings support a link
between elevated immune-inflammatory signaling and HPA axis dysregulation observed in
patients with mood disorders.

Elevated immune-inflammatory signaling associated with T-lymphocyte activation and
central infiltration has long been recognized as a mechanism central to the etiology of white
matter pathology in multiple sclerosis [214]. Similar to BD and MDD, multiple sclerosis is a
progressive disorder with a relapsing-remitting course, and mood disorders are highly
prevalent among multiple sclerosis patients [215–217]. Furthermore, levels of IL-2 and
IL-2R (CD25), markers of T-lymphocyte activation, are elevated in serum and CSF of
relapsing multiple sclerosis patients [218,219] and in serum of manic patients
[55,59,61,220]. As observed in multiple sclerosis patients [214], myelin-associated gene
expression [221,222] and myelin staining [223] are reduced in postmortem brain of BD and
MDD patients, and diffusion tensor imaging studies have revealed deficits in central white
matter structural integrity (i.e., reduced fractional anisotropy) in patients with multiple
sclerosis [224], BD [225–227] and MDD [228,229]. Consistent with these clinical
observations, animal studies have demonstrated that elevated immune-inflammatory
signaling leads to demyelination [230–233], and that increasing dietary LCn-3 fatty acid
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intake is protective against white matter injury [234,235]. Together, these associations
suggest that there may be a previously unrecognized link between elevations in immune-
inflammatory signaling and progressive white matter pathology observed in patients with
mood disorders.

Meta-analyses of cross-sectional structural imaging studies have also identified lateral
ventricular enlargement and reductions in hippocampal volume, as robust and consistent
features associated with mood disorders [236,237]. It is relevant, therefore, that in vivo
imaging and ex vivo studies have found that neuroinflammation elicited by chronic central
LPS administration is associated with lateral ventricular enlargement and decreased
hippocampal size in rats [238,239]. Furthermore, neuroinflammation is associated with
elevated COX-2-mediated PGE2 production in rat brain [166], and PGE2-mediated signaling
has neurotoxic and synaptotoxic effects [240–242]. Moreover, proinflammatory cytokines
can lead to the generation of tryptophan-kynurenine metabolites including glutamate
agonists, which have excitotoxic effects [243]. It is also relevant that greater habitual dietary
LCn-3 fatty acid intake is associated with larger cortical gray matter volumes in several
corticolimbic regions found to exhibit volume reductions in MDD and/or BD patients,
including the hippocampus, amygdala and anterior cingulate cortex [244].

Etiological mechanisms
Although the etiologic mechanisms contributing to dysregulated immune-inflammatory
homeostasis in mood disorders are poorly understood, existing evidence suggests that
environmental factors may play a significant role. For example, based on concordance rates
of elevated markers of immune-inflammatory signaling in circulating PBMCs among BD
twins, it was concluded that elevated signaling activity was primarily attributable to shared
environmental factors rather than genetic factors [245]. Candidate environmental factors that
may contribute to elevated immune-inflammatory signaling activity in mood disorders
include increased sensitivity or exposure to infectious agents [246], increased sensitivity to
seasonal allergies [247,248] and increased sensitivity to commonly consumed food
components (i.e., gluten [249]). In addition, stressful life events and psychosocial stressors
have long been recognized as distal and proximal antecedents of mood dysregulation [250],
and childhood maltreatment or psychosocial stress are associated with greater IL-6 and/or
CRP production in adulthood [251–253]. Like MDD and BD, post-traumatic stress disorder
is also associated with sustained elevations in immune-inflammatory signaling activity
[254,255]. Moreover, elevations in IL-6 in response to psychosocial stress were found to be
greater in MDD patients with a history of early-life stress [256]. Therefore, these
environmental factors may lead to a sensitization of immune-inflammatory signaling in
patients with mood disorders.

In view of the principal role of the omega-6 fatty acid arachidonic acid in the initiation of
immune-inflammatory signaling, another potentially relevant environmental factor is
habitual dietary arachidonic acid intake. Over the latter half of the 20th Century, foods/oils
that contain higher levels of arachidonic acid, including peanut, soybean, canola oils and red
meat, poultry, pork, have increased substantially in the US diet [257]. Controlled feeding
studies have found that increasing dietary arachidonic acid intake is associated with elevated
ex vivo PBMC production of PGE2, but not IL-1β, IL-2, IL-6 or TNF-α, in healthy human
subjects [258], and elevated production of PGE2 in rat blood and brain [259,260]. Increasing
dietary arachidonic acid intake was also associated with greater PBMC proliferation in
response to influenza vaccine in healthy human subjects [261]. Although these data suggest
that dietary arachidonic acid may contribute in part to elevated PGE2 levels observed in
mood disorders, it does not appear sufficient at the doses investigated to account for elevated
levels of proinflammatory cytokines observed in patients with mood disorders. Nevertheless,
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additional research is needed to determine whether the dietary intake of arachidonic acid is
greater in mood disorder patients.

In contrast to omega-6 fatty acids, greater dietary intake of LCn-3 fatty acids, found
predominantly in fatty cold-water fish including salmon, trout and tuna [262], is associated
with reduced markers of immune-inflammatory signaling, including IL-6, TNF-α and CRP
in healthy human subjects [263–271]. For example, in a cohort of 1123 human subjects,
lower fasting plasma LCn-3 fatty acid composition was associated with significantly higher
IL-6 and TNF-α concentrations [267]. Other studies have found that greater habitual dietary
LCn-3 fatty acid intake is inversely correlated with plasma IL-6 and CRP levels [266,268],
and that dietary supplementation with LCn-3 fatty acids (fish oil) decrease PBMC
production of TNF-α in healthy subjects [263–265]. Case–control studies have found that
peripheral indices of dietary LCn-3 fatty acid intake are significantly lower in patients with
MDD [36] and BD [40,52,272], and cross-national and cross-sectional epidemiological
studies suggest that greater habitual dietary LCn-3 fatty acid intake is associated with
reduced life-time prevalence rates of MDD and BD [273–276]. Independent meta-analyses
of controlled intervention trials have found that chronic dietary LCn-3 fatty acid (EPA +
DHA) supplementation is associated with significant reductions in depression symptom
severity in MDD and BD patients [277–279]. These data suggest that lower dietary LCn-3
fatty acid intake, and associated elevations in the arachidonic acid/LCn-3 fatty acid ratio,
represent a modifiable risk for elevated immune-inflammatory signaling in mood disorders.

A number of candidate genetic factors may also elevate immune-inflammatory signaling in
mood disorders. The first and rate limiting step in the biosynthesis of arachidonic acid from
its dietary precursor linoleic acid is Δ6-desaturase activity (FADS2), and preclinical studies
have found that FADS2 deletion [280] or selective pharmacological inhibition of Δ6-
desaturase activity [281] significantly blunts eicosanoid production. Converging evidence
from human genotyping studies further suggest that FADS2 gene variants are strongly
correlated with arachidonic acid levels in plasma, erythrocytes and breast milk [282], and
FADS2 haplotypes and/or Δ6-desaturase activity estimates are correlated with
proinflammatory markers including CRP [283,284]. FADS2 haplotypes and/or Δ6-
desaturase activity estimates have also been linked with disorders associated with immune-
inflammatory dysregulation, including allergies [285,286] and cardiovascular disease
[284,287]. The FASD2 gene is colocalized to chromosome 11q12–11q13.1 [288], a locus
found in genome-wide association studies to be associated with arachidonic acid status
[289], inflammatory/immune disorders [290–293], cardiovascular disorders [294] and BD
[295]. Elevated FADS2 expression and activity indices have also been observed in BD
patients [40,296]. This body of evidence suggests that augmentation of linoleic
acid→arachidonic acid→PGE2 biosynthesis secondary to FADS2 gene variants represents a
candidate risk mechanism for elevated immune-inflammatory signaling in mood disorders.

The mobilization of arachidonic acid from phospholipids is mediated by calcium-dependent
cytosolic cPLA2, and the PLA2BanI polymorphism is associated with greater platelet PLA2
enzyme activity in schizophrenic patients [297]. Genetic association studies have found that
the PLA2 BanI polymorphism may be associated with MDD, but not BD [298–300], and a
recent prospective study found that the PLA2 BanI polymorphism was associated with more
somatic symptoms of depression following IFN-α treatment [301]. Genetic studies have also
identified a putative association between polymorphisms in IL-1β [302] and the TNF-α
promoter [303–305] in BD. The TNF-α polymorphism is also associated with more labile
anger in subjects receiving chronic IFN-α therapy [97]. Moreover, a COX-2 polymorphism
was associated with increase the risk of developing depression in response to IFN-α
treatment [301]. The inter-relationship between these preliminary candidate genetic factors,
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immune-inflammatory status in mood disorders, and environmental factors warrant
additional investigation.

Conclusion
Converging translational evidence suggests that mood disorders are associated with elevated
immune-inflammatory signaling activity. Mood-stabilizer and atypical antipsychotic
medications downregulate common initial components of the immune-inflammatory
signaling pathway, and adjunctive treatment with anti-inflammatory agents augment the
therapeutic efficacy of antidepressant, mood-stabilizer and atypical antipsychotic
medications. Elevated immune-inflammatory signaling activity may contribute to
pathogenic processes leading to perturbations in central serotonin neurotransmission and
HPA-axis reactivity, as well as progressive white and gray matter pathology. Both genetic
factors, including polymorphisms in key immune-inflammatory molecules, and modifiable
environmental factors, including dietary LCn-3 fatty acid insufficiency, may contribute to
elevated immune-inflammatory signaling. Collectively, these data suggest that elevated
immune-inflammatory signaling is relevant to the pathoetiology of mood disorders, and
represents a therapeutic target for the development of improved therapeutic strategies. It is
proposed that early negative modulation of immune-inflammatory signaling may increase
resilience to progressive neuropathological changes in youth at risk for developing mood
disorders, and that safe and well-tolerated anti-inflammatory agents including LCn-3 fatty
acids may represent an efficacious and safe early intervention option. Future research in this
field holds tremendous promise for developing a new appreciation for the role of immune-
inflammatory signaling in the pathoetiology of mood disorders, and may ultimately lead to
novel preventative strategies as well as a treatment paradigm shift in psychiatric practice.

Expert commentary
A converging body of evidence suggests that elevated immune-inflammatory signaling may
represent a feature that is relevant to the pathophysiology of mood disorders. Specifically,
cross-sectional studies have found that patients with mood disorders exhibit elevated
peripheral levels of immune-inflammatory signaling markers compared with healthy
controls. The most robust and consistent findings have been for the proinflammatory
cytokines IL-2, IL-6, IL-1β and TNF-α, and the acute-phase protein CRP. Cross-sectional
evidence for similar changes in CSF and postmortem brain tissue has been less consistent,
potentially due to medication effects. Indeed, mood-stabilizer and atypical anti-psychotic
medications suppress initial components of the immune-inflammatory signaling pathway,
and adjunctive treatment with anti-inflammatory agents, including selective COX-2
inhibitors and LCn-3 fatty acids, augment the therapeutic efficacy of anti-depressant, mood-
stabilizer and atypical antipsychotic medications. Prospective longitudinal studies have
found that chronic induction of immune-inflammatory activity is associated with the
emergence of both depressive and manic-like mood symptoms in human subjects. Last,
preclinical studies employing different animal models have demonstrated that experimental
induction of peripheral and central immune-inflammatory signaling is associated with
behavioral indices of depression, as well as neurochemical and neuroanatomical alterations
that recapitulate clinical findings. Collectively, this body of evidence implicates elevated
immune-inflammatory signaling as a pathogenic mechanism in mood disorders.

It is not currently clear if immune-inflammatory signaling represents a state or trait feature
of mood disorders. Several observations suggest that elevated immune-inflammatory
signaling may be a state feature: indices of elevated immune-inflammatory signaling
observed in acutely manic or depressed patients are attenuated in euthymic patients,
immune-inflammatory markers have been found to be positively correlated with mood
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symptom severity and the induction of immune-inflammatory signaling is frequently
associated with the emergence of both depressive and manic-like mood symptoms in human
subjects that do not have a personal or family history of mood disorders. However, several
observations also suggest that elevated immune-inflammatory signaling may be a trait
feature: asymptomatic offspring of BD parents exhibit elevated immune-inflammatory
signaling, polymorphisms in genes that regulate immune-inflammatory signaling have been
identified as potential susceptibility alleles and the immunosuppressive effects of
medications may account for why euthymic patients do not show elevated immune-
inflammatory signaling.

It is also not currently clear what etiological factors contribute to elevated immune-
inflammatory signaling in patients with mood disorders, and both environmental and genetic
factors may act in concert to trigger, sensitize and sustain elevated immune-inflammatory
signaling (Figure 2). Central to the question of whether elevated immune-inflammatory
signaling is relevant to the pathoetiology of mood disorders is the identification of plausible
mechanisms linking immune-inflammatory signaling and mood dysregulation. Different
lines of evidence suggest that two mediating mechanisms are alterations in central serotonin
metabolism and HPA-axis dysregulation. In addition, the pathogenic mechanism may be
progressive in nature and involve progressive white and gray matter atrophy. It is also
relevant that elevated immune-inflammatory signaling has long been recognized as an
etiological mechanism in cardiovascular disease, a primary cause of excess premature
mortality in patients with mood disorders.

Although extant evidence suggests that elevated immune-inflammatory signaling may
represent a mechanism central to the pathophysiology of mood disorders, more definitive
evaluation of the etiological relevance of this mechanism is required to establish it as a risk
factor versus a risk marker. Unlike a risk marker, a risk factor implies a causal link with the
illness, correction of which reduces the risk of developing the disorder. Therefore,
determination of whether early normalization of elevated immune-inflammatory signaling
can prevent or delay illness onset (i.e., primary prevention) will be required to evaluate risk
factor status. Initial support for this approach is provided by a primary prevention trial
finding that increasing dietary LCn-3 fatty acid intake prevented or delayed the onset of
psychosis in ultra-high-risk adolescents [306]. Although this study did not examine markers
of immune-inflammatory signaling to evaluate this mechanism as a response mediator,
analogous primary prevention trials examining markers of immune-inflammatory status in
subjects at elevated risk for developing mood disorders (i.e., having a biological parent with
BD) are feasible. However, the potential long time lag between the initial emergence of
mood symptoms and the first manic episode [7], and the potential for never developing
mood symptoms, in youth with familial risk suggest that an alternate approach is needed to
expedite elucidation of risk and resilience factors. In this regard, the IFN-α treatment
paradigm may be ideally suited to prospectively and retrospectively evaluate candidate risk
and resilience factors associated with mood dysregulation in response to elevated immune-
inflammatory signaling in human subjects.

In view of evidence suggesting that anti-inflammatory and/or immunosuppressive agents
augment the therapeutic efficacy of efficacious medications used in the treatment of mood
dysregulation, it will be of considerable interest to evaluate whether anti-inflammatory
agents are efficacious as monotherapy. Indeed, potential adverse metabolic effects
associated with chronic treatment with conventional mood-stabilizer and atypical
antipsychotic medications support a need to identify alternate treatments. Initial support is
provided by the finding that LCn-3 fatty acid monotherapy significantly reduced depression
symptom severity in pediatric and adolescent MDD patients [307]. Although this study did
not evaluate markers of immune-inflammatory signaling, it suggests that an anti-
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inflammatory agent by itself is sufficient to reduce mood symptom dysregulation.
Furthermore, because the initial onset of mood disorders most frequently occurs during
childhood and adolescence, it will be of interest to elucidate how elevated immune-
inflammatory signaling impacts dynamic changes in both regressive (synaptic pruning) and
progressive (i.e., myelination) cellular events observed in typically developing adolescents.
For example, a prospective longitudinal neuroimaging trial could evaluate whether immune-
inflammatory status is a significant predictor of progressive white and gray matter volume
deterioration observed in subjects with or at high risk for developing mood disorders, and
whether anti-inflammatory and/or immunosuppressive agents can mitigate these
pathological brain changes.

Evidence suggesting that elevated immune-inflammatory signaling is relevant to the
pathoetiology of mood disorders also suggests that targeting specific signaling molecules
within this pathway may lead to the development of improved treatments. Indeed, reverse
pharmacology studies suggest that downregulation of PLA2 and COX-2 enzymes may be a
mechanism of action relevant to the therapeutic actions of mood-stabilizer and atypical
antipsychotic medications, and selective COX-2 inhibitors including rofecoxib or celecoxib
have been found to augment the therapeutic efficacy of mood-stabilizer, atypical
antipsychotic and antidepressant medications. There are a number of TNF-α antagonists that
are approved by the US FDA for the treatment of conditions associated with elevated
immune-inflammatory signaling (i.e., rheumatoid arthritis [308]), and preliminary studies
suggest that the TNF-α antagonist etanercept may reduce depressive symptoms [309,310].
However, developing these candidates into viable treatment options will require rigorous
evaluation of their long-term safety and tolerability profiles. Indeed, rofecoxib (Vioxx™)
was withdrawn worldwide in 2004 because of risk of cardiovascular events, and a
prospective community-based longitudinal study found that adjunctive treatment with
COX-2 inhibitors was associated with a significant worsening of illness course in
antipsychotic-treated patients [311]. Moreover, a case report suggests that TNF-α
antagonists may increase risk of manic switching [312].

An alternate approach to targeting and treating elevated immune-inflammatory signaling in
mood disorders is through the manipulation of immune cell, membrane, fatty acid
composition. For example, clinical studies have found that dietary-induced elevations in
immune cell LCn-3 fatty acid composition reduces immune-inflammatory signaling activity
in human subjects [25]. This approach may be particularly well-suited for MDD and BD
patients who exhibit low LCn-3 fatty acid status and therefore corrects a candidate
etiological mechanism. Moreover, the established long-term safety profile of LCn-3 fatty
acid supplementation, as well as demonstrated benefits for cardiovascular health, suggest
that normalizing or increasing LCn-3 fatty acid status may represent a rational first-line
approach for the long-term stabilization of immune-inflammatory signaling in mood
disorders. Increasing LCn-3 fatty acid status to levels found in healthy subjects in Japan,
where the life-time prevalence rates of MDD and BD are among the lowest worldwide, may
afford increased resilience to dysregulated immune-inflammatory signaling. In view of data
demonstrating that aspirin promotes the biosynthesis of potent inflammation-resolving
metabolites of LCn-3 fatty acids (i.e., resolvins) [28,29], it will also be of interest to evaluate
the therapeutic efficacy of combined treatment with aspirin and LCn-3 fatty acids.

Five-year view
Although the preponderance of evidence supports the proposition that elevated immune-
inflammatory signaling is a pathogenic mechanism in mood disorders, additional research is
needed to translate this evidence into improved treatments. In this review, the authors have
highlighted several potential genetic and environmental factors that may represent candidate
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targets for the development of novel anti-inflammatory and/or immuno-suppressive agents.
However, additional prospective intervention research is needed to elucidate whether
targeting these risk factors can provide a treatment that has superior efficacy and/or
tolerability to conventional treatments. The development and evaluation of new anti-
inflammatory and/or immunosuppressive agents that target different components of the
immune-inflammatory signaling pathway has the potential to not only provide greater
insight into pathogenic mechanisms but also novel treatment options. However, more
research is needed to better define the mechanisms mediating elevated immune-
inflammatory signaling and mood dysregulation, and neuroimaging techniques may aid in
determining the relationship between peripheral measures of immune-inflammatory
signaling and functional cortical pathology associated in mood disorders. For example, a
positron emission tomography study found that regional brain arachidonic acid metabolism
was elevated in patients with Alzheimer’s disease [313], and this approach could be adopted
for patients with mood disorders.
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Key issues

• Convergent translational evidence has implicated elevated immune-
inflammatory signaling in the pathophysiology of mood disorders.

• Both genetic and environmental factors including diet may contribute to
elevated immune-inflammatory signaling in mood disorders.

• Emerging data suggest that medications that are efficacious in the treatment of
mood disorders downregulate immune-inflammatory signaling, and that
adjunctive treatment with anti-inflammatory agents, including long-chain
omega-3 fatty acids, augment treatment response.

• Elevated immune-inflammatory signaling may contribute to mood dysregulation
by reducing frontal-limbic white and gray matter structural and functional
integrity and/or altering serotonin neurotransmission.

• Elevated immune-inflammatory signaling represents a new therapeutic target for
developing improved treatments for mood disorders.
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Figure 1. Simplified diagram illustrating the proposed immune-inflammatory signaling pathway
implicated in the pathoetiology of mood disorders
The first and rate-limiting step in the biosynthesis of AA (20:4n-6) from dietary LA
(18:2n-6) is Δ6-desaturase. Phospholipid-bound AA is mobilized by cPLA2, and free AA
may be metabolized by COX-1 and -2 enzymes to produce PGH2 and PGE2. PGE2
stimulates the biosynthesis of IL-6, and proinflammatory cytokines including IL-1β, IL-6
and TNF-α stimulate the biosynthesis of the acute-phase protein CRP, increase HPA-axis
activity and reactivity, and serotonin metabolism (5-HIAA). This proinflammatory signaling
pathway is downregulated (−) by dietary n-3 fatty acids (i.e., α-linolenic acid), which
competes with and decrease Δ6-desaturase-mediated LA→AA biosynthesis. Mood-
stabilizer and atypical antipsychotic medications, as well as LCn-3 fatty acids, decrease
PLA2-mediated AA mobilization from phospholipids, and aspirin and celecoxib decrease
COX-mediated PGE2 biosynthesis. Different antidepressant medications have been found to
augment PLA2-mediated AA turnover, without altering COX enzyme activity or PGE2
production, and to downegulate serotonin metabolism (5-HIAA).
5-HIAA: 5-Hydroxyindoleacetic acid; AA: Arachidonic acid; COX: Cyclooxygenase;
cPLA2: Calcium-dependant phospholipase A2; CRP: C-reactive protein; LA: Linoleic acid;
LC: Long-chain; PG: Prostaglandin; n-3: Omega 3.
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Figure 2. Diagram illustrating putative risk factors for elevated immune-inflammatory signaling
and intermediate pathogenic mechanisms, which together are thought to contribute to mood
dysregulation
SNP: Single-nucleotide polymorphism; n-3/6: Omega 3/6.
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