
Trends
Ligand-gated ion channels, particularly
glutamate-gated chloride channels,
are well characterised as the targets
of IVM in nematodes and insects.

Nematode genomes are helping
to cast light on the diversity of ion-
channel subunits in different parasite
species of human and veterinary
importance.

Resistance to IVM is an increasing pro-
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additional modes of action on parasitic nematodes.
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From Golf Course to Nobel Prize
Ivermectin (IVM) is one of the best known and most widely used antiparasitic drugs in human
and veterinary medicine. From a fortuitous discovery on a Japanese golf course to a Nobel
Prize, the impact of IVM on human health to date has been extraordinary. Notwithstanding the
role of IVM in global food production, the Mectizan Donation Program has lifted the burden of
onchocerciasis (river blindness) and, subsequently, lymphatic filariasis (elephantiasis), from
millions of people in the poorest countries in the world, and set a precedent for the role of
public–private partnerships in global health. However, despite extensive research since its
discovery over 35 years ago, the mode of action of IVM in parasitic species remains unclear, as
are the mechanisms of resistance that allow some pathogens to survive treatment and thus the
implications for current and future control strategies. Intriguingly, IVM has a diverse range of
effects in many different organisms, far beyond the endoparasites and ectoparasites it was
developed to control. For example, IVM has been shown to regulate glucose and cholesterol
levels in diabetic mice [1], to suppress malignant cell proliferation in various cancers [2], to inhibit
viral replication in several flaviviruses [3], and to reduce survival in major insect vectors of malaria
and trypanosomiasis [4,5]. Clearly, much remains to be learned about this versatile drug, but
the promise of more sustainable strategies for current helminth-control programmes and novel
applications to improve and democratise human health, are compelling arguments to pursue
this cause. In this article we review the current uses of IVM and discuss recent studies
demonstrating a remarkably wide range of drug targets in different systems. We highlight
some important but unresolved questions regarding drug mode of action and mechanism of
resistance in parasitic nematodes, and suggest that recently available, high-quality genomic
resources for parasitic helminths are the appropriate tools to answer to these longstanding
questions.

Discovery and Synthesis
In 1970, microbiologist Satoshi Omura collected a soil sample from woods close to a golf
course in Kawana, on the south east coast of Honshu, Japan [6]. Omura isolated and cultured a
Gram-positive bacterium, sample NRRL 8165–a then unknown species of Streptomyces,
which was sent to William Campbell at Merck (along with 50 other strains of Streptomyces
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which were considered unusual in appearance or culture characteristics) to test for antiparasitic
effects. NRRL 8165 cultures showed potent activity against Nematospiroides dubius (now
known as Heligomosoides polygyrus) infection in mice, and the active components were
purified, revealing a family of macrocyclic lactones. These naturally occurring compounds
were named the avermectins (and the bacterium, Streptomyces avermitilis) to reflect the worm-
free ‘averminous’ conditions they produced [7,8].

Naturally produced avermectins are a mixture of four compounds, avermectin A1, A2, B1, and
B2, each of which exists as two variants, a and b [8,9]. The ‘A’ and ‘B’ designations describe the
presence of methoxy or hydroxy groups at position C5, while the superscripts 1 and 2 refer to
the presence of a double bond between C22 and C23 or a hydrogen at C22 and hydroxy group
at C23, respectively. The ‘a’ variants have secbutyl at C25, while the ‘b’ variants have isopropyl.
These subtle differences in chemical structure were found to have significant functional
consequences; while initial trials found that all four avermectins showed some efficacy against
gastrointestinal nematodes of sheep, avermectins of the ‘B’ series showed highest activity [10].
Further, when given orally, avermectin B1 was more active than B2, while with parenteral
administration, avermectin B2 was more active than B1 [9]. On this basis, development of a
commercial anthelmintic focused on the ‘B’ series and the chemical structure at the C22 and
C23 positions. IVM is a chemically modified derivative of naturally produced avermectin B1,
comprised of �80% 22,23-dihydro-avermectin B1a and �20% 22,23-dihydro-avermectin B1b

[8,9] (Figure 1), with potent activity against a broad spectrum of parasitic nematodes after both
oral and parenteral administration. IVM is not active against flukes or tapeworms, but does have
activity against various arthropods, including lice, mites, and some ticks. IVM has a wide safety
margin in most mammals, although some dogs with a deletion mutation in MDR1, a P-
glycoprotein that functions in the blood–brain barrier, are susceptible to neurological effects
[11].

Use in Veterinary and Human Medicine
The potency of IVM against both endoparasites and ectoparasites led to the creation of the
term ‘endectocide’ and this first drug of its kind was introduced to the animal health market by
Merck & Co. in 1981 [12]. New formulations of IVM for different livestock species and domestic
pets were released almost every year, and, by the late 1980s, IVM was the largest selling animal
health product in the world (http://merial.com/en/). A number of derivatives, such as eprino-
mectin (topical application for farm animals, with extended activity and no milk withdrawal [13])
and selamectin (topical application for small animals, with a wider safety margin than IVM in
dogs with the MDR1 mutation [14]), have been developed since, to great commercial success.
Two additional macrocylic lactones of commercial importance, moxidectin and milbemycin
oxime, belong to a closely related but distinct family of Streptomyces-derived anthelmintics
called the milbemycins. The key similarities and differences between the avermectins and
milbemycins have been described elsewhere [15].

The market for IVM has remained exceptionally strong in the livestock industry, particularly for
the control of gastrointestinal roundworms, although it is also licensed to control bovine
lungworm and various ectoparasites. IVM and other macrocyclic lactones are currently the
most commonly used anthelmintics in the UK sheep industry [16] and in the US cattle industry
[17]. They are also the most frequently used anthelmintics to control equine roundworms in the
UK [18,19]. Additionally, there is a large market for macrocyclic lactones in the control of
parasitic nematodes and ectoparasites in domestic pets. IVM is licensed to control gastroin-
testinal roundworms (in combination with pyrantel in dogs) and the canine heartworm, Dirofi-
laria immitis. IVM is not active against the adult stages of D. immitis, but it is widely used to
prevent disease by targeting the developing larvae following transmission from the mosquito.
IVM is active during the first 6 weeks of infection, against the L3, L4, and juvenile adult, but does
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Figure 1. Chemical Structure of Ivermectin. Ivermectin consists of a mixture of two homologues: 5-O-dimethyl-
22,23-dihydroavermectin B1a and B1b in a ratio of 80:20.
not risk the potentially catastrophic effects of dead and dying mature adult worms in the heart,
which is key to its value in endemic areas [20].

While the potential value of IVM in the livestock and companion animal health market was
recognised from the start, there was very little financial incentive to produce IVM for the human
health market. However, its efficacy against the filarial nematodes responsible for onchocerci-
asis and lymphatic filariasis, moved Dr Roy Vagelos, CEO of Merck & Co., to donate as much
IVM (licensed as Mectizan) ‘as was needed, for as long as needed, to anyone who needed it’
[21]. Since 1987, the Mectizan Donation Program has approved 1.4 billion treatments for the
control and elimination of onchocerciasis, and 1.2 billion treatments (administered with alben-
dazole, donated by GlaxoSmithKline) for the control and elimination of lymphatic filariasis
(http://www.mectizan.org/resources/2014-annual-highlights). IVM does not kill adult Oncho-
cerca volvulus, but a single oral dose (150 mg/kg) given annually suppresses microfilarial
production and prevents disease progression [22]. Similarly, in lymphatic filariasis, IVM
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monotherapy does not kill adult Wuchereria bancrofti but is microfilaricidal, although in this case
the suppression of microfilaria production is too brief to interrupt disease transmission [23–25].
However, when IVM is administered annually with albendazole, control is highly successful [26].
Furthermore, recent studies found that a single dose of IVM administered with albendazole and
diethylcarbamazine (DEC) resulted in complete clearance of microfilariae, which was main-
tained in all patients tested after 12 months (12 of 12 patients) and 24 months (6 of 6 patients)
[27]. This compared to 1 of 12 patients who was microfilaria-free after a single dose of
albendazole and DEC after 12 months. While the authors were unable to identify a pharmo-
kinetic interaction between IVM and albendazole or DEC, the findings do suggest a novel
synergistic effect, resulting in either permanent sterilisation or death of the adult stage of W.
bancrofti. In addition to onchocerciasis and lymphatic filariasis, IVM also clears coinfection with
a number of soil-transmitted helminths, including Ascaris lumbricoides and Strongyloides
stercoralis, and some ectoparasites such as Sarcoptes scabies [28–30].

Mode of Action
While the efficacy of IVM in treating a broad spectrum of parasitic infections is well established,
its mode of action is less clear. At nanomolar concentrations, IVM affects nematode motility,
feeding, and reproduction and acts via ligand-gated chloride channels, specifically those gated
by glutamate [31,32]. Glutamate-gated chloride channels (GluCls) are not present in verte-
brates, and as such are thought to confer the broad safety margin of IVM. However, at
micromolar concentrations, IVM can interact with a wider range of ligand-gated channels
found in both invertebrates and vertebrates, including GABA, glycine, histamine, and nicotinic
acetylcholine receptors (reviewed in [33]).

GluCls are expressed in nematode motor neuron commissures, lateral and sublateral nerve
cords, and pharyngeal neurons [34], and the effect of IVM on worm motility and feeding
presumably relates to binding to GluCls at these sites [33]. Functional GluCls are composed of
five subunits, with native GluCls containing multiple subunit types [33]. In the free-living
nematode Caenorhabditis elegans there are six genes encoding GluCl subunits, of which
glc-1 is the major target of IVM [35,36]. However, the GluCl family appears to be remarkably
divergent in parasitic nematodes, even in closely related species. The gastrointestinal parasite
of sheep, Haemonchus contortus, and the human hookworms, Necator americanus and
Ancylostoma ceylanicum, reside in the same phylogenetic clade as C. elegans, yet all lack
glc-1 orthologues [37,38]. Functional GluCl channels can, however, be generated from different
combinations of subunits, and differences in the distribution and composition of the GluCl
channels may contribute to differences in IVM susceptibility of different nematode species
(strikingly, A. ceylanicum exhibits a 40- to 300-fold greater susceptibility to IVM than does N.
americanus – in vitro and in vivo studies respectively [39,40]), as could differential sensitivity of
the other ligand-channel types referred to above [33].

IVM also interferes with nematode fertility, a finding that is best characterised from studies on
filarial worms, where it has long been recognised that IVM inhibited production of microfilariae in
utero [41]. Transcriptomic analysis has since identified changes in gene expression following
exposure of female Brugia malayi to 100 nM–1 mM IVM in vitro [42], with differentially expressed
transcripts particularly enriched for those involved in female reproduction. Until recently, no
GluCls had been reported in the nematode reproductive tract, so the effect of IVM on fecundity
was thought to be indirect [33]. However, analysis of the B. malayi genome showed that a GluCl
subunit, avr-14, was present [43], and using specific RNA probes this transcript was localised
to the reproductive tract of adult Brugia [44]. avr-14 was most strongly expressed in embryonic
stages of microfilariae, as well as the uterine wall of the female worm and, to a lesser extent, the
male reproductive tract, an observation that may help in defining the mechanism underlying IVM
induced sterility.
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As described in filarial nematodes, susceptibility to IVM can also vary between different life-
stages of parasite, and there is growing evidence that interactions with the host immune
response play a role in the activity of IVM. In B. malayi microfilariae, an antibody against a
peptide derived from AVR-14-A was used to localise GluCl to the tissue surrounding the
excretory–secretory (ES) apparatus only. IVM was proposed to cause a reduction in release of
proteins from the ES vesicle, which may modulate host immune responses in vivo [43].
This hypothesis is consistent with findings in D. immitis microfilariae, where exposure to
IVM in vitro resulted in increased binding of peripheral blood mononuclear cells and neutrophils
[45]. Also, for both D. immitis and O. volvulus microfilariae, the in vitro effects of IVM required
much higher concentrations than in vivo [45,46], supporting a role for host immune function in
the activity of IVM.

Anthelmintic Resistance
IVM has been widely used in veterinary species for the prophylaxis and treatment of parasitic
disease, often using a mass drug administration (MDA) strategy to protect all animals
considered ‘at risk’. However, applying this blanket approach has resulted in rapid selection
for parasitic nematodes that are capable of surviving drug treatment. Anthelmintic resistance
is now a major global problem in the control of gastrointestinal roundworms of sheep, cattle,
and horses [47], and there are now reports of IVM resistance in the canine heartworm, D.
immitis [48]. Concurrently, reports of reduced embryostatic effects of IVM on O. volvulus in
Ghana and Cameroon have raised concerns that IVM resistance may evolve in human
parasites [49–51]. In light of the rapid rise and spread of IVM resistance in the veterinary
field, MDA of IVM as the sole means of control for onchocerciasis might be deemed a risky
strategy, and there are calls for more integrated approaches [52]. While the potential impact
of population structure and genetic diversity (with the potential bottleneck of vector trans-
mission for the filarial nematodes) remain unclear, increased effort to develop sensitive
markers of resistance is warranted.

In C. elegans, IVM resistance involves a number of genes. In 2000, Dent et al., found
simultaneous mutation of three GluCl genes, glc-1, avr-14, and avr-15, conferred high levels
of IVM resistance, with little or no resistance provided by mutations in any two of the genes [53].
The resistance phenotype was further modulated by mutations in the innexins, unc-7 and unc-
9, which are essential components of gap junctions and are required for normal locomotion and
egg laying, and in four dyf genes, osm-1, osm-5, dyf-11, and che-3, which have roles in sensory
neuron function [54]. A frameshift mutation in another dyf gene, dyf-7, has since been found to
confer IVM resistance in two laboratory-selected isolates of C. elegans [54]. In natural pop-
ulations of C. elegans, a four-amino-acid deletion in glc-1 was found to confer abamectin and
IVM resistance in multiple diverse populations, but other resistant populations lacked this
mutation [36]. Further, in two out of six resistant populations with the glc-1 mutation, the
presence of a second dominant, but as yet unidentified, resistance locus was found [36].

For many years, these ‘candidate genes’ have been pursued in parasitic nematodes, particu-
larly in H. contortus [55]. However, no robust association between any candidate gene and IVM
resistance has been identified. In addition to the many studies investigating target-site muta-
tions [56,57], the roles of drug metabolism/excretion and drug uptake have also been a focus of
much research (reviewed in [58]). These studies have correlated various polymorphisms or
changes in expression of candidate genes with IVM resistance in particular isolates, but none
have defined the major mechanism of resistance. To attempt to address this, a number of
genome-wide sequencing and genetic crossing approaches are now being applied, facilitated
by improvements in sequencing technologies and parasite genomic resources [38,59,60].
Similar approaches have proven highly successful in determining the genetic basis of oxam-
niquine resistance in the human blood fluke, Schistosoma mansoni [61], and their application to
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parasitic nematodes is expected to rapidly improve our understanding of complex traits such as
IVM resistance.

New Targets and Novel Applications
IVM is a potent anthelmintic with a wide safety margin, affecting susceptible nematodes when
applied in nanomolar concentrations. However, at higher concentrations IVM has a broad
range of effects in many different organisms (Figure 2, Key Figure, Table 1). Some of these
effects may provide further clues to its mode of action in parasites and may have potential
relevance in the treatment of human disease. A number of early studies discovered that, at high
doses, IVM increases the chloride conductance of mammalian neuronal cells. On this basis,
high-dose IVM (up to 1.6 mg/kg) has previously been used successfully for symptomatic
treatment of severe muscle spasticity in patients with spinal cord injuries [62]. More recently,
IVM was shown to induce intracellular chloride flux in human leukaemia cells in vitro [63]. This
was associated with an increase in the production of intracellular reactive oxygen species
(ROS), leading to cell death in leukaemia cells, but not in normal haematopoetic cells. This
difference in susceptibility may reflect an increased expression of chloride channels on malig-
nant cells or an increased susceptibility to ROS, both of which have been reported previously.
IVM was also effective at slowing tumour growth in vivo in three mouse models of leukaemia
[63], suggesting promise as a cancer chemotherapeutic.

In addition to the effect of IVM on mammalian chloride channels, there is growing evidence
that IVM may target alternative pathways relevant to cancer chemotherapy. In many human
diseases, including cancers of the colon, skin, lung, breast, ovary, and prostate, there is
deregulation of the WNT-TCF (WNT-T cell factor) signalling pathway (many WNT-TCF target
genes regulate cell proliferation and metastasis). IVM has demonstrated in vivo efficacy
against WNT-TCF-dependent human colon cancer and lung carcinoma xenografts, but
not against WNT-TCF-independent tumours, suggesting specific blockade of the WNT-
TCF response [64]. Yin et al. found that IVM also has in vivo efficacy against glioma
Key Figure
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Figure 2. Ivermectin has a broad range of activities in a variety of systems.
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Table 1. Additional Targets of IVM Reported from Other Systems

Organism/system Predicted target Dose (in vivo) Concentration (in vitro) Refs

Filarial nematodes
(human)

Chloride channels 150 mg/kg – [22]

Gastrointestinal
nematodes
(sheep and cattle)

Chloride channels 200 mg/kg – [8,9]

Leukaemia cells Chloride channels 3–7 mg/kg 3 mM [63]

Colon and lung
tumour cells

WNT-TCF
signalling

10 mg/kg 1–2.5 mM for
concentration-dependent
apoptosis; 1–2.4 mM IC50
antiproliferative activity

[64]

Glioma RNA helicase
DDX23

Intratumoural 3 mg/kg
(50% decrease in
tumour size), 10 mg/kg
(near complete
regression of tumour)

10 mM for downregulation
of miR21; 25 mM for cell
proliferation

[2]

HeLa cells Tubulin – 10 mM [67]

Mouse Farnesoid X
receptor

1.3 mg/kg – [69]

T cells Unknown Topical 10 ml 0.1% IVM 1–3 mg/ml (1.14–3.42 mM) [70]

Flaviviruses RNA helicases – 0.12–0.5 mM IC50 helicase
activity; 0.019–0.354 mM
for inhibition of helicase
kinetics; 0.0005–4 mM to
inhibit viral synthesis by
50%; 3.5–10 mM to reduce
viability of cells for virus by
50%

[3]

Mycobacterium
spp.

Unknown – MIC varied between 4 mg/L
and >40 mg/L (4.57 mM
and 45.70 mM)

[72,73]
xenografts, thought to function through inhibition of DEAD-box RNA helicase DDX23 [2]. This
helicase is involved in the processing of a microRNA, miR-21, which is associated with glioma
cell proliferation and invasion, and is overexpressed in many cancers. These findings may be
linked, as microRNAs are known to regulate WNT-TCF pathways during development, as well
as in various disease states [65]. Specifically, miR-21 promotes colon cancer by directly
inhibiting TGFb-R2, which is a negative regulator of the WNT-TCF pathway [66]. More
recently, in vitro studies have found that IVM has an antimitotic effect, via inhibition of
microtubule depolymerisation [67].

In mammals, another major target of IVM appears to be the farnesoid X receptor (FXR), a
nuclear hormone receptor involved in bile, cholesterol, and glucose homeostasis [68]. In
diabetic mice, IVM reduces serum glucose and cholesterol levels and improves insulin sensi-
tivity through activation of FXR, suggesting potential as a novel diabetic therapy. The closest
nematode homologue to FXR is DAF-12, a nuclear hormone receptor which regulates devel-
opment through life stages and determines adult lifespan in C. elegans [69]. Whether some of
the effects of IVM on C. elegans could be attributed to binding to DAF-12 remains unresolved at
present.

IVM has recently been shown to have anti-inflammatory properties in T cell-mediated skin
disease, although the mechanism by which it exerts this effect is unknown [70]. Significant
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clinical improvement was achieved with IVM treatment in a murine model of atopic dermatitis,
with a reduction in T cell activation, proliferation, and cytokine production. The effect does not
appear to be mediated by FXR (which is also expressed by T cells) and the authors reported no
interaction between IVM and other potential ligands expressed by T cells, such as the GABA
type A receptor, despite a large-scale screening effort.

IVM has also shown promise in the treatment of certain viral pathogens. Consistent with the
inhibition of RNA helicase DDX23 referred to above, IVM inhibits viral replication of several
flaviviruses by blocking a viral helicase [3]. Susceptible flaviviruses include those causing yellow
fever, dengue, West Nile virus and tick borne encephalitis, and a patent application has been
submitted for off-label antiflavivirus therapy in humans (patent application EP2010/065880).
Encouragingly, serial passage of yellow fever virus with increasing concentrations of IVM did not
appear to select for viral resistance, even after more than 30 passages over 6 months, leading
the authors to conclude that adaptive mutations in the helicase domain may not be viable. In
that study, no antiviral effect was detected in other genera of viruses, but inhibition of HIV-1 (and
dengue) replication was reported after in vitro exposure to high concentrations (25–50 mM) of
IVM. In this case, suppression of viral replication was thought to reflect disruption of viral protein
trafficking between the host cell cytoplasm and nucleus by IVM inhibition of importin
a/b-mediated transport [71].

Although IVM has a similar chemical structure to the macrolide antibiotics, it lacks activity
against most bacteria. However, a number of studies have investigated IVM as an antimyco-
bacterial agent, with varying degrees of success. One report described promising in vitro
activity of IVM against various species of Mycobacterium, including Mycobacterium tubercu-
losis, the causative agent of tuberculosis [72]. However, a second study highlighted significant
differences in the concentrations of IVM that were required to inhibit growth of the same
Mycobacterium spp. and revealed a broad spectrum of susceptibility in clinical M. tuberculosis
isolates [73]. More recently, in vitro activity of IVM against Mycobacterium ulcerans, the
causative agent of Buruli ulcer, has been described [74]. In all studies, the in vitro antimyco-
bacterial effects of IVM required significantly higher concentrations of drug than for antiparasitic
effects, but the dosage for in vivo efficacy remains to be established. The mode of action is
unknown.

IVM has well established efficacy against a wide range of arthropods and may have potential
in breaking transmission of human disease through vector control. IVM given to local cattle
has been shown to reduce the survival and fecundity of the tsetse fly Glossina palpalis
gambiensis that transmits animal and human trypanosomiasis (sleeping sickness) in sub-
Saharan Africa [5]. Many farmers already use IVM to control gastrointestinal parasites in their
cattle, so this could form part of an integrated control strategy. Similarly, IVM ingested with
host blood (modelled on plasma concentrations after a standard oral dose of 150 mg/kg) was
found to reduce survival and blood feeding of Anopheles gambiae, the mosquito that
transmits Plasmodium falciparum malaria [75]. The authors of that study suggested that
an increased frequency of IVM treatment could break the cycle of malaria transmission, but
highlighted the importance of field conditions and the potential development of resistance.
Interestingly, different mosquito species are not uniformly susceptible to IVM. Aedes aegypti,
the mosquito vector of yellow fever, dengue, and Zika, was not affected at IVM concentrations
relevant to those in human blood following standard dosage, although survival and fecundity
was affected at higher doses [75,76]. Furthermore, different strains of A. aegypti varied by
approximately threefold in their adult survival rate after IVM ingestion, although the egg hatch
rate varied to a lesser extent between strains and was not correlated to adult survival rate.
This finding led the authors to speculate that IVM might affect mosquito survival and fecundity
through different pathways [76].
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Outstanding Questions
While ligand-gated ion channels are
clearly a target of IVM in nematodes,
are there additional targets, perhaps in
distinct tissues of the worm?

IVM induces various phenotypes in
susceptible nematodes, including
paralysis, inhibition of feeding and
reproduction. Are these phenotypes
all dependent upon the same mode
of action?

How conserved is the mode of action of
IVM in different nematode species?
What underlies the large differences in
IVM susceptibility in closely related spe-
cies (e.g., hookworms, mosquitoes)?

What is the relationship between IVM
therapy and the immune response?
Is the hypothesis of a host immune
Concluding Remarks
Despite over 30 years of use in veterinary species, and nearly 30 years use in human medicine,
there is much to learn about IVM (see Outstanding Questions). The precise mode of action in
helminth parasites is still unknown, but the relationship between host immunity and drug
efficacy is intriguing and worthy of further study. Similarly, the mechanisms underlying IVM
resistance are unclear, and determining the genetic basis of resistance remains a pressing
issue. However, the availability of multiple parasite genomes for comparative analysis, and the
application of high-throughput sequencing technologies to classical genetic approaches, may
provide answers to these questions soon. While IVM has already lifted the burden of oncho-
cerciasis and lymphatic filariasis from millions of people, it is also likely that IVM (or novel
derivatives) may prove valuable in the treatment of other important diseases. Further, the
incredibly broad range of effects of IVM, in a wide variety of systems, may offer new insights into
its mode of action in the original target species – the parasitic worm.
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