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Abstract

Malnutrition is a severe non-communicable disease, which is prevalent in children from low-

income countries. Recently, a number of metagenomics studies have illustrated associations 

between the altered gut microbiota and child malnutrition. However, these studies did not examine 

metabolic functions and interactions between individual species in the gut microbiota during 

health and malnutrition. Here, we applied genome-scale metabolic modeling to model the gut 

microbial species, which were selected from healthy and malnourished children from three 

countries. Our analysis showed reduced metabolite production capabilities in children from two 

low-income countries compared with a high-income country. Additionally, the models were also 
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used to predict the community-level metabolic potentials of gut microbes and the patterns of 

pairwise interactions among species. Hereby we found that due to bacterial interactions there may 

be reduced production of certain amino acids in malnourished children compared with healthy 

children from the same communities. To gain insight into alterations in the metabolism of 

malnourished (stunted) children, we also performed targeted plasma metabolic profiling in the first 

2 years of life of 25 healthy and 25 stunted children. Plasma metabolic profiling further revealed 

that stunted children had reduced plasma levels of essential amino acids compared to healthy 

controls. Our analyses provide a framework for future efforts towards further characterization of 

gut microbial metabolic capabilities and their contribution to malnutrition.
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INTRODUCTION

Malnutrition is a severe non-communicable disease in low- and middle-income countries, 

which includes two forms, namely undernutrition (stunting and wasting) and overnutrition 

(obesity). According to a recent World Health Organization (WHO) report, stunting and 

wasting have affected 160 million and 50 million children, respectively worldwide (Chan, 

2017). Child stunting alone affected 22.6% children under the age of 5 years globally in 

2016 (UNICEF et al., 2017). WHO recommends breastfeeding until 6 months of age for 

healthy growth of infants. Moreover, in the case of malnutrition, peanut butter and dried 

skimmed milk based ready-to-use-therapeutic food (RUTF) is recommended (Briend et al., 

2015). Although significant progress has been made over the past few decades in reducing 

the prevalence of stunting, interventions applied to treat child stunting have not always been 

successful (Bhutta et al., 2008; Ramakrishnan et al., 2009). Recently, several studies have 

been conducted to understand the effect of nutrients intervention, such as lipid-based 

nutrient supplements or RUTFs, micronutrients such as vitamin A, zinc, iron individually or 

in multiple combinations, on stunted children (Ashorn et al., 2015a; Mayo-Wilson et al., 

2014; Ramakrishnan et al., 2009). Results of these studies suggested that interventions were 

unable to reverse the linear growth deficit of stunting.

Apart from dietary nutrients, the human gut microbiota has been found to be associated with 

malnutrition (Blanton et al., 2016; Smith et al., 2013; Subramanian et al., 2014). The human 

gut harbors trillions of microbial cells, which collectively act like a bioreactor for fermenting 

dietary macronutrients to health-promoting metabolites, for instance, short chain fatty acids 

(SCFAs) (De Vadder et al., 2014; Louis and Flint, 2017), amino acids (AAs) (Husted et al., 

2017; Metges, 2000; Shoaie et al., 2015) and vitamins (Degnan et al., 2014; Gominak, 2016; 

Östman et al., 2001). Moreover, previous studies demonstrated the interaction of gut 

microbiota with bile acid metabolism, which may have significant impact on host 

metabolism (Wahlström et al., 2016).

Recently, few studies based on comparative metagenomic analysis addressed the questions 

related to variations in taxonomic composition of gut microbiota between health and 

Kumar et al. Page 2

Metab Eng. Author manuscript; available in PMC 2019 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

mic
Highlight

mic
Text Box
reduced production ordiversion by parasites 

mic
Highlight

mic
Highlight

mic
Highlight

mic
Highlight

mic
Highlight

mic
Highlight

mic
Highlight

mic
Highlight



malnutrition. These studies demonstrated the relative taxonomic abundance of gut microbial 

species using ribosomal 16S gene sequencing (Subramanian et al., 2014) or shotgun 

metagenomic sequencing (Blanton et al., 2016; Smith et al., 2013). However, metabolic 

differences and underlying mechanisms of the functional variations in gut microbiota in 

malnutrition are poorly known due to the limitations of available systems biology tools 

(Faust and Raes, 2012). Hence, there is a clear requirement of developing novel 

computational approaches to investigate the uncharacterized mechanisms connected with gut 

microbial ecosystem and its associations with diseases. Therefore, we propose a constraint-

based modeling framework using genome-scale metabolic models (GEMs), to examine the 

metabolic variations in health and malnutrition. Previously, GEMs have been successfully 

used to study the metabolism of human and microbial species (Agren et al., 2012; Kim et al., 

2017). Here, we reconstructed GEMs of the most abundant gut bacterial species from 

healthy and malnourished children groups. Although genome-scale metabolic models have 

been proven to be useful tools to investigate a target organism’s metabolic capabilities, the 

majority of high-quality GEMs have been biased towards well-studied species such as E. 
coli (Feist et al., 2007; Reed and Palsson, 2003), B. subtilis (Henry et al., 2009), S. 
cerevisiae (Duarte et al., 2004), and H. sapiens (Duarte et al., 2007; Thiele et al., 2013). The 

reason for this tendency is the vast availability of data for these organisms, which is required 

both for manual curation and evaluation of the model predictions. However, when it comes 

to the members of the human gut microbiota repertoire, most of these strains are yet to be 

cultured to be better studied and for their biosynthetic capabilities to be further 

characterized. There have been some recent efforts towards this direction. For instance, a 

valuable research has been conducted in which 96 phylogenetically diverse strains from the 

human gut symbionts were cultured in rich and also defined media to gain insight into their 

growth rates and nutritional dependencies (Tramontano et al., 2018). Another work has been 

focused on reconstruction of a collection gut microbiota strains (Magnúsdóttir et al., 2016), 

however, there seems to been little accordance between these two, suggesting that there is 

still need for more characterization of these under-studied strains. From analysis of these 

models we found that due to automatic reconstruction the models are highly similar and they 

are therefore not suitable for looking into metabolic alterations (Babaei et al., 2018). To 

overcome this we here combined automatic reconstruction with detailed manual curation of 

the draft GEMs. In this process we first evaluated simulation performance of the GEMs on 

two media (human breast milk (HBM) and RUTF) to predict the microbial growth and 

secretion of small molecules such as SCFAs and AAs. Next, gut microbial GEMs allowed 

predicting the community-level metabolic potentials of gut microbes and examining patterns 

of pairwise competition/synergism of key species. Collectively, our modeling framework 

presents a potential route to model the gut microbial species and examine the role of 

individual microbes in terms of growth and synthesis of vital metabolites in health and 

diseases, and hereby allowed us to gain new functional insight into the gut microbiota 

associated with malnutrition. Furthermore, the modeling framework can be used to explore 

the metabolic crosstalk between different gut microbial species and how these metabolic 

interactions integrate with the host, which will enable design of effective strategies for 

modulating the gut microbiome for health benefits. Causal mechanisms of malnutrition are 

also still poorly known, and there is a clear need to use application of advances in omics-

based approaches to examine host’s mechanistic pathways associated with malnutrition 
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(Huey and Mehta, 2016). To begin to address this issue, we followed a birth cohort of 

children in Bangladesh up to the age of 2 and performed targeted plasma metabolic profiling 

on 25 children assessed to be stunted with 25 healthy controls. The main goal of our study 

was to assess any differences in circulating levels of 50 metabolites that may be influenced 

by the microbiota between the healthy and stunted groups. Results demonstrated that stunted 

children had reduced levels of essential amino acids as well as lower ratio of tryptophan to 

other neutral amino acids compared to the healthy group. Overall, ten plasma metabolites 

were found to be correlated with Height-for-Age Z score (HAZ) of children.

MATERIALS AND METHODS

Analysis of the gut microbial relative abundance data

Relative taxonomic abundance data of gut bacteria were obtained from three published 

studies based on children groups from three different countries (Malawi, Bangladesh, and 

Sweden) (Bäckhed et al., 2015; Smith et al., 2013; Subramanian et al., 2014). Only species-

level relative abundances were used for selecting the 20 most abundant bacterial species 

from gut microbiota of healthy and malnourished children in order to reconstruct GEMs. 

This assumption was made to simplify modeling framework in order to understand the 

metabolic capabilities of the most dominant part of child gut microbiome in health and 

malnutrition. A total of 68 species were selected. Relative taxonomic abundances of selected 

species can be seen in Table S1 and Figure S2.

Firmicutes/Bacteroidetes ratio was calculated for healthy and malnourished children using 

relative taxonomic abundance data from four published studies (Bäckhed et al., 2015; 

Blanton et al., 2016; Smith et al., 2013; Subramanian et al., 2014). Among the four datasets 

two were from Malawian children (Blanton et al., 2016; Smith et al., 2013) and the 

remaining two were from Bangladeshi (Subramanian et al., 2014) and Swedish children 

(Bäckhed et al., 2015). Relative taxonomic abundance data of Swedish children were 

available only for healthy children. Further species abundance datasets were used to 

determine the Shannon diversity index or Shannon-Wiener index of the gut microbiota for 

each children group. Shannon-Wiener index is defined as following (Hurlbert, 1971):

Shannon−Wiener   index =   − ∑
i = 1

S
Pilog2(Pi)

Where, Pi is the relative abundance of species i. S is the number of species in microbial 

community. diversity function of package vegan was deployed to obtain this index in R 

version 3.3.0.

Reconstructions of the genome-scale metabolic models

Due to the partial sequencing and annotation or no availability in public databases of 

genome of ten species, draft GEMs were reconstructed for 58 species (Table S2). These 

models are represented by a stoichiometric matrix (S), which incorporates metabolic 

conversion and mass balance information of biochemical reactions (enzymatic and transport) 

in metabolic network of organism and growth is determined from biomass reaction, which is 
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connected with other biochemical reactions in the network. Annotated genomes based on 

Rapid Annotation using Subsystem Technology (RAST) sever (Aziz et al., 2008) were used 

for reconstructing the draft GEMs at KBase platform (The U.S. Department of Energy 

Systems Biology Knowledgebase, https://kbase.us/). KBase platform uses the modelSEED 

pipeline (Henry et al., 2010) for generating GEMs.

To fill gaps in the GEMs we have used the KBase/modelSEED pipeline to automatically add 

a minimal set of reactions to the draft networks in order to produce biomass (Henry et al., 

2010). Updated KBase/modelSEED pipeline uses a previously published method for gap-

filling (Latendresse, 2014). GEMs, which contained at least 75% reactions based on 

available gene annotations, were considered for further analysis to lessen the possible 

influence of automatically gap-filled reactions. For details of the steps followed in curation 

of the GEMs see Supplemental Text. All 58 GEMs are available on GitHub (https://

github.com/SysBioChalmers/ChildrenGutMicrobialGEMs). In the next step, we compared 

the GEMs to determine the metabolic dissimilarities from each other. Models dissimilarity 

was examined in terms of metabolic distances between models based on their list of 

reactions. Metabolic distance was calculated using Jaccard coefficient, as metabolic distance 

= 1 – Jaccard coefficient (Levandowsky, 1971) (Figure 2B and Table S4). If A is the set of 

reactions of model a and B is the set of reactions of model b, then metabolic distance 

between a and b is defined as 1 – |A∩B| /|A∪B|.

Model simulations

All Flux Balance Analysis (FBA) simulations were performed in MATLAB R2015b and 

R2016b (The MathWorks, Inc., Natick, MA) using the COBRA Toolbox 2.0.5 (https://

opencobra.github.io/) and linear programming solver Gurobi 6.5.2 with academic license 

(GUROBI OPTIMIZATION, http://www.gurobi.com/index). GEMs were employed to 

predict the in silico optimal growth rates on complete media, human breast milk, and ready-

to-use therapeutic food. Complete media is an in silico growth media, which does not have a 

fixed composition. Instead, complete media allows models to grow on all metabolites, for 

which transport reactions are available in the model. The other two media are the common 

diets for healthy and malnourished children and the composition of these were based on 

previously published studies (Bahwere et al., 2016; Nilsson et al., 2017; Peng et al., 2007; 

Yamawaki et al., 2005) (Table S6). We have also quantified fluxes of several metabolites 

(short chain fatty acids and amino acids). Models were constrained with maximum biomass 

production during quantification of secretion of metabolites. Using fluxes of these 

metabolites and relative abundances of species, the metabolic potential of gut microbiota in 

different species, communities and conditions were determined in terms of Estimated 

Maximal Metabolic Potential (EMPP). EMPP = Ai × vj denotes the estimated maximal 

metabolic potential of metabolite j in species i. A and v represent the relative abundance of a 

species and flux of a secreted metabolite, respectively.

Reconstruction of community metabolic models for gut microbes

Community Metabolic Models (CMMs) were reconstructed using single species GEMs, 

following a previously published method for generating mixed-bag models for microbial 

communities (Henry et al., 2016). For this purpose, five gut microbial communities based on 
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five different children groups, namely Malawian children (healthy), Bangladeshi children 

(healthy), Swedish children (healthy), Malawian children (malnourished), and Bangladeshi 

children (malnourished) were selected (Table S5).

Pairwise interactions among species

Pairwise simulations were performed by formulating a linear programming in which the 

media metabolites were set to be the only available resources for the models. If a metabolite 

was required by both of the models, a constraint would imply that the sum of its associated 

consumption flux would be less or equal to the available amount in the media. Any produced 

metabolites by the community members that was used by the other member were under a 

constraint implying that the consumed flux is less or equal to the produced flux. The 

objective function for pairwise growth simulation and potential metabolite production were 

sum of biomass reactions and the sum of exchange reactions producing the metabolite of 

interest, respectively. For identifying the type of effect on growth, the growth rate in 

pairwise simulations were subtracted from the growth rate in single species optimization and 

depending on the change in the growth rates the type of effect was classified.

Validation of models

GEMs of Bacteroides thetaiotaomicron (M6), Bifidobacterium adolescentis (M9), 

Eubacterium rectale (M29), Faecalibacterium prausnitzii (M31), Prevotella copri (M41), and 

Roseburia inulinivorans (M43) were employed to predict growth rates and were validated 

with in vitro experimental data based on mono-cultures. In experimental setup, 

Bifidobacterium adolescentis L2–32, Eubacterium rectale A1–86 (DSM 17629), 

Faecalibacterium prausnitzii A2–165 (DSM 17677), and Roseburia inulinivorans A2–194 

(DSM 16841) were provided by Dr. Karen Scott, The Rowett Institute of Nutrition and 

Health, Aberdeen. Bacteroides thetaiotaomicron ATCC 29148 and Prevotella copri DSM 

18205 were obtained from American Type Culture Collection (ATCC) and Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ), respectively. Originally, above 

all strains have been isolated from their human faecal habitat. B. adolescentis, B. 

thetaiotaomicron, E. rectale, F. prausnitzii, and R. inulinivorans were maintained in Hungate 

like tube (Ochs Laborbedarf, Germany) in YCFA medium (Supplemental Experimental 

Procedures) under an anaerobic environment using oxygen-free CO2 (Ze et al., 2012). 

However, P. copri was maintained in PYG medium (Media 104 in the DSMZ catalog).

An anaerobic chamber (Coy Lab Products, Grass Lake, MI, USA) was used to maintain 

oxygen-free environment for sub-culturing each bacterium on an agar plate containing 

YCFA medium. For inoculum preparation, a single colony was transferred to liquid YCFA 

medium (7.5 ml in each Hungate tube) and incubated for 12–15 h. Further, 100 ml serum 

bottles (Ochs Laborbedarf, Germany) with 50 ml working volume of autoclaved YCFA 

medium were used to perform fermentation experiments under anaerobic environment that 

maintained by oxygen free CO2. Each bottle was inoculated with 2% (v/v) inoculum and 

incubated for a maximum 30 h. All experiments were performed in triplicate.

For simulating the GEMs of above mentioned species, all components of YCFA medium 

were separated in individual metabolites (Supplemental Experimental Procedure and Table 
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S7) that were used as input for GEMs. Glucose uptake rates (mmol gDW−1 h−1) were 

constrained as measured by experimental observations (Table 1). The uptake rates of 

remaining medium metabolites were kept unconstrained (Table S7). Biomass production 

was set as an objective function for simulating these GEMs.

Experimental design for plasma metabolic profiling analysis

Subjects for this study were part of a longitudinal birth cohort study (PROVIDE) conducted 

at International Centre for Diarrheal Disease Research, Dhaka, Bangladesh (icddr,b) 

(Kirkpatrick et al., 2015). This study followed a cohort of 700 infants in an urban slum in 

Dhaka, Bangladesh over the first 2 years of life to understand factors associated with vaccine 

efficacy, enteric dysfunction and stunting. Plasma samples were collected from 25 subjects 

with the greatest growth deficit (HAZ<−2) at 2 years of age and from 25 control subjects 

were used for targeted metabolite analysis to identify discriminant biomarkers associated 

with stunting (Table 2).

Metabolite profiling and quantitative analysis

Plasma samples stored at −80°C were shipped on dry ice to University of Virginia for 

analysis. Amino acid levels were assayed using the EZ:faast™ Amino acids kit from 

Phenomenex (Torrance, CA) following manufacturer’s instructions. A method for 

derivatization of carboxylates (Han et al., 2013) and short-chain fatty acids (Han et al., 

2015) by 3-nitrophenylhydrazine (3-NPH) for analysis by UPLC-MS/MS was adapted to 

quantify these molecules from plasma. 25 μL of plasma was mixed with 10 μL of internal 

standards comprising 10mM acetic acid-D4, 5mM sodium butyrate-D5, 1mM propionic acid 

-D5 (all from Cambridge Isotope Labs, Andover, MA, USA) and 1 μg/mL pyruvate and 

methanol was added to 80%. The mix was incubated on ice for 10 minutes, followed by 

centrifugation to remove the precipitate. 100 mL of the supernatant was combined in a 

mixture containing 25 μL of 150 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC) in 75% methanol, 25 mL of 7.5% pyridine in 75% methanol and 50 mL of 200 mM 

3-NPH in 75% methanol, and reacted sequentially at 4°C for 30 minutes, 40°C for 30 

minutes and 50°C for 30 minutes to facilitate optimal derivatization of different compounds. 

The sample was diluted 1:1 with water for analysis by UPLC-MS/MS. Standard stocks of 

individual metabolites were serially diluted and analyzed similarly for generation of 

standard curves. Samples were separated on a 1.0 × 10cm Waters BEH column with an I-

class Acquity using water:formic acid (100:0.01, v/v) and acetonitrile:formic acid (100:0.01, 

v/v) as the mobile phases for gradient elution.. The column flow rate was 0.1 mL/min; the 

column temperature was 40 °C, and the autosampler was kept at 5 °C. Eluate was analyzed 

on a Waters TQ-S mass spectrometer using electrospray ionization in negative ion mode 

using optimized MRM parameters and the resultant data was process using TargetLynx 4.1.

Statistical analysis

The data adjusted by age and gender are expressed as medians and interquartile range 

(upper, lower) (Buffie et al., 2015) (Table S9 and S10). All statistical comparisons between 

healthy and stunted children data were made using Mann-Whitney U and Wilcoxon rank-

sum test. When multiple hypotheses were considered simultaneously, P values were adjusted 

to control the false discovery rate using a previously published method (Benjamini and 
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Hochberg, 1995). Correlation between concentrations of plasma amino acids and HAZ score 

of children groups were examined by determining the Spearman’s correlation coefficients 

(Wu et al., 2011) (Table S11). The adjusted P value cut-off of 0.05 was considered to define 

the statistically significant correlation.

All of the dendrograms were obtained by hierarchical clustering of distances (or 

dissimilarities) measures between rows or columns in the heatmaps. Distance measures were 

obtained using Euclidean method as following (Deza and Deza, 2014):

Distance   or   dissimilarity x, y   = ∑
i = 1

n
xi − yi

2

where, x and y represent the vectors of a pair of rows or columns i, which depends on 

distances calculated for rows or columns. n represents the number of rows or columns in the 

heatmaps. heatmap.2 function of gplots package, and dist and hclust functions of R were 

used for generating heatmaps and dendrograms, respectively, in R version 3.3.0.

RESULTS

Representative microbial species in healthy and malnourished children

Relative taxonomic abundances of species in the gut microbiota of four groups of healthy 

and malnourished children from three different countries (Malawi, Bangladesh, and Sweden) 

were used to calculate the Shannon diversity index as low diversity has been associated with 

a dysfunctional gut microbiota (Menni et al., 2017). Two datasets were from Malawian 

children (Blanton et al., 2016; Smith et al., 2013), one from Bangladeshi (Subramanian et 

al., 2014) and one from Swedish children (Bäckhed et al., 2015). The relative taxonomic 

abundance data for Swedish children were available only for healthy children. To investigate 

the gut microbial diversity of healthy and malnourished children, we compared the diversity 

index of the gut microbiota between children having more (Malawian and Bangladeshi 

children) and less (Swedish children) prevalence of malnutrition. The diversity index data 

showed that the Malawian and Bangladeshi children have a significantly lower diversity 

index than the Swedish children (P < 0.01 for all comparisons, Mann-Whitney U test; Figure 

1A). Similarly we calculated the Firmicutes to Bacteroidetes ratio (F/B ratio) as this ratio 

has previously been reported to be associated with several disease states, namely 

Inflammatory Bowel Disease (Sokol et al., 2009) and obesity (Turnbaugh et al., 2006). The 

F/B ratio was found to be significantly lower in Swedish children than the children from the 

other two countries (P < 0.01 for all comparisons, Mann-Whitney U test; Figure S1).

In order to gain insight into the metabolic functions of the gut microbiome in the three 

cohorts of children we reconstructed GEMs of gut bacterial species. For this we selected the 

top 20 most abundant bacterial species using species-level relative taxonomic abundances 

from the gut microbiota of children from different time points and different cohorts of 

children in three countries (a total of 11 sample groups) (Table S1 and Figure S2). The focus 

was to investigate if there are differences in metabolic capabilities of the most abundant part 

of the gut microbiota of healthy and malnourished children. A total of 68 species, 
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representing five phyla, viz. Firmicutes (61.8%), Bacteroidetes (17.6%), Actinobacteria 

(10.3%), Proteobacteria (8.8%), and Fusobacteria (1.5%), were selected after considering 

species abundances data from all children groups and time points (Figure 1B). There were 7 

species common among all children groups, whereas 18, 9, and 22 species were unique in 

Malawian, Bangladeshi, and Swedish children, respectively (Figure S3).

GEMs reconstruction and their features

Due to only partial sequencing and annotation or no availability in public databases of 

genome sequences GEMs could not be reconstructed for 10 of the 68 species. These 10 

species were among the least abundant species in the group of the 68 species (Figure S3). 

Draft GEMs were reconstructed for the remaining 58 species (Table S2). The ModelSEED 

pipeline (Henry et al., 2010) on the KBase platform (The U.S. Department of Energy 

Systems Biology Knowledgebase, https://kbase.us/) was used to reconstruct the GEMs. 

Available annotated genomes of the selected species were downloaded from KBase 

platform. These bacterial genomes have been annotated using the Rapid Annotation using 

Subsystem Technology (RAST) server (Aziz et al., 2008). Further annotated bacterial 

genomes were used to reconstruct the draft GEMs. The draft models consisted of a network 

of reactions with Gene-Protein-Reaction (GPR) relationships, and a biomass reaction, which 

represents the growth of microbes. Due to lack of the elemental analysis data of biomass of 

gut microbes only two different kinds of biomass reactions were included in the models, one 

for Gram-positive and one for Gram-negative taxa. An automatic pipeline was used to fill 

the gaps in the draft models under specific growth condition of human breast milk (HBM) as 

media (Materials and Methods) (Latendresse, 2014). Hereby different sets of reactions were 

incorporated into each model, which is necessary due to non-perfect genome annotations 

and variations in growth requirements for different organisms. Growth, i.e. biomass 

formation, was considered as an objective function during the gap-filling. An overview of 

key parameters for all 58 gut bacterial GEMs (M1–M58,) is summarized in Figure 2. In the 

next step, we manually curated the gap-filled models in terms of enabling anaerobic growth, 

removal of unused gap-filled reactions, enabling key metabolic tasks, such as synthesis of 

SCFAs and AAs, corrections in reaction directionalities, and improving model annotation 

(Supplemental Text). GEMs that contained more than 75% of their reactions based on 

available gene annotations were further analyzed to reduce the possible influence of over-

fitting in the automatic gap-filling process (Figure 2A). Collectively, the models incorporate 

a total number of reactions and metabolites of 2160 (including exchange reactions) and 

1557, respectively. Moreover, these 58 GEMs contain genes, reactions, and metabolites in 

the range of 1645 to 6680, 818 to 1547, and 805 to 1248, respectively (Figure 2B, Table S2 

and S3).

A metabolic dissimilarity test was performed between the models to elucidate how these 

models are metabolically distinct from each other (Materials and Methods). The metabolic 

dissimilarity was examined in terms of metabolic distances, which was determined using the 

Jaccard coefficient considering shared and unique reactions between the models. Results of 

this analysis inferred that models representing the same phyla contained more reactions in 

common than models representing different phyla (Figure 2B). Moreover, models shared 

only 41% of the reactions and as expected, models of Actinobacteria, Bacteroidetes, 
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Firmicutes, and Proteobacteria incorporated 20, 50, 163, and 132 unique reactions, 

respectively, which showed distinctiveness between the models based on genomic 

differences of the bacterial species (Figure S4).

Validation of GEMs

In the next step, the accuracy of the reconstructed GEMs was examined by predicting 

growth rates and comparing these with experimentally generated data for six gut bacterial 

species grown on YCFA medium under anaerobic conditions. Species involved in this 

analysis are Bacteroides thetaiotaomicron (M6), Bifidobacterium adolescentis (M9), 

Eubacterium rectale (M29), Faecalibacterium prausnitzii (M31), Prevotella copri (M41), and 

Roseburia inulinivorans (M43) (Materials and Methods). GEMs were simulated using 

components of the YCFA medium (Table S7) with different glucose uptake rates (mmol 

gDW−1 h−1) as demonstrated by experimental observations (Table 1). As shown in Figure 

2C and Table 1, GEM predictions agreed well with experimental results.

Estimation of growth and metabolic capabilities of gut bacterial species

HBM and RUTF (Table S6) provide vital dietary requirements for children during their early 

age. Using these two diets, gut bacterial GEMs were simulated for predicting the growth and 

secretion rate of metabolites, such as short chain fatty acids (SCFAs) and amino acids 

(AAs). Another growth media, which is called complete media (Benedict et al., 2014), was 

also used to examine the growth and metabolic capabilities of gut microbial species. 

Complete media is an in silico growth media, which does not contain fixed components. 

Instead, complete media allows the models to simulate growth on all metabolites for which 

transport reactions are available in the model (Supplemental Text).

Model predictions suggested large variations in growth rates of the gut microbes on the three 

different media (Figure 3A). In comparison, 33 models predicted faster growth on CM than 

on the other two media (HBM and RUTF) (P < 0.01 for all comparisons, Mann-Whitney U 

test). This is to be expected because CM contains all of the compounds that are required for 

growth of each bacterium. This shows good quality of the models in terms of making 

biologically meaningful predictions. The remaining 25 models predicted similar growth 

rates (h−1) on all three media. Next, we compared predicted growth rates (h−1) of bacteria on 

HBM and RUTF (Figure 3B). The results showed that all of the models either predicted 

faster growth on HBM (P < 0.01 for all comparisons, Mann-Whitney U test) or similar 

growth rates on HBM and RUTF. Actinobacteria, Proteobacteria, and Fusobacteria were 

predicted to grow faster on HBM except Bifidobacterium breve (Actinobacteria), whereas 

Firmicutes and Bacteroidetes grew either with similar growth rates on both media or faster 

on HBM. This clearly shows that RUTF lacks certain nutrients compared to HBM in terms 

of enabling fast growth of gut symbionts. Thus, the unavailability of human breast milk and 

compensation by RUTF may have an effect on shaping the composition of the gut 

microbiota of malnourished children during their early life. This could be because of the 

nutritional differences between HBM (Dewey et al., 1995; Gale et al., 2012; Lanting et al., 

1994) and RUTF, and this may explain why human breast milk is vital for shaping the gut 

microbiota in infants (Subramanian et al., 2015).
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Previous studies suggest that the human gut harbors trillions of microbes and both host and 

microbes maintain a homeostasis in terms of exchange of metabolites for health benefits 

along with other mutual relationships (Schroeder and Bäckhed, 2016). SCFAs and branched 

chained fatty acids (BCFAs) are some of the most vital gut microbiota-derived metabolites, 

for instance, acetate, propanoate, butyrate, and isobutyrate etc. (De Vadder et al., 2014; 

Louis and Flint, 2017), which significantly contribute to the daily energy requirement, in 

particular for proper development of the gastrointestinal system (Bergman, 1990). Moreover, 

gut microbes also produce amino acids, importantly, essential amino acids, like tryptophan 

and phenylalanine, and derivatives thereof such as kynurenine that serves an important role 

in regulating the immune responses (Husted et al., 2017; Metges, 2000; Nguyen et al., 2010; 

Shoaie et al., 2015). We therefore used the GEMs to predict the maximal production 

capacity of three SCFAs (acetate, propanoate, and butyrate) and 20 AAs (L-Glutamate, 

Glycine, L-Alanine, L-Lysine, L-Aspartate, L-Arginine, L-Glutamine, L-Serine, L-

Methionine, L-Tryptophan, L-Phenylalanine, L-Tyrosine, L-Cysteine, L-Leucine, L-

Histidine, L-Proline, L-Valine, L-Threonine, L-Isoleucine, and L-Asparagine) for the 

selected 58 bacterial species. The metabolic capabilities of the individual gut microbes were 

estimated in terms of Estimated Maximal Production Potential (EMPP) of a species for 

secreting SCFAs and AAs (Figure 3C and 3D). EMPP was calculated by multiplying the 

flux of metabolite production and the abundance of the corresponding species (Materials and 

Methods). This analysis showed a much larger metabolic diversity of the gut microbiota in 

Swedish children in terms of SCFAs and AAs secretions, compared with the Malawian and 

Bangladeshi children, who have much lower EMPP for most of the metabolites evaluated by 

our analysis. This difference in metabolic diversity was noticed irrespective of health and 

disease states of the Malawian children groups, i.e. there were no significant differences 

between metabolic capabilities of healthy and malnourished children groups from Malawi. 

However, metabolic capabilities of the gut microbiota in Bangladeshi children were 

significantly different between healthy and malnourished children (P < 0.01 for all 

comparisons, Mann-Whitney U test; Figure 3E). These results indicated that there were gut 

microbiota-driven metabolic variations between children groups, which is likely driven by 

environmental factors, e.g. dietary differences in Sweden versus Malawi and Bangladesh, 

but also that the reduced metabolic diversity in the Malawian and Bangladeshi children may 

increase the risk of malnutrition. This is consistent with an overall lower microbial diversity 

in these children groups. More importantly, to explore any possible associations between 

significantly lower metabolic capabilities of gut microbiota in malnourished Bangladeshi 

children than healthy group with plasma biochemistry, plasma metabolic profiling was 

performed using blood samples from this children group (see later).

Metabolic potential of communities of gut bacterial species in health and malnutrition

Using single species GEMs, Community Metabolic Models (CMMs) were reconstructed, 

following a previously published method (Henry et al., 2016). This method allows single 

species GEMs to merge into one model with a single intracellular compartment, which is 

also called mixed-bag network modeling. The objective of this analysis was to estimate the 

functional enrichment in gut microbial communities during health and malnutrition. Here, 

functional enrichment was defined as the number of active reactions representing particular 

metabolic pathways in CMM of a microbial community, when CMMs were simulated on 
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HBM. For this analysis, five gut microbial communities based on five different children 

groups, namely Malawian children (healthy), Malawian children (malnourished), 

Bangladeshi children (healthy), Bangladeshi children (malnourished), and Swedish children 

(healthy) were considered to reconstruct the CMMs (Table S5). The total number of active 

reactions in the CMMs were 752, 755, 785, 815, and 832, respectively. Functional categories 

were assigned to the reactions using KEGG (Kanehisa et al., 2004) and BIGG 

(Schellenberger et al., 2010) databases. Some metabolic functional categories, for instance, 

phenylalanine metabolism, glycerophospholipid metabolism, redox metabolism, lysine 

biosynthesis, and beta-alanine metabolism were dominated by reactions in Swedish children 

compared with the other children groups (Figure 4A). In contrast, there was no pattern found 

in the case of other metabolic functions. The highest number of reactions lie in amino acid 

metabolism functional category covering 19% to 23% of total number of reactions in 

CMMs.

Pairwise interactions between species from different microbial communities in health and 
malnutrition

Competition and interaction—In order to elucidate the potential effect of bacteria on 

each other in terms of growth, we analyzed the extent of competition and cooperation 

existing between the species in each of the four aforementioned microbial communities 

based on four children groups, namely Malawian children (healthy), Malawian children 

(malnourished), Bangladeshi children (healthy), and Bangladeshi children (malnourished), 

in a pairwise manner (Table S5). We inspected the consumed and the produced metabolites 

for each of the bacterial models while simulating growth on HBM and RUTF (Table S6). We 

then identified the potential metabolites that could be regarded as a source of competition, in 

a sense that they are required by both of the models for growth optimization.

However, this could include metabolites that do not affect the growth rate and we therefore 

analyzed the reduced costs of the exchange reactions associated with the metabolites that 

each pair of bacteria have in common as their consumed metabolites while maximizing their 

growth. We performed the same analysis for the metabolites that could be considered as a 

means of cooperation between the bacterial species, meaning when the metabolite is 

produced by one and consumed by the other. According to our results, the bacteria are 

mostly competing for resources that they need for growth and there are less interactions in 

terms of cooperation, i.e. one species needs a metabolite for growth that is produced by 

another species (Figure S5). There are, however, also cases that they cooperate, but such 

cases are fewer than competition, which is in line with the fact that competition has been 

reported to be a more stabilizing force for a microbial community (Coyte et al., 2015).

Effect on growth rate—Next, we checked how these interactions, either competition or 

cooperation, would influence the growth rate of bacteria when they grow together. In order 

to do so, we simulated co-growth of every possible pairwise combination of the bacterial 

models on HBM and RUTF media in the four aforementioned microbial communities. In 

pairwise growth simulations, the media metabolites were shared between the two models 

and the metabolites that were produced by either of them, was added to the available media 

resources. A linear programming (LP) was formulated applying these constraints concerning 
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the exchanged metabolites (Materials and Methods). The objective function for this LP was 

the sum of biomass reactions of the two models. When the models were optimized in this 

manner, each would reach a specific growth rate that might be different from its growth rate 

when it was optimized for growth as a single model. Pairwise growth rate might be higher or 

lower than the single-species growth rate, or it might not be affected. Depending on the 

effect that the bacteria could have on each other in terms of growth rates, there are six 

possible outcomes: 1) competition, 2) parasitism, 3) commensalism, 4) mutualism, 5) 

amensalism, and 6) neutralism (Heinken and Thiele, 2015). Our results show that on HBM 

media, the most dominant effects that the microbes have on the growth rate of each other are 

parasitism, amensalism and competition (Figure 4B). There are fewer cases of amensalism 

in healthy communities compared to the malnourished ones, while parasitism is quite similar 

between the two communities in both Bangladeshi and Malawian cases. Competition, 

commensalism, neutralism and mutualism is marginally higher in healthy communities 

compared with malnourished communities on HBM media. The results on RUTF showed 

that the most frequent effects are parasitism, followed by competition and amensalism 

similar to the HBM media. However, on RUTF we observed more commensalism and 

mutualism due to the fact that RUTF contains a different composition compared to HBM 

Table S6, but it is contributing to mutualism, which is generally not considered a strong 

force in community stabilization.

Metabolite production—Lastly, we investigated the effect on microbial co-growth in 

terms of metabolite production. To this end, the same procedure for pairwise growth 

simulation was used as explained above regarding exchanged metabolites. In single-species 

metabolite production simulations (Figure 3C and 3D), each model was first optimized for 

growth, and subsequently for metabolite (SFCAs or AAs) production while setting the 

optimum achieved growth rate as the lower bound for the biomass reaction (Materials and 

Methods). In pairwise growth simulations, for every possible pairwise combination of 

bacteria, first an LP was solved with the objective function being the sum of biomass 

reactions to get the growth rates of the microbes while growing together. Subsequently these 

rates were used as the lower bound of the biomass reactions and a demand reaction was 

added to each model for production of the metabolite of interest. Finally, by comparing the 

rates of the produced metabolite in single versus pairwise manner for each bacteria, we 

investigated how the microbes influence each other’s potential for metabolite productions 

that are afterwards metabolized by the host. We performed these analyses for all four 

communities on HBM and RUTF and the results are shown in Table S8. Regarding SCFAs, 

we noted that the bacteria affect each other in dissimilar ways. In case of acetate, in almost 

all communities on both HBM and RUTF media, there is no change of production when 

comparing pairwise with single microbe simulations. Contrarily, we observed that bacteria 

influence the rate of propionate and butyrate production notably, however in different ways. 

For butyrate, the rate of production is increased in pairwise simulation compared to single 

species analysis and this increase is higher in healthy communities in both Bangladeshi and 

Malawian children, which is consistent with the beneficial roles associated to butyrate. 

Butyrate can serve as an energy source for intestinal epithelial cells and might prevent 

colonic carcinogenesis (Beyer-Sehlmeyer et al., 2003; Velázquez et al., 1996). Besides, this 

increase in butyrate production is marginally higher in RUTF in Malawian groups, but not in 
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Bangladeshi, which reflects the compositional effects of microbial communities. In case of 

propionate production, the results showed that the bacterial species tend to produce less 

propionate when simulated in pairwise manner in all communities, however, the amount of 

decrease is more noticeable in Bangladeshi communities while there are more cases of 

increase of propionate production in Malawian children. In regard to amino acid production 

potential, we observed a decrease in the potential production for five out of the nine essential 

amino acids, i.e. lysine, tryptophan, histidine, valine and isoleucine, as well as for the 

conditionally essential amino acid arginine, for pairwise simulations. Comparing Malawian 

healthy and malnourished communities, there is a decreased production potential for three 

out of the nine essential amino acids, i.e. phenylalanine, leucine and methionine, for two 

conditionally essential amino acids, i.e. tyrosine and proline, and for the non-essential amino 

acid alanine. For Bangladeshi groups where two essential amino acids, i.e. valine and 

isoleucine are less produced in malnourished children and the others are either not changed 

or altered slightly.

Plasma metabolic profiling in health and malnutrition (stunting)

Our GEMs-based analyses suggested that there were significantly lower metabolic 

capabilities of gut microbiota in malnourished children group from Bangladesh compared to 

the healthy group. To explore any possible associations between variations in gut microbiota 

with plasma biochemistry of these children, we therefore performed plasma metabolic 

profiling of a group of healthy and stunted children from Bangladesh (from the PROVIDE 

cohort (Naylor et al., 2015; Subramanian et al., 2014), which is the same cohort used for the 

gut microbiota study analyzed above). Each group included 25 children and the 

characteristics of total 50 children are shown in Table 2. Healthy and stunted children groups 

included female subjects of 48 % and 32 %, respectively. The design of our study is 

described in Materials and Methods, and depicted in Figure S6. Here, we quantitated a total 

of 50 plasma metabolites that included amino acids, short chain and branched chain fatty 

acids, TCA cycle intermediates, and sugars up to the age of 2 years (at which time the 

growth status of the children was assessed using the HAZ score, with HAZ < 2 indicative of 

stunting). Age- and gender-adjusted concentrations of these metabolites were compared 

between the children groups with and without stunting using Wilcoxon rank-sum test 

(Materials and Methods). A summary of these comparisons is depicted in Table S9 and S10.

Ratio of Tryptophan to Neutral Amino Acids—A significantly lower level of 

Tryptophan (adjusted P < 0.05, Wilcoxon rank-sum test) was recorded in plasma of stunted 

children compared to healthy control group (Figure 5A and Table S9). Previous studies 

suggested that a ratio of tryptophan to the sum of other neutral amino acids (T/NAAs), for 

example histidine, isoleucine, leucine, methionine, phenylalanine, threonine, tyrosine, and 

valine, was associated with maturation and functioning of brain, in particular at the early age 

of life (Heine et al., 1999; Richard et al., 2009). Therefore, we examined T/NAAs ratio 

between heathy and stunted children groups, and stunted children had significantly reduced 

level of T/NAAs ratio compared to healthy children (adjusted P < 0.05, Wilcoxon rank-sum 

test) (Figure 5B).

Kumar et al. Page 14

Metab Eng. Author manuscript; available in PMC 2019 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

mic
Highlight

mic
Highlight

mic
Highlight



Profiles of Essential and Non-essential amino acids—The importance of protein 

quality in the mother’s diet for improved birth weight and reduced risk of small gestational 

size is well recognized (Bhutta et al., 2013). In a recent cross-sectional study with children 

between 1 and 5 years of age in Malawi, stunted children were found to have low levels of 

essential amino acids in plasma (Semba et al., 2016). We therefore measured all nine 

essential amino acids (lysine, histidine, threonine, methionine, tryptophan, isoleucine, 

leucine, phenylalanine, and valine), together with seven conditionally-essential amino acids 

(arginine, glutamine, glycine, proline, serine, tyrosine, and asparagine) and sixteen non-

essential amino acids in plasma samples from both groups at several different time points 

(Experimental Procedure; Table S9). At individual-level, concentration of two essential 

amino acids, namely lysine and threonine and one conditionally-essential amino acid, 

namely arginine, were found to be significantly lower in stunted children compared to 

healthy group (Figure 5D). Moreover, the reduced level of metabolites in stunted children 

were consistent in the case of overall concentration of essential amino acids (EAAs) and 

ratio of overall concentration of essential to non-essential amino acids (EAAs/NEAAs) 

(Figure 5E). It was also noticed that two non-essential amino acids (hydroxyproline and α-

aminobutyric acid; Figure S8A and B) had a reduced concentration in plasma of stunted 

children.

Metabolites Elevated in Plasma of Stunted Children—One non-essential amino 

acid (cystathionine), two short-chain fatty acids (propionate and butyrate), and two TCA 

cycle intermediates (Pyruvate and malate) were found to be significantly higher in the 

plasma of stunted children compared to the healthy group (Figure S9, Table S9 and S10). 

However, there was no significant difference noticed in plasma sugars (fructose, mannose, 

and glucose) level between health and stunting (Table S10).

Correlations between plasma metabolites and HAZ score of children—
Spearman’s correlation coefficient was determined to examine the correlation between 

plasma metabolites and HAZ score of children groups (Experimental Procedure). The 

outcomes of this analysis are summarized in Table S11. This analysis suggested that six 

essential (lysine, isoleucine, leucine, valine, tryptophan, and threonine), one conditionally-

essential (arginine), and one non-essential (α-aminobutyric acid) amino acids were 

positively correlated with HAZ score (adjusted P < 0.05, Wilcoxon rank-sum test; Figure 6). 

The significant negative associations were noted between two other metabolites (pyruvate 

and butyrate) and HAZ score (adjusted P < 0.05, Wilcoxon rank-sum test; Figure 6).

DISCUSSION

Metabolic functions and interactions between individual species in the gut microbiota 
during health and malnutrition

The main goal of applying computational approaches in gut microbiome studies is to 

understand the underlying mechanisms of alterations in the gut microbiota during different 

health and disease states. A detailed mechanistic understanding of the gut microbial 

ecosystem can help to modify the microbiome towards health benefits. Here, we used 

constraint-based modeling to estimate the metabolic capabilities of the gut microbial species 
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in health and disease. Moreover, we performed data mining of gut microbial species 

abundance data from children groups of low- and high-income countries.

Interestingly, the poor state of the gut microbiota of the Malawian and Bangladeshi children 

is also clearly, illustrated by much lower Shannon diversity index for these children, 

something that has been ascribed to increased health risk for over-weight and obese subjects 

(Menni et al., 2017). Species-level abundances demonstrated a higher F/B ratio in Malawian 

and Bangladeshi children than Swedish children. The F/B ratio was not found to be directly 

associated with malnutrition, but this ratio was found to be higher in children groups having 

more prevalence of malnutrition. The difference in F/B ratio between the children groups 

was mainly due to the variations in abundance of Bacteroidetes. Here, it should be noted that 

like Bifidobacterium, several species of Bacteroidetes have been shown to play an important 

role in consuming undigested human milk oligosaccharides (HMOs) (Marcobal et al., 2011).

Our modeling allowed us to quantify the metabolic potential of gut microbial species in 

health and malnutrition. However, due to knowledge gaps in the understanding of gut 

microbial ecology, this framework is based on some simplifying assumptions. First, all 

constraint-based models in this study were reconstructed using fixed annotated genomes 

from publicly available databases and gene copy numbers in metagenomic datasets were not 

considered. More precise attempts towards annotation of strain-specific genomes and multi-

omics data could improve this modeling framework for more accurate predictions. Second, 

to reduce the complexity in model reconstruction and analysis, only the 20 most abundant 

bacteria were selected to represent the microbial community from all children groups in 

health and malnutrition. This problem can be overcome, partially, in future studies by 

extending this framework to whole microbial communities for different metagenomic 

datasets. Third, our modeling framework is limited for analyzing cross-feeding between 

more than two species. So, the presented metabolic variations in microbial communities are 

based on independent single species. It is believed that there could be entirely different 

scenarios of metabolic potentials if cross-feeding was considered between several species.

However, despite these shortcomings our modeling efforts clearly provided new insights into 

the function of the gut microbiota of children in three different countries, and two key 

lessons from our study are: 1) The higher species diversity of the gut microbiota of Swedish 

children compared with Malawian and Bangladeshi children directly translates to a reduced 

metabolite production capabilities in the latter group of children. This can have an important 

impact on the development of the epithelial cells of the gut, and hereby lead to poor 

development of this vital organ. However, it may also have a direct impact on the absorption 

of certain essential amino acids, which may in particular be important if the children have 

restricted provision of these amino acids from their food. 2) Each bacterium requires a 

specific set of metabolites to grow and produces some metabolites as metabolic by-products. 

When two bacterial species need the same metabolites for growth, they will compete and 

this competition might have an effect on their growth rates. However, a metabolite may be 

required by both while not having a significant effect, or any effect at all on the growth rate 

such as water or ions that are available in excess in the environment. On the other hand, a 

metabolic by-product of one bacterium might be consumed by another one and in turn 

influence the growth of one or both when growing in proximity to each other. From our 
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analysis of metabolic interactions between species we found clear differences in output 

between gut microbiota from malnourished and healthy children in both the Malawian and 

the Bangladeshi cohorts. Finally, our modeling showed reduced capacity for the gut 

microbiome to produce several essential amino acids in stunted children, which was 

supported by our metabolome analysis.

Alterations in metabolism of stunted children

Here we present the plasma metabolomics data from malnourished children and our analysis 

showed that tryptophan was one of the amino acids found to be at significantly lower levels 

in the malnourished children. Apart from its role in protein and synthesis (Sainio et al., 

1996), tryptophan is also a key precursor for the pathways associated with synthesis of 

serotonin, melatonin, kynurenine, and tryptamine (Figure 5C). For synthesis of serotonin 

and melatonin, tryptophan is transported across the blood-brain-barrier into the brain. 

During this process, tryptophan competes with other NAAs (for example histidine, 

isoleucine, leucine, methionine, phenylalanine, threonine, tyrosine, and valine) for the 

blood-brain-barrier transporter (Fernstrom, 1983; Fernstrom and Wurtman, 1972). 

Therefore, the T/NAAs ratio is a crucial factor and changing this ratio can cause significant 

differences in availability of tryptophan for the synthesis of serotonin and melatonin in brain 

(Heine et al., 1999). The lower T/NAAs ratio found here in stunted children group can be 

associated with adverse effect on brain maturation and function. Similarly, decreased plasma 

tryptophan concentration can affect the synthesis of kynurenine and tryptamine. Kynurenine 

is precursor of kynurenic and quinolinic acid that affect other neurotransmitters, for example 

glutamate (Moroni, 1999). Through the kynurenine and quinolinic acid pathway, tryptophan 

can also act as precursor for niacin (or nicotinic acid and nicotinamide or water-soluble 

vitamin B3) synthesis, which is essential for NAD+ and NADP+ synthesis (Moffett and 

Namboodiri, 2003). Tryptamine is an important neuromodulator of serotonin that plays an 

important role in controlling the functions of serotonin (Jones, 1982). Additionally, several 

recent studies have shown that the gut microbiota metabolism impacts the level of plasma 

metabolites (Fujisaka et al., 2018; Krishnan et al., 2018; Org et al., 2017; Ottosson et al., 

2018; Wikoff et al., 2009; Yano et al., 2015).

Apart from tryptophan, the concentration of several other essential amino acids, e.g. lysine 

and threonine were significantly lower in stunted children (Figure 5D). Lysine is an 

important precursor for the protein synthesis (Tomé and Bos, 2007) as well as the 

biosynthesis of carnitine that plays a very vital role in β-oxidation (Tanphaichitr and 

Broquist, 1973). Lysine also acts as a regulator for nitric oxide (NO) synthesis pathway from 

arginine (Wu, 2009). A WHO report suggested that there is a higher requirement of lysine in 

infants than adults (WHO/FAO/UNU Expert Consultation, 2007). Threonine plays a role in 

synthesis of the mucin proteins, which are important for gut immunity and necessary for 

maintaining intestinal integrity and function (Wu, 2009). In our study, the level of another 

amino acid, arginine, which is a conditionally-essential amino acids, was found to be lower 

in plasma of stunted children compared to healthy group (Figure 5D). Arginine is a vital 

precursor for synthesis of not only proteins but also of NO, proline, ornithine, glutamate, 

citrulline, creatine, and agmatine (Wu and Morris Jr., 1998). Arginine directly or through its 

products is involved in several important functions, for example, in tissue repairing, wound 
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healing, blood flow modulating, mitochondrial respiration, and ammonia detoxification 

(Figure S7) (Wu, 2009). In the study, it has been noticed that stunted children had 

significantly lower overall concentration of plasma essential amino acids (lysine, histidine, 

threonine, methionine, tryptophan, isoleucine, leucine, phenylalanine, and valine) as well as 

lower ratio of essential to non-essential amino acids than healthy children (Figure 5E). 

Mammals do not possess the enzymatic machinery for synthesis of essential amino acids 

that shows mammals’ dependency on dietary intake and gut microbiome for availability of 

these amino acids (Moffett and Namboodiri, 2003). The lower concentrations of plasma 

essential amino acids in stunted children may be because of possible lack of proper 

proportion of amino acids in diet or/and inability of gut to absorb the nutrients. Moreover, 

ratio of essential to non-essential amino acids has been proposed as an indicator of protein 

nutrition previously (Arroyave, 1970; Whitehead, 1964).

We also determined the correlation between plasma metabolites and HAZ score of children. 

For this purpose, we calculated Spearman’s correlation coefficients and results demonstrated 

positive coefficients for eight metabolites (lysine, isoleucine, leucine, valine, tryptophan, and 

threonine, arginine, and α-aminobutyric acid) and negative coefficients for two metabolites 

(pyruvate and butyrate).

The findings of this study demonstrate alterations in plasma biochemistry in health and 

stunting. Our results mainly highlight a significantly (i) reduced level of essential amino 

acids, (ii) reduced level of arginine (conditionally-essential amino acid), and (iii) reduced 

ratio of essential to non-essential and ratio of tryptophan to other neutral amino acids, in 

stunted children compared to healthy group. Inadequate proportion of plasma amino acids 

can be one of the possible cues for inability of micronutrients supplementation for enhancing 

child growth (Ashorn et al., 2015b; Garza, 2015; Mayo-Wilson et al., 2014; Ramakrishnan 

et al., 2009). These reduced levels of metabolites, in particular, essential amino acids in the 

plasma samples of malnourished children were consistent with lower predicted metabolic 

capabilities of the gut microbiota using GEM simulations. This suggested that there may be 

potential associations between functional capabilities of gut microbiota and plasma 

metabolite levels in malnutrition. In order to test this hypothesis, more future research efforts 

are required to uncover the mechanisms underlying how the gut microbiota as well as other 

cues (since the altered levels of plasma metabolites may not be the only reflection of gut 

microbiome) play a role in altering the host metabolism in disease states.

Besides these important biological findings, we believe that our proposed modeling 

framework can be also used to evaluate other scenarios in particular as the set of 58 high 

quality GEMs for gut bacteria represents a valuable resource for further studies of metabolic 

diseases associated with an altered gut microbiota.
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Figure 1: Gut Microbes in Different Healthy and Malnourished Children Groups.
(A) Shannon diversity index of the total gut microbiota of four groups of healthy and 

malnourished children from three countries (Bangladesh (B), Malawi (M1, M2) and Sweden 

(S)). These groups include both healthy and malnourished children, except for Swedish 

group, which doesn’t include malnourished children. Species-level relative abundance data 

was deployed to calculate the Shannon diversity index (Experimental Procedure) using 

diversity function of package vegan in R version 3.3.0. Mann-Whitney U test (two-sided, α 
= 0.01) was used to compare the Shannon diversity index between different children groups. 

(B) Taxonomic relationship among selected 20 most abundant bacteria each from gut 

microbiota of M2, B, and S children groups. Total number of selected bacterial species is 68. 

Bacterial species’ names colored in black are pathogens or conditionally-pathogens. Green 

solid points and circles denote the presence and absence, respectively, of each species in 

corresponding children group. In outer two layers, Green and orange bars represent the 

genome size and number of genes, respectively. This phylogenetic tree was generated using 

phyloT (https://phylot.biobyte.de/index.cgi) and visualized with iTOL v3 (Letunic and Bork, 

2016) based on NCBI taxonomy.
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Figure 2: Features of GEMs
(A) Proportion of reactions associated with gene annotations (violet bar) and added during 

gap filling (pink bar). (B) Number of metabolites and reactions in GEMs of gut bacteria, and 

metabolic distances between models based on shared and unique reactions, which was 

calculated using the Jaccard coefficient (Experimental Procedure). Models representing the 

same phylum share more reactions than models from taxonomically distinct species. 

heatmap.2 function of gplots package, and dist and hclust functions of R were used for 

generating heatmap and dendrogram, respectively, in R version 3.3.0. (C) Validation of 

GEMs. Growth rate predictions of the GEMs of six gut bacterial species were validated with 

experimental observations on YCFA medium with different glucose uptake rates (mmol 

gDW-1 h-1) under anaerobic growth conditions (Table 1). Species involved in this analysis 
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were Bacteroides thetaiotaomicron (M6), Bifidobacterium adolescentis (M9), Eubacterium 
rectale (M29), Faecalibacterium prausnitzii (M31), Prevotella copri (M41), and Roseburia 
inulinivorans (M43).

Kumar et al. Page 27

Metab Eng. Author manuscript; available in PMC 2019 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: In silico predictions of growth rates of gut bacteria and secretion of health-promoting 
small molecules
(A) Triplot illustrates comparative representation of predicted growth rates (h−1) on three 

media/diets, (i.e. complete media (CM), human breast milk (HBM), and ready-to-use 

therapeutic food (RUTF)). R packages ggtern and ggplot were used to plot the triplot. (B) 

Absolute values of the growth rates (h−1) on two media (human breast milk (HBM) and 

ready-to-use therapeutic food (RUTF)) (C) Estimated maximal production potential (EMPP) 

represents metabolic capabilities of the gut microbiota in terms of secretion of short chain 

fatty acids (SCFAs; left to right for each children group, acetate, propanoate, and butyrate) 

and (D) amino acids (AAs; left to right for each children group, L-Glutamate, Glycine, L-

Alanine, L-Lysine, L-Aspartate, L-Arginine, L-Glutamine, L-Serine, L-Methionine, L-
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Tryptophan, L-Phenylalanine, L-Tyrosine, L-Cysteine, L-Leucine, L-Histidine, L-Proline, L-

Valine, L-Threonine, L-Isoleucine, and L-Asparagine)) using GEMs of gut bacteria from 

Malawian, Bangladeshi, and Swedish children. heatmap.2 function of gplots package, and 

dist and hclust functions of R were used for generating heatmaps and dendrograms, 

respectively, in R version 3.3.0. (E) Box plots represent comparative metabolic capabilities 

of gut bacteria between healthy and three stages of malnourished children (*P < 0.01 for all 

comparisons, Mann-Whitney U test). Metabolic capabilities of gut bacteria have been 

illustrated in the form of EMPP collectively in terms of SCFAs and AAs secretion. For the 

details of different stages of health and malnutrition of Bangladeshi children, Tables S1 and 

Figure S2 can be referred. List of models (1) and List of models (2) represent the labels for 

y-axis in panel (C) and (D), respectively. Abbreviations of models are consistent with Figure 

2.
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Figure 4: Community-level analyses of the gut microbiota during health and malnutrition
(A) Functional enrichment in gut microbial communities during health and malnutrition. 

Here, we defined the functional enrichment in terms of number of active reactions 

representing particular functional categories in CMMs while simulating on HBM. The 

heatmap represents the fraction of reactions of each pathway present in each CMM. Table 

S5 can be referred for the composition of each microbial community. Functional enrichment 

was determined using KEGG and BIGG databases. heatmap.2 function of gplots package, 

and dist and hclust functions of R were used for generating heatmap and dendrogram, 

respectively, in R version 3.3.0. (Experimental Procedure). (B) Pairwise growth simulations. 

These pie charts represent the possible effects of pairwise growth in gut microbial 

communities based on Bangladeshi and Malawian healthy and malnourished children on (A) 
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HBM and (B) RUTF medium. The effects of pairwise growth was determined in terms of the 

number of pairs of species involved in each kind of species-species interactions, namely 

competition, parasitism, commensalism, mutualism, amensalism, and neutralism.
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Figure 5: Distinct profiles of essential and conditionally-essential amino acids in healthy and 
stunted children
(A) Plasma concentrations of tryptophan in health (n=25) and stunting (n=25). (B) Ratio of 

tryptophan to other neutral amino acids such as histidine, isoleucine, leucine, methionine, 

phenylalanine, threonine, tyrosine, and valine in health and stunting (n=25). (C) Some 

important pathways associated with tryptophan such as synthesis of protein, tryptamine, 

kynurenine, serotonin, and melatonin. (D) Plasma concentrations of lysine, threonine, and 

arginine in health (n=25) and stunting (n=25). (E) Overall concentrations of nine essential 

amino acids (lysine, histidine, threonine, methionine, tryptophan, isoleucine, leucine, 

phenylalanine, and valine) in health (n=25) and stunting (n=25) and ratio of total 

concentration of essential to non-essential amino acids in health and stunting.
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*adjusted P < 0.05 (statistical significance). All statistical comparisons between healthy and 

stunted children data were performed using Wilcoxon rank-sum test. We adjusted P values 

based on multiple testing of all metabolites using a previously published method.
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Figure 6: Correlations between plasma metabolites and HAZ score of children
Volcano plot represent the Spearman’s correlation coefficients versus minus logarithm of 

adjusted P values between plasma amino acids and HAZ score of children. Red dots denote 

plasma metabolites that significantly correlated with HAZ score of children (adjusted P < 

0.05, Wilcoxon rank-sum test). Plot shows that eight metabolites (lysine, isoleucine, leucine, 

valine, tryptophan, and threonine, arginine, and α-aminobutyric acid) are positively and two 

metabolites (pyruvate and butyrate) negatively correlated with HAZ score of children.
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Table 1:

Comparison between predicted growth rates and experimental growth rates (n=3)

Bacterial species Glucose uptake rate (mmol gDW−1 

h−1)
Experimental growth rate (h−1) In silico growth rate (h−1)

Mean SD

Bacteroides thetaiotaomicron (M6) 2.848 0.593 0.747 0.087

Bifidobacterium adolescentis (M9) 7.085 0.653 0.592 0.077

Eubacterium rectale (M29) 5.601 0.740 0.805 0.051

Faecalibacterium prausnitzii (M31) 1.652 0.582 0.442 0.001

Prevotella copri (M41) 5.204 0.751 0.622 0.002

Roseburia inulinivorans (M43) 1.598 0.654 0.676 0.011
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Table 2:

Characteristics of healthy and *stunted children

Items Details

Healthy (non-stunted) children (% female) 25 (48)

Stunted children (% female) 25 (32)

Age (weeks) 40–104

**HAZ, healthy children, mean (SD) 0.22 (0.64)

HAZ, stunted children, mean (SD) −2.86 (0.76)

***WAZ, healthy children, mean (SD) 0.35 (1.13)

WAZ, stunted children, mean (SD) −2.42 (0.62)

*
Child stunting, typically assessed using the anthropometric measurement Height-for-Age Z score (HAZ score), results not just in short stature but 

also in long term cognitive deficit (de Onis and Branca, 2016). If HAZ scores of children are below three standard deviations (−3 s.d.) from the 
median of World Health Organization (WHO) references growth standards, these children are classified as having severe stunting, whereas, 
children with HAZ scores between −3 and −2 s.d. are defined as moderate stunted children (Reyes et al., 2004). The period up to age 2 is thought 
be critical for the establishment of growth deficit -associated processes that define stunting (Victora et al., 2010).

**
Height-for-age Z-score

***
Weight-for-age Z-score
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