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The functional cofactors derived from vitamin B3 are nicotinamide adenine dinucleo-
tide (NAD+), its phosphorylated form, nicotinamide adenine dinucleotide phosphate
(NADP+) and their reduced forms (NAD(P)H). These cofactors, together referred as the
NAD(P)(H) pool, are intimately implicated in all essential bioenergetics, anabolic and
catabolic pathways in all forms of life. This pool also contributes to post-translational
protein modifications and second messenger generation. Since NAD+ seats at the
cross-road between cell metabolism and cell signaling, manipulation of NAD+ bioavail-
ability through vitamin B3 supplementation has become a valuable nutritional and
therapeutic avenue. Yet, much remains unexplored regarding vitamin B3 metabolism.
The present review highlights the chemical diversity of the vitamin B3-derived anabo-
lites and catabolites of NAD+ and offers a chemical perspective on the approaches
adopted to identify, modulate and measure the contribution of various precursors to
the NAD(P)(H) pool.

Introduction
Niacin and niacinamide, also known as nicotinic acid (NA) and nicotinamide (Nam), are the
better known forms of vitamin B3 [1,2]. Along with tryptophan (trp), they are biosynthetic precur-
sors to nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide phosphate
(NADP+) and their respective reduced forms (NAD(P)H), altogether referred as the NAD(P)(H)
pool. The vitamin B3 metabolome includes the biosynthetic precursors of NAD+ (anabolites;
Table 1a), the cofactors derived from NAD+ (i.e. the NAD(P)(H) pool; Table 1a) and the deriva-
tives generated through catabolic processes (catabolites; Table 1b) [3–8]. Altogether, the
NAD+-derived cofactors are central to cellular homeostasis and growth through their roles in
intermediary metabolism, mitochondrial respiration, the Krebs’ cycle, ATP production, reactive
oxygen species generation and inhibition, and additional roles in post-translational protein modifi-
cations, protein regulation and second messengers’ generation [9–16]. Sub-optimal intracellular
levels of these cofactors yield to cellular dysfunction, while acute vitamin B3 deficiency leads to
pellagra [17,18], a debilitating and deadly disease still endemic in some regions of the world where
malnutrition is common place. In more affluent countries, clinical vitamin B3 deficiency is due
to poor food choices, adverse drug reactions, alcoholism and infectious or autoimmune diseases
[19–22]. There are several additional excellent publications covering in detail the biological and
physiological roles of the NAD(P)(H) pool and that of its biosynthetic precursors [23–30].
The present review covers the breadth of the vitamin B3 metabolome and presents an overview of
the tools used to modulate the NAD(P)(H) pool and therefore the vitamin B3 metabolome in
biological systems with a focus on mammalian systems. First, the known vitamin B3 metabolites
(anabolites and catabolites) and the biosynthetic pathways to NAD(P)(H) will be summarized.
A brief foray in the chemical and chemoenzymatic routes to NAD+ precursors will then follow
along with an overview of isotopically labeled metabolic NAD+ intermediates, which have been
used to report on the vitamin B3 metabolomic profiles..
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The chemistry of the NAD(P)(H) pool
The anabolites and catabolites of the vitamin B3 metabolome
Once generated from vitamin B3 derivatives via independent biosynthetic pathways, NAD+ can be converted to
its reduced form NADH via redox processes or to its phosphorylated form NADP+, which, in turn, can enter
redox processes to generate its reduced form, NADPH. Alternatively, NADH can be phosphorylated to
NADPH. This constitutes the anabolic pathways to the NAD(P)(H) pool. Upon a range of biochemical and
chemically driven processes, the components of the NAD(P)(H) pool are converted to nicotinamide or to cata-
bolites which are either eliminated through excretion or recycled. The following describes these components in
greater detail.

Vitamin B3 anabolites
Niacin (NA) and niacinamide (Nam) fall under the vitamin B3 denomination [1]. Intracellularly, NAD+ is
generated from dietary vitamin B3 or trp (Figure 1) with the contribution made by the latter, known as the
kynurenine pathway, varying greatly between species and organs [31–36]. Via the kynurenine pathway, biosyn-
thetic precursors to NAD+ include kynurenine, 3-hydroxykinurenine, 3-hydroxyanthranilate and quinolinate,
leading to nicotinic acid mononucleotide (NAMN) [37]. NAMN is also an NAD+ anabolite through the
Preiss–Handler pathway, which uses NA [38], while nicotinamide mononucleotide (NMN) is generated in the
salvage pathway, which uses Nam. Additional NAD+ anabolites include nicotinamide riboside (NR), nicotinic
acid (NAR) and nicotinic acid adenine dinucleotide (NAAD) [8,39,40].

Vitamin B3 functional catabolites
NAD+ and NADP+ are substrates of enzymes capable of cleaving the glycosidic linkage between the northern
ribose of the dinucleotide and nicotinamide, and replacing the latter with water, nucleophilic nucleobases or side
chains of peptidic residues (e.g. hydroxyl or carboxylate) [41–49]. Unless chemical hydrolysis occurs, this cleavage
is a finely orchestrated nucleophilic enzymatic process, leading to an exquisitely specific derivative. These deriva-
tives are unique with regard to the biology they regulate [50]. NAADP is generated by an as-yet undiscovered bio-
synthetic pathway either from NAAD or from NADP+, regulating intracellular Ca2+ signaling processes [51]. The
cyclic form of adenosine diphosphoribose, cADPR, produced by a cyclase [5], specifically mobilizes Ca2+ from
ryanodine receptors [52], while its linear form, ADPR (adenosine diphosphoribose), generated from NAD+ by

Table 1a Chemical structures and abbreviations of the anabolites constituting the vitamin B3 metabolome

Anabolites of the vitamin B3 metabolome, precursor to the NAD(P)(H) pool

Abbreviations: NA, niacin/nicotinic acid; Nam, niacinamide/nicotinamide; NR, nicotinamide riboside; NAR, nicotinic acid riboside; NAMN, nicotinic acid
mononucleotide; NMN, nicotinamide mononucleotide; NAAD, nicotinic acid adenine dinucleotide; NAADP*, nicotinic acid adenine dinucleotide phosphate; NAD+,
nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADH, nicotinamide adenine dinucleotide reduced form; NADPH,
nicotinamide adenine dinucleotide phosphate reduced form. *Generated via a yet unknown mechanism.
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glycohydrolases, promotes Ca2+ cellular uptake [53]. Unlike ADPR itself, acylated forms of ADPR are products of
NAD+- dependent post-translation modification catalyzed by sirtuins [10,26,54] hydrolyzed to ADPR by esterases
[55]. Finally, the polymeric forms of ADPR, product of PARP enzymes, either covalently bound to proteins or
free in solution, act as major complex recruiting agents in DNA repair [56–58].

Vitamin B3 catabolites
Many catabolic pathways are responsible for the loss of vitamin B3-derived cofactors and of their anabolites.
Upon high NA intake, excess NA is converted to nicotinuric acid (NUA, Table 1b) in a phase 2 metabolic
process when conjugated to glycine [59]. Excess Nam is readily oxidized to N-oxide-Nam (Table 1b) by cyto-
chrome P450 [60,61]. Yet, under standard dietary conditions, the bigger contributor to vitamin B3 catabolism
in human physiology is the methylation of Nam, leading to N-methyl-Nam (N-Me-Nam; Table 1b). The for-
mation of N-methyl-Nam requires S-adenosylmethionine. Therefore, in conjunction with homocysteine,
N-methyl-Nam is a reporter of both the 1-carbon pathway efficacy and the vitamin B3 dietary status [62,63].

Table 1b Chemical structures and abbreviations of the catabolites constituting the vitamin B3 metabolome

Catabolites of the vitamin B3 metabolome

Abbreviations: N-Me-Nam, N-methyl nicotinamide or trigonellinamide; N-methyl-NA, N-methyl nicotinic acid or trigonelline; N-Oxide-Nam, N-oxide nicotinamide;
N-Me-4PY, N-methyl-4-pyridone-3-carboxamide; N-Me-2PY, N-methyl-2-pyridone-4-carboxamide; 4PYR, 1-β-D-ribofuranosyl 4-pyridone-3-carboxamide; 4PYR-MP
(n = 1), 1-β-D-ribofuranosyl 4-pyridone-3-carboxamide monophosphate; 4PYR-DP (n = 2), 1-β-D-ribofuranosyl 4-pyridone-3-carboxamide diphosphate; 4PYR-TP (n =
3), 1-β-D-ribofuranosyl 4-pyridone-3-carboxamide triphosphate; NADO, 4-pyridone-3-carboxamide adenine dinucleotide; NADPO, 4-pyridone-3-carboxamide adenine
dinucleotide phosphate; 1,2-NADH, 1,2-dihydronicotinamide adenine dinucleotide; 1,2-NADPH, 1,2-dihydronicotinamide adenine dinucleotide phosphate; 1,6-NADH,
1,6-dihydronicotinamide adenine dinucleotide; 1,6-NADPH, 1,6-dihydronicotinamide adenine dinucleotide phosphate; NADHX, adenosine 50-(trihydrogen
diphosphate), P0 → 50-ester with 1,4,5,6-tetrahydro-6-hydroxy-1-β-D-ribofuranosyl-3-pyridinecarboxamide also known as 6-hydroxylated nicotinamide adenine
dinucleotide reduced form. NADPHX, adenosine 50-(trihydrogen diphosphate), P0 → 50-ester with
1,4,5,6-tetrahydro-6-hydroxy-1-β-D-ribofuranosyl-3-pyridinecarboxamide phosphate also known as 6-hydroxylated nicotinamide adenine dinucleotide phosphate
reduced form. cADPR, cyclic adenosine diphosphoriboside; ADPR, adenosine diphosphoribose; ADPRP, adenosine diphosphoribose phosphate; PAR, poly
adenosine diphosphoriboside; Ac-ADPR, acetyl adenosine diphosphoribose; Suc-ADPR, succinyl adenosine diphosphoribose; acyl-ADPR, acyl adenosine
diphosphoribose.
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Trigonelline is N-methyl nicotinic acid, found abundantly in fenugreek and thought to be generated during
coffee bean processing [64,65]. Trigonelline is also a catabolite found in tissues but less often measured [66]
and for which the physiological properties remain unexplored. Oxidation of circulating N-methyl-Nam by alde-
hyde oxidase yields N-methyl-4-pyridone3-carboxamide (N-Me-4PY) and N-methyl-2-pyridone-5-carboxamide
(N-Me-2PY) [6,67–69]. Much confusion exists in the literature as to the nomenclature of these two entities.
The relative production of these catabolites is species-specific as well as driven by age and health status [70].
N-Me-2PY has been described as a uremic toxin because of the correlation between its abundance in blood
and kidney disease states [71]. Critically, these two pyridones are produced systemically [72,73]. There,
N-Me-2PY is thought to be an inhibitor of PARP function at physiologically relevant concentrations [67,74,75].
Another catabolite of vitamin B3 is N-ribosyl-3-carboxamide 4-pyridone (4PYR, Table 1b). This ribosylated
pyridone is also found abundantly in circulation in uremic patients. Importantly, it is easily converted to its
nucleotide forms (4PYR-MP, 4PYR-DP, 4PYR-TP, Table 1b) or adenylated to generate pyridone adenine
dinucleotide species [NAD(P)O, Table 1b] [76–82]. Both the phosphorylated forms of 4PYR and its dinucleo-
tide forms are endogenously generated. The synthesis of NADPO has been shown to occur as a side-reaction
on NAD(P)+ catalyzed by flavin-dependent oxidases, such as ferrodoxin reductase [83–85]. In vitro, the nucleo-
tide forms show substantial ability to inhibit ATP-dependent kinases, while the dinucleotides are inhibitors of
NAD(P)+-dependent metabolic redox enzymes at physiologically relevant concentrations [76,86]. A similar
class of NAD(P)+ catabolites capable of inhibiting key metabolic enzymes are hydroxylated NAD(P)H (NAD(P)HX,
Table 1b). The generation of these catabolites, which occurs chemically, is sufficiently critical to warrant a
repair mechanism in all forms of life and the regeneration of NAD(P)H as accumulation of these catabolites
causes central metabolomic perturbations [87,88]. Finally, other even less explored NAD(P)H catabolites are
the 1,2-NAD(P)H and the 1,6-NAD(P)H [89]. These isomers can be mistaken for the α-anomeric forms of
NAD(P)H [90–92] and are excellent inhibitors of isolated NAD(P)H-dependent redox enzymes. Renalase has
been shown to re-oxidize these NAD(P)H isomers in vitro. It can then be viewed as a NAD(P)H repair enzyme
directly affecting intracellular metabolism [93].
Overall, except for N-Me-Nam and N-Me-2PY, the catabolites of the NAD(P)(H) metabolome are rarely

accounted for in metabolomic studies [94–96]. Furthermore, these compounds react readily under standard
analytical conditions used for cell and tissues metabolomic measurements unless special care is applied and
therefore go undetected. As such, an in-depth account of the detection protocols of the vitamin B3 metabolome
is warranted but is beyond the scope of this review. Furthermore, mammalian cells have in place at least two
known repair mechanisms to control dinucleotidic catabolite levels, renalase and NAD(P)HX dehydratase/

Figure 1. Precursors to NAD+.

Blue box: PRPP-dependent NAD+ biosynthetic pathways; Green box: PRPP and vitamin B1, B2 and B6-independent

pathways; PRPP, 5-phospho-1-pyrophosphoriboside; vitamin B1, thiamine; vitamin B2, riboflavin; vitamin B6, pyridoxine;

NA, niacin/nicotinic acid; Nam, niacinamide/nicotinamide; NR, nicotinamide riboside; NAR, nicotinic acid riboside.
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epimerase [87,88,93]. Dysregulation of such repair processes and accumulation of these catabolites surely
impacts cellular homeostasis. Yet, the function, regulation and impact of the multiple vitamin B3 repair
mechanisms have been vastly under-explored.

Biochemical pathways known to sustain the NAD(P)(H) pool
Notably, tryptophan, NA and Nam employ three convergent pathways which require molar equivalents of
5-phospho-1-pyrophosphoriboside (Scheme 1; PRPP) to convert quinolinic acid and NA to nicotinic acid
adenine dinucleotide (NAAD) or Nam to NAD+ (Scheme 1) [34].
While cofactors derived from riboflavin (vitamin B2) [97] and pyridoxine (vitamin B6) [98] are required by

enzymes of the kynurenic pathway to generate quinolinic acid from tryptophan, NADP+ and thiamine (vitamin
B1) diphosphate are cofactors required for the synthesis of PRPP from glucose 6-phosphate [36]. This high-
lights the dependency of the NAD(P)(H) biosynthetic pathways on the bioavailability of three other metabolic
cofactors, all derived from water soluble B-vitamins.
Along with NA, Nam and trp, NAR and NR are also precursors of NAD+ (Scheme 1). Noticeably, QA, NA

and Nam require phosphoribosylation as means of biosynthetic activation to NAMN [99] and NMN [100–
102], while NR and NAR require phosphorylation by a specific kinase (Scheme 1) [8,39,103,104]. NAMN and
NMN are biosynthetic intermediates to NAAD and NAD+, following an adenylyl transfer (Scheme 1) [105–
109]. NAAD, acting as a pre-NAD+ storage pool [40], is converted to NAD+ by a ligase (NADS) (Scheme 1)
[35,110]. NADP+ is generated from NAD+ by NAD+ kinase for which NADH is a weak substrate yielding
NADPH [111]. It must be noted that while NR, NAR and NMN are PRPP-independent precursors to the

Scheme 1. Detailed biosynthetic pathways to the NAD(P)(H) pool components.

trp, tryptophan; Gln, glutamine; PRPP, 5-phosphoriboside pyrophosphate; NAPRT, nicotinic acid phosphoribosyl transferase;

NamPRT, nicotinamide phosphoribosyl transferase; NMNAT, nicotinamide mononucleotide adenylyl transferase; NRK,

nicotinamide riboside kinase; NADS, nicotinamide adenine dinucleotide synthase; NADK, nicotinamide adenine dinucleotide

kinase; NADHK, NADH kinase; NQO2: N-ribosyldihydronicotinamide : quinone reductase 2.

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society 5

Biochemical Society Transactions (2018)
https://doi.org/10.1042/BST20180420



NAD+, they are only molar equivalent precursors to NAD+. It is the generation of Nam through NAD+

consuming enzymes and its recycling to NAD+ which enables sustained NAD+ levels [112]. To sustain
increased NAD+ levels through NR supplementation, NRK, NMNAT and NamPRT (nicotinamide phosphori-
bosyl transferase; Scheme 1) must be functional, with turn-over in excess of that of Nam methylation by
NNMT and cellular export mechanisms.
It is only recently that NR and NMN, both found in milk [113,114], have gained recognition as nutraceutical

precursors of NAD+. NR supplementation in cell-based assays was evidenced to boost the NAD(P)(H) pool
with a specific effect on the mitochondrial pool and function. Supplementation with NA and Nam, while crit-
ical in acute vitamin B3 deficiency, does not demonstrate the same physiological outcomes compared with that
of supplementation with NR or NMN [7,15,34,94], indicative of additional controlling factors, such as intracel-
lular biodistribution, expression of key biosynthetic enzymes and/or bioavailability of PRPP. To explore the
parameters controlling functionalization and conversion of these NAD+ precursors and their biological end-
points in cell-based assays as well as in animals, an extensive synthetic program has been implemented over the
past 50 years.

Accessing biosynthetic precursors of NAD+

NA and Nam can be readily obtained from bacterial broth, foodstuffs or generated from petroleum sources [1].
They are now widely available commercially along with some more clinically focused versions and formulations
[115]. The ribosylated forms of NA or Nam have required the development of more substantial synthetic
routes.

Enzymatic syntheses
NR may be prepared enzymatically from NAD+ and NMN by using snake venom phosphodiesterase and subse-
quent transformation of NMN to NR with prostatic monoesterase [116] or with 50-nucleotidase [117].
Alternatively, NR can be generated from α-D-ribose-1-phosphate and Nam using purine nucleoside phosphor-
ylase and sucrose phosphorylase [118]. There are only few reports in the literature describing the efficient
chemical generation of NMN from NR [119–121]. In general, this process is often low yielding and associated
with difficulties in removing phosphate contaminants. As such, enzymatic conversions with isolated NRK or
whole cell production have been explored, but they too remain challenging. Accessing NAR has been even less
explored. Yet, the generation of NAMN from NMN using a new cross-linked deamidase aggregate biocatalyst
has been reported [122]. This offers new opportunities for a facile access to NAR via enzymatic routes using
phosphatases such as 50-nucleotidase [8].

Chemical syntheses of nicotinoyl ribosides and derivatives
Two main synthetic strategies have been developed to access NR salt forms (NR+X−) (Figure 2). One proceeds
via a reaction between Nam or derivative A and a peracylated (halo)-D-ribofuranoside B resulting in acylated
intermediate C that is subsequently converted into the desired NR+X− salt. This approach was also applied for
the synthesis of NAR (NAR zwitterion). The other proceeds via the condensation of N-(2,4-dinitrophenyl)-
3-carbamoylpyridinium salt D with derivatives of D-ribofuranosylamine E [120]. To date, the first approach has
proved the most efficient in terms of overall yields and chemo-selectivity. We will summarize advances made
with this first approach.
Two anomeric α- and β-forms of NR (α-C and β-C; Figure 2) can be generated by glycosylation reactions

with the stereochemical outcome of the synthesis being dependent on the nature and stereochemical position
of the leaving group X, nature of the substituents at amide nitrogen atom in Nam and conditions of glycosyla-
tion, such as solvent and temperature. Because only the β-form of NR or NAR is of biochemical relevance, the
most valuable synthetic methods offer β-stereoselectivity.
The first chemical syntheses of NR salts (NR+X−) was described by Todd and coworkers [123,124] and

entailed the glycosylation of nicotinamide (Nam) 1a with either 1-bromo-2,3,5-tri-O-acetyl-D-ribofuranose
to yield the bromide salt, 1-chloro-2,3,5-tri-O-acetyl-D-ribofuranose to yield the triacetylated chloride salt or
1-chloro-2,3,5-tri-O-benzoyl-D-ribofuranose to yield the tribenzoylated chloride salt. The halosugars were
obtained from 1,2,3,5-tetra-O-acetyl-D-β-ribofuranose (2a) or 1-O-acetyl-2,3,5-tri-O-benzoyl-D-β-ribofuranose
(2b) [125]. Such chemistry resulted in the generation of both pyridinium riboside anomers, with the best
results in terms of β-/α-anomer stereoselectivity obtained when chlorosugars were used as precursors. Removal
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of the protecting groups in anhydrous methanol saturated with dry ammonia at 0°C yielded NR+Cl− as a 4 : 1
mixture of β- and α-anomers [124]. Low temperature was required to minimize Nam release (Scheme 2).
While several routes and optimization studies have been conducted [126] since the first synthetic route devel-

opment, the most versatile uses tetra-acylated ribosides and TMSOTf as a catalyst [127,128]. Sauve and cowor-
kers improved on the method and reported a very efficient one-pot procedure for the synthesis of β-NR from
ethyl nicotinate [129,130]. Both routes generate the triflate salt forms of NR. The triflate salts, deemed

Figure 2. Synthetic routes to nicotinamide riboside (NR+X−).

Scheme 2. Synthetic sequence to 1-β-D-ribofuranoside nicotinamide chloride.
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unsuitable for pharmacological use, must be exchanged for pharmaceutically acceptable anions. Anion
exchange either by liquid/liquid extraction [131] or by treatment with ion exchange resin such as using
Amberlite IRA400-Cl have been successfully applied to generated NR+Cl− [132]. Oxidation of the reduced
form of NR 7 on charcoal in the presence of protic salts, such as ammonium salts NH4X

−, is an alternative
method to anion exchange resulting in different salt forms of NR+X−. Acylated NR-triflate and acylated NAR
prepared via mechanochemical methods, reduced to the acylated 1,4-dihydronicotinamide and dihydronicoti-
noyl riboside, can be readily extracted in pure form in organic solvents (Scheme 3) [133]. The reduced forms
of NR 6a-b and NAR are stable to Brönsted bases and, therefore, the acyl groups can be removed at room tem-
perature at increased rates [134,135]. 1,4-Dihydronicotinamide riboside derivatives may be also oxidized with
hexachloroacetone or cobalt(II) acetate in the presence of hydrogen peroxide. The later process requires
removal of cobalt cations with QuadraSil AP resin [136].
Chemical reduction in N-substituted pyridinium salts results in three possible isomeric products: 1,2-, 1,4-

and 1,6-dihydropyridines (DHP) as illustrated in Figure 3 for corresponding dihydro-1-β-D-ribofuranosyl-3-
pyridinecarboxamides.
Reduction in pyridinium salts to dihydropyridines has been extensively reviewed in the literature [137–140].

Sodium borohydride (NaBH4) and sodium dithionite (Na2S2O4) are the most commonly used reducing agents
to reduce NAD(P), NMN and NR. However, these reagents are not equivalent. Na2S2O4 regioselectively
reduces NAD+ to 1,4-dihydronicotinamide adenine dinucleotide (NADH), and NR to the 1,4-3-carboxamide
dihydropyridinyl riboside, while reduction in NAD+ and NR+ with NaBH4 or milder hydride-based reducing
agents results in a mixture of the 1,2-, 1,4- and 1,6-isomers.

Synthesis of pyridones
While the hydroxylated forms of 1,4-3-carboxamide dihydropyridinyl riboside derivatives (e.g. NAD(P)HX) are
readily generated from the ribosylated species, the pyridone-derived catabolites (N-Me-2/4-PY, 4-PYR, NAD(P)
O, 4-PYR-M/D/TP; Table 1b) require chemical syntheses. 4-Pyridone-3-carboxamide (4PY) and 2-pyridone-5-
carboxamide (2PY) are generated from 4-chloro-3-carboxypyridine and 2-hydroxy-5-cyanopyridine, respect-
ively [79]. These can then be used to prepare the nucleosides [79,141]. Critically, the nucleotide- and
dinucleotide-derived pyridones are only prepared on analytical scale, generated as enzymatic side-reaction pro-
ducts [142].

Scheme 3. Synthesis of the reduced form of NR as a synthetic intermediate to NR.
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Synthesis of isotope-labeled NAD+ precursors (isotopomers
and isotopologues)
Decaying and stable isotope-labeled derivatives [143–146] have been used to study metabolic pathways and bio-
distribution processes. Combining separation to detection and quantification allows for complex product distri-
butions to be measured. To differentiate between biosynthetic components and pathways of the NAD(P)(H)
pool, anabolites incorporating different profiles of stable isotopes can be used if their incorporation into NAD+

leads to versions of NAD+ which can be differentiated by mass (MS) or fragmentation patterns (MS2). Here,
enter two critical definitions: that of isotopomers which are molecules which vary in the position of labeled
atom, such as 20-2H-NR versus 10-2H-NR and isotopologues which are molecules which differ by containing
different isotopes, such as 2H-NR versus 13C-NR. These isotopically labeled compounds will possess different
exact molecular mass and/or fragments’ exact mass.
Presently, the rationale applied to selecting appropriate isotopologues is driven by the question being asked

and the levels of the isotopically labeled derivatives to be detected. Bioavailability and biodistribution studies in
animals are often addressed using decaying isotopomers. Combined to liquid chromatography, this highly sen-
sitive method differentiates between the bio-transformed radio-isotopically labeled products, e.g. [147].
Furthermore, the uniformly labeled NAD+ is commercially available and amenable to chemoenzymatic trans-
formations. For instance, radio-isotopically labeled NAD+ can be converted to its NADP+ parent by NAD+

kinase [148]. It is also reduced enzymatically to NADPH [148]. These can be used as starting materials in
some of the enzymatic processes described below.
Non-decaying isotopomers provide the necessary versatility to interrogate fluxes if the building blocks and

products can be traced with enough statistical confidence at levels above natural isotopic abundance. For
instance, to establish in mammals whether NR was directly converted to NMN, or hydrolyzed to Nam prior to
it being incorporated into NMN, the use of a doubly labeled isotopomer of NR was used [94]. This isotopomer
incorporated one heavier isotope on the nicotinamide ring and one heavier isotope on the furanose. The glyco-
sidic breakage led to mono-labeled NAD+, while the direct incorporation led to doubly labeled NAD+ being
detected. In cell work study, this type of multi-site labeling informs on the regulation of the biosynthetic path-
ways and of the turn-over of NAD+ by consuming and biosynthetic enzymes [34,40,107].
Isotopically labeled forms of Nam, NA and trp are available commercially and can thus be selected at will.

Similarly, ribosylated derivatives, for which isotope labels may be incorporated into the sugar residue (2H, 3H,
18O, 13C and 14C isotopes) and the nicotinamide or nicotinic core (18O, 13C, 14C and 15N isotopes), or both
(Figure 4), require dedicated chemoenzymatic or chemical syntheses.
Decaying isotopically labeled NAD+ anabolites, such as synthetic tritiated nucleotides and 32P-containing

ATP, have been combined to chemoenzymatic preparations to allow for the efficient generation of radiolabeled

Figure 3. Reduction in derivatives of NR+X− into corresponding NRH derivatives.
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NAD(P)(H) pools [149–155]. The enzymatic methods allow preparation of not only NR derivatives labeled in
the Nam core but in the ribosyl moiety as well when labeled phosphoribosyl pyrophosphate (PRPP) is used.
An example of this methodology is found in work of Kašarov and Moat describing preparation of
[carbonyl-14C]NR from corresponding 14C-labeled NAD+ catalyzed by enzymes from Proteus vulgaris OX-19
[156]. Saunders et al. [117] describe the preparation of [carbonyl-14C]NR and [4-3H]NR by the treatment of
corresponding radiolabeled NMN with 50-nucleotidase. Chemical synthesis of tritium-labeled NR and subse-
quent enzymatic synthesis of tritium-labeled NMN as well as corresponding [20-3H]-NAD+ are described in
work of Cen and Sauve [157], which also describes the synthesis of NAD+ containing 18O-label in the NR
portion of the molecule and originating from [5-18O]glucose. Bull et al. [158] describes the chemical synthesis
of deuterium-labeled [10-2H]NR+Brˉ and [10-2H]NMN. Once purified, this was used to prepare [10-2H]NAD+

enzymatically, which was then enzymatically converted to [carbonyl-14C,10-2H]NAD+ with [carbonyl-14C]Nam.
In a series of papers by Schramm et al. dealing with the enzymatic synthesis of [3H,14C] NAD+ isotopomers,
the authors used [2-3H]-, [5-3H]-, [6-3H]-, [2-14C]- and [6-14C]glucose and nicotinic acid to generate corre-
sponding [10-3H]-, [20-3H]-, [40-3H]-, [50-3H]-, [10-14C]-, [50-14C]NAD+; they also describe preparation of
15N-labeled NAD+ isotopologues, such as [10-14C,1-15N]NAD+ and [50-14C,1-15N]NAD+ (primed numbers
indicate atomic locations in the ribosyl residue of NR part of NAD+), using 15N-labeled NA as a source of the
label [159–162]. The enzymatic synthesis of [14C]NR was achieved from unlabeled NAD+ and [carbonyl-14C]
Nam in the presence of ADP-ribosylcyclase to give 14C-NAD+, followed by treatment with phosphodiesterase I
and alkaline phosphatase [163].
While extremely sensitive, detection of radiation-emitting entities requires special laboratory set-up and

therefore limits its use by the wider research community. Detection of non-decaying isotopic modifications are
less sensitive but rely on more generally adopted protocols [145]. Yet, accurate measurements of the vitamin B3
metabolome in biological systems have been limited by the chemical availability of chemical standards and
tailor-made vitamin B3 metabolites. However synthetic efforts have been undertaken towards achieving higher
availability of labeled and non-labeled standards for an increased coverage, characterization and quantification
of the metabolome. The use of isotopically labeled vitamin B3 metabolites combined to powerful targeted
metabolomic analytical methods has proved particularly suited to improving our knowledge of vitamin B3 both
at cellular and organismal levels, allowing rapid translational discoveries [34,164]. This has been enabled by
dramatic advances in the field of mass spectroscopy, metabolomics and large data set management along with
an increased access to molecules purposefully incorporating isotopes that enable their detection and quantifica-
tion as well as inform of their modifications.
According to the approach described by Tran et al. [163], [13C,18O]NR can be generated from [U-13C]

glucose and NA enzymatically converted to [13C]NAAD containing fully 13C-labeled ribosyl residue in NAR
part of the NAAD molecule. This synthesis requires usage of 10 enzymes, along with ATP, phospho(enol)pyru-
vate, NADP+ and α-ketoglutarate. In the second — again enzymatic — step, purified 13C-labeled NAAD was
transformed to corresponding [13C]NAD+ by NAD+ synthetase. Then, purified [13C]NAD+ was incubated with
[18O]Nam (prepared by chemical reaction of 3-cyanopyridine with 18O-water) in the presence of
ADP-ribosylcyclase to give [13C,18O]NAD+ that was subsequently degraded by using phosphodiesterase I and
alkaline phosphatase to quantitatively afford [13C,18O]NR. Furthermore, the enzymatic synthesis of 18O-labeled
NAD+ from non-labeled NAD+ can be achieved using glycohydrolase/cyclase CD38 and 18O-nicotinamide
(20-fold excess) [165]. Mills et al. [105] used double-labeled NMN prepared via a procedure based on the work
of Lee et al., while Ratajczak et al. mention the synthesis of 18O-labeled NR from [18O]Nam and subsequent
synthesis of 18O-labeled NNM by phosphorylation with NRK1 [94,107]. Chemical sequences described above

Figure 4. General representation of isotope-labeled NR derivative; illustrative labeled sites are shown by colored asterisks.
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were applied to generate [18O]NR from 18O-labeled Nam and [20-2H,carbonyl-13C]NR generated from the
20-2H-1,2,3,5-tetra-O-acetyl-β-D-ribofuranose and [carbonyl-13C]Nam to establish biodistribution and function
[104]. Finally, [20-2H,carbonyl-13C]NAR was synthesized and compared with [20-2H, 18O]NR in metabolic
fluxes and organelle transport experiments [34,40].

Conclusion
Overall, many chemical syntheses and chemoenzymatic syntheses have been developed to identify and trace the
metabolites and precursors of NAD(P)(H) and quantify the metabolic distribution following supplementation.
Current limitations associated with establishing a true representation of the vitamin B3 metabolome are asso-
ciated with the breadth of molecules which this metabolome includes, the synthetic challenges associated with
their individual preparation, the cost of the isotopically labeled reagents and the scale on which syntheses are
carried out. However, these limitations appear to slowly fade as more efficient syntheses become available and
enable cell-based kinetic studies and animal pharmacokinetics investigations. This review aimed to update our
view of the vitamin B3 metabolome and the current chemical efforts undertaken in the field of NAD+ biology
to better understand its role in cellular biology and physiology.

Perspectives
1. Since NAD+ seats at the cross-road of metabolism and cellular signaling, there is an urgent need to acquire

a greater evidence-based understanding of vitamin B3 metabolism and of its role in health, diseases and
ageing.

2. Increased access to fit-for-purpose chemical entities and biosynthetic intermediates has greatly enabled the
recent discoveries in the NAD+

field and facilitated translational research in ageing, metabolic diseases and
nutrition.

3. As further analytical refinements are achieved, and analytical standards become more widely available, the
cellular functions of endogenously generated vitamin B3 catabolites will come under greater scrutiny.
Furthermore, as the functional co-dependence between the NAD(P)(H) pool and cofactors derived from
vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B5 (pantothenate), vitamin B6 (pyridoxine) and
vitamin B9 (folate) becomes more apparent, vitamin B-targeted metabolomics will offer new functional
perspectives on the B-vitaminome.
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