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Abstract: Sirtuin family members are characterized by either mono-ADP-ribosyltransferase or
deacylase activity and are linked to various cancer-related biological pathways as regulators of
transcriptional progression. Sirtuins play fundamental roles in carcinogenesis and maintenance
of the malignant phenotype, mainly participating in cancer cell viability, apoptosis, metastasis,
and tumorigenesis. Although sirtuin family members have a high degree of homology, they may
play different roles in various kinds of cancer. This review highlights their fundamental roles in
tumorigenesis and cancer development and provides a critical discussion of their dual roles in cancer,
namely, as tumor promoters or tumor suppressors.
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1. Overview of the Sirtuin Family

Sirtuins refer to a protein family that is highly conserved. Sirtuins exert mono-ADP-
ribosyltransferase and deacylase activity. These proteins, due to the feature of a sequence in the
ancestral yeast gene silent information regulation 2 (Sir2) [1–3], were initially identified as silent mating
factors. Mammalian sirtuins are homologues of yeast Sir2 proteins. Seven sirtuins (SIRT1–7) have
been defined in human cells thus far. They collectively constitute the protein deacetylases in class
III [4]. Functioning as NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases, they are
located in different subcellular compartments. Sirtuins may thus be distinguishable by their diverse
subcellular localizations. SIRT1, SIRT6, and SIRT7 are mainly located in the nucleus [5,6], while SIRT3,
SIRT4, and SIRT5 are mainly located in the mitochondria. SIRT1 and SIRT5 have been found in the
cytoplasm [3,7]. SIRT2 is largely cytosolic but is able to translocate to the nucleus during mitosis [3,8].
Moreover, proteins in the SIRT family possess a conserved domain for core catalysis. Based on this
feature, sirtuin proteins are divided into four classes phylogenetically, where SIRT1, SIRT2, and SIRT3
are grouped into class I, SIRT4 is grouped into class II, SIRT5 is grouped into class III, and SIRT6 and
SIRT7 are grouped into class IV (Figure 1) [9].

Despite the SIRT family proteins initially being described as mono-ADP-ribosyltransferases,
the SIRT family was later found to be able to deacetylate histone proteins in the presence of
nicotinamide adenine dinucleotide+ (NAD+) [10]. By transferring the acetyl group to the adenosine
diphosphate (ADP)-ribose moiety, they can combine lysine deacetylation with NAD+ hydrolysis
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to form 2′-O-acetyl-ADP-ribose and then release free nicotinamide (NAM), a feedback inhibitor of
sirtuins [11–13]. The seven human sirtuins share an ~275 aa catalytic core that contains two domains:
A smaller zinc-binding domain and a larger Rossmann fold domain. Together, the two domains form a
specific structure to unite NAD+ as a cofactor [14].
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Figure 1. Human sirtuin protein family. (A) Phylogenetic tree of sirtuins family. The clustering analysis
was constructed based on the full-length amino acid sequences of sirtuins in different species, including
Drosophila melanogaster, Danio rerio, Mus musculus, Rattus norvegicus, and Homo sapiens. Sirtuin protein
family are shown in blue (sirtuin 1), green (sirtuin 2), yellow (sirtuin 3), pink (sirtuin 4), red (sirtuin 5),
orange (sirtuin 6), and purple (sirtuin 7). They are divided into four groups: Class I (sirtuin 1, sirtuin 2,
and sirtuin 3), Class II (sirtuin 4), Class III (sirtuin 5), and Class IV (sirtuin 6 and sirtuin 7). The human
sirtuins are labeled with brown dots. (B) Schematic structure of the human sirtuins. Catalytic domains
reflecting classes of sirtuins are shown in Blue (class I), Red (class II), Green (class III), and Orange
(class IV); mitochondrial targeting sequences are shown in Purple; NAD+ binding regions are shown
in a sky blue shade; The peptide chains are shown as light blue lines.

Sirtuins, in virtue of their catalytic activity, are involved in various important biological
processes, such as aging, the stress response, viability, differentiation, metabolism, apoptosis, and cell
survival [3,11,14]. For years, the sirtuins have been under investigation in the scientific community,
and some progress has been made. Despite these efforts, determining their complex roles in cancers
remains a highly difficult challenge due to their dual characteristics as both tumor promoters and
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tumor suppressors revealed in different cancers. As a result of this characteristic, sirtuins have become
increasingly important and attractive to researchers. In this paper, we focus on their seemingly
dichotomous roles in cell viability, apoptosis, metastasis and tumorigenesis.

2. Sirtuins and Viability in Cancers

Previous evidence has suggested the inhibitory effect of sirtuins on the viability of different
tumor malignancies [15–17]. Sirtuins play complex and important roles regulating cancer cell growth
and proliferation (Figure 2 and Table 1). The role of SIRT1 in cell viability is contradictory and
complicated [18]. On the one hand, it maintains genetic stability in normal cells and decelerates
cell growth and proliferation in some mouse models [19,20]. A decrease in SIRT1 in breast cancer
is correlated with BRCA1 mutations, which indicates the role of SIRT1 as a tumor suppressor [21].
On the other hand, SIRT1 promotes cell growth and proliferation in most cancers, such as leukemia and
thyroid and colorectal cancers [22–24]. As reported by Sasca et al., pharmacologic- or RNA interference
(RNAi)-mediated SIRT1 inhibition reduced cell growth by restoring P53 activity [25]. In addition,
SIRT1 also possesses the ability to deacetylate other proteins, such as FOXO3a, RB1, KU70 and E2F1,
to facilitate cell growth [26–29]. Multiple studies have shown the process of SIRT1 being targeted by
miR-22, miR-34a, miR-200a, miR-138, miR-30e-5P, miR-204, miR-212, and miR-449a to suppress cell
proliferation in tumor progression [30].
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Table 1. Roles of sirtuins in different kinds of cancers.

Name Function Promoter Genes or Pathways
Involved Suppressor Signaling Pathways

Involved

SIRT1

Viability

TC [22] MYC BC [21] BRCA1

CRC [23] Oct4, Nanog, Cripto, Tert
and Lin28 NSCLC [31] K-RAS; PI3K

Leukemia
[24,25]

STAT5 signaling; FOXO1,
p53, Ku70

RB [28] Rb, p107 and p130
Glioma [32] EMT pathway

BC [33] AKT

Apoptosis
PC [30] P53

NSCLC [31] K-RAS; PI3K
BC [21,30] BRCA1, surviving; P53; Rb

Metastasis
PC [17] ZEB1, EGF signaling, EMT

pathway BC [20] Smad4/β-catenin

GC [34] DBC1 NSCLC [31] K-RAS; PI3K
Glioma [32] EMT pathway

Tumorigenesis GC [34] DBC1 BC [21] RCA1, surviving
BC [35] AKT

SIRT2

Viability
HCC [36] α-tubulin OC [37] CDK4
NB [38] MYCN HCC [39] APC, CDC20

PAC [38] MYC BC [39] APC, CDC20

Apoptosis NSCLC [40] P53
CCA [41] MYC

Metastasis
HCC [42,43] AKT/GSK3β/β-catenin Axis

GC [44]

Tumorigenesis BC [45] Slug HCC [39] APC, CDC20
BC [39] APC, CDC20

SIRT3

Viability

BLC [46] P53 PC [47] MYC; PI3K/AKT
pathway

CRC [48] AKT/PTEN NSCLC [49] Bax/Bcl-2, P53
HCC [50] PI3K/AKT pathway
PDC [51]

Apoptosis NSCLC [49] Bax/Bcl-2, P53 OSCC [52] RIPLeukemia [53] AKT, Bax/Bcl-2

Metastasis CRC [48] AKT/PTEN

HCC [50] PI3K/AKT pathway
PDC [51]

PC [54]
FOXO3A,

Wnt/β-catenin
pathway

OC [55] Twist

Tumorigenesis OSCC [53] RIP

SIRT4

Viability

OC [56] GDH
NS NSCLC [57] ERK/Drp1 Axis

ESCC [58] GDH
CRC [59]
GC [60]

Apoptosis

Metastasis

NSCLC [57] ERK/Drp1 Axis
ESCC [58] GDH
CRC [59] E-cadherin
GC [60] E-cadherin

HCC [61] LKB1/AMPKα/mTOR
axis

Tumorigenesis NSCLC [57] ERK/Drp1 Axis

HCC [61] LKB1/AMPKα/mTOR
axis
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Table 1. Cont.

Name Function Promoter Genes or Pathways
Involved Suppressor Signaling Pathways

Involved

SIRT5

Viability

CRC [62,63] GLUD1, SHMT2
OSA [63] SHMT2

NSCLC [64] PKM2
HCC [65,66] E2F1

RCC [67] SDHA

Apoptosis NB [68]

Metastasis HCC [65,66,69] E2F1, Vimentin

Tumorigenesis
CRC [62] GLUD1

NSCLC [64] PKM2
RCC [67] SDHA

SIRT6

Viability

HCC [70] Bax HCC [71] PKM2
SSCC [72] COX-2, AKT, AMPK CRC [73] PTEN/AKT signaling

ACC [74] NF-κB signaling
GBM [75] JAK2/STAT3 pathway

Apoptosis
CRC [73] PTEN/AKT signaling HCC [70] Bax
GBM [75] AK2/STAT3 pathway FSA [76] NF-κB signaling

HCC [77,78] ERK1/2 pathway CC [76] NF-κB signaling

Metastasis
HCC [71,79] PKM2

CRC [73] PTEN/AKT signaling
ACC [74] NF-κB signaling

Tumorigenesis HCC [71,79] PKM2
ACC [74] NF-κB signaling

SIRT7

Viability

OSA [80]. CDC4

OSCC [81] SMAD4
OC [82] NF-κB
BC [83] p38-MAPK
GC [84]

Apoptosis
OC [82] NF-κB
BC [83] p38-MAPK
GC [84]

Metastasis

OSA [80] CDC4 OSCC [81] SMAD4
OC [82] NF-κB BC [85] TGF-β signaling
BC [83] p38-MAPK
GC [84] Bax/Bcl-2

Tumorigenesis OSA [80] CDC4

Note: ACC: Adrenocortical carcinoma; BC: Breast cancer; BLC: Bladder cancer; CC: Cervical cancer; CCA:
Cholangiocarcinoma; CRC: Colorectal cancer; ESCC: Esophageal squamous cell carcinoma; FSA: Fibrosarcoma;
GC: Gastric cancer; GBM: Glioblastoma multiforme; HCC: Hepatocellular cancer; NB: Neuroblastoma; NSCLC:
Non-small cell lung carcinoma; OC: Ovarian carcinoma; OSCC: Oral squamous cell carcinoma; OSA: Osteosarcoma;
PAC: Pancreatic cancer; PC: Prostate cancer; PDC: Pancreatic ductal cancer; RB: Retinoblastoma; RCC: Renal cell
carcinoma; SSCC: Skin squamous cell carcinoma; TC: Thyroid cancer.

Similar to SIRT1, the impact of SIRT2 on cell viability appears to depend on the cellular
context or the kind of tumor. A number of studies have suggested the role of SIRT2 as a tumor
suppressor that deacetylates a variety of substrates, including histone H4K16, P53, P65, FOXO1,
FOXO3, and CDK4 [37,39,40,86–88]. Moreover, SIRT2 can interact with β-catenin and KDM4A to
inhibit cell growth [89,90]. However, SIRT2 is also defined as an oncogenic factor associated with cell
proliferation and shortened overall survival in pancreatic cancer, hepatocellular carcinoma (HCC), and
neuroblastoma [36,38,42].

A major deacetylase in mitochondria, SIRT3, plays a crucial role in the regulation of cancer cell
growth. Based on the kind of cancer and probably the statuses of the intracellular signaling pathways,
it may function as a tumor promotor or a tumor suppressor. Recent studies have noted the regulation
of SIRT3-mediated deacetylation on a variety of substrates, such as P53, GSK-3β, PDHA1, IDH2, and
NMNAT2 [46,91]. It has been reported that SIRT3 can increase the ubiquitination and degradation of
the oncoprotein MYC and inhibit prostate cancer progression both in vitro and in vivo [47].
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There are reports that SIRT4 functions as a tumor suppressor, restraining the growth and
proliferation of cells [56,92–94]. SIRT4 can induce G1 cell cycle arrest by inhibiting phosphorylated
extracellular signal-regulated kinase, cyclin D and cyclin E in gastric cancer [92]. Moreover,
SIRT4 suppresses the malignant progression of non-small cell lung cancer (NSCLC) via ERK-Drp1
pathway-mediated mitochondrial dynamics [57].

As a potential oncogene, SIRT5 mediates lysine deglutarylation, desuccinylation, and
demalonylation. Wang et al. reported that SIRT5 impeded cell growth and functionally activated
glutamate dehydrogenase 1 (GLUD1), a key regulator of cellular glutaminolysis, by both directly
interacting with GLUD1 and leaving it deglutarylated [62]. Studies have demonstrated that
SIRT5 can desuccinylate SHMT2, PKM2 and SOD1 and regulate their activities to stimulate cell
proliferation [63,64,95]. However, few studies have discussed the mechanism of SIRT5-catalysed
demalonylation in the progression of cancer cells.

Similar to other sirtuins, SIRT6 also plays a role in tumor suppression or progression. Various
studies have demonstrated that SIRT6 can deacetylate several cancer-related genes, such as PKM2,
NF-κB, HIF1α, CtBP, and JUN, which results in a reduction in cell proliferation [71,74,76,96,97].
Low SIRT6 expression has been reported in pancreatic cancer, colorectal cancer, and HCC [77,79].
However, several recent studies have reported that SIRT6 functions as a tumor promoter in other human
cancers, such as skin squamous cell carcinoma, papillary thyroid cancer and acute myeloid leukemia
(AML) [72,98,99]. SIRT6 promotes COX-2 expression by inhibiting AMPK signaling, thereby increasing
cell proliferation and survival in the skin epidermis. In papillary thyroid cancer, SIRT6 promotes
tumorigenesis by enhancing HIF-1α stability and prolonging its protein half-life [98]. Moreover, SIRT6
upregulation rescues the suppressive effect of LINC00319 (a long noncoding RNA, lncRNA) on AML
cell growth [99].

Previous studies have also indicated that the deacetylation substrates of SIRT7, such as P53, H3K18,
PAF53, NPM1, and GABP-β1, are critical mediators in multiple cellular activities [100]. SIRT7 can
decrease the level of H3K18ac at the CDC4 promoter region to downregulate CDC4 expression and
promote osteosarcoma cell proliferation [80]. Similar to other sirtuins, SIRT7 also functions as a tumor
suppressor for cell growth. In oral squamous cell carcinoma (OSCC), SIRT7 can inhibit cell growth by
promoting SMAD4 deacetylation [81].

3. Sirtuins and Apoptosis in Cancers

Apoptosis is triggered and controlled by counterbalancing pro- and antiapoptotic-associated
genes such as BAX, BAK1, and BCL2 in response to various physiologic stresses [101,102]. Growing
evidence shows that sirtuins are generally involved in apoptosis by regulating the expression of various
components (Figure 2).

SIRT1 is predominantly located in the nucleus and acts as a regulator of apoptosis. In response
to DNA damage and oxidative stress, SIRT1 exerts its antiapoptotic activity, deacetylating key
apoptosis-related proteins and cell signaling molecules, such as P53, NF-κβ, FOXO3, KU70, AKT,
MAPK, and NRF2 [103,104]. The upregulation of SIRT1 expression promotes apoptosis in K-Ras-driven
lung adenocarcinoma [31]. SIRT1 negatively regulates the antiapoptotic gene survivin to trigger
apoptosis through histone deacetylation at its promoter, which epigenetically silences survivin
expression [21].

SIRT2 can antagonize P53-dependent transcriptional activation and induce apoptosis in response
to DNA damage by catalyzing P53 deacetylation [105]. SIRT2 can promote the nuclear translocation of
FOXO3a by binding to and deacetylating FOXO3a, which activates CASP8 and CASP3 and triggers cell
apoptosis [106]. In cholangiocarcinoma, SIRT2 overexpression can inversely inhibit peroxidation-related
apoptosis by activating MYC and increasing the production of antioxidants [41].

SIRT3 is primarily located in the mitochondrial matrix and possesses distinct biochemical activities
and substrate specificities. The abnormal expression of SIRT3 induces apoptosis by affecting BAX,
BCL2, and P53 in leukemia and lung cancer cells [49,53]. Conversely, SIRT3 also blocks apoptosis by
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deacetylating and negatively regulating AGFG1 downstream signaling in response to chemotherapeutic
agents [52,107]. However, whether SIRT3 functions as a tumor promoter or suppressor in apoptosis
remains controversial, and further studies will be needed to confirm this hypothesis.

There are few reports about the effects of SIRT4 and SIRT5 on cell apoptosis. SIRT4 plays a protective
role in hypoxia-induced apoptosis by affecting Bax translocation [108]. However, SIRT4 silencing
prevents the apoptosis of human colorectal cancer cells in response to 5-FU [109]. In addition, SIRT5
plays both antiapoptotic and antioxidative roles in neuroblastoma, and the overexpression of SIRT5
significantly protects neuroblastoma cells from staurosporine-induced apoptosis [68]. In hepatocellular
carcinoma, SIRT5 can inhibit cell apoptosis by deacetylating cytochrome c [110].

SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. SIRT6 can
drive apoptosis by deacetylating key cell signaling molecules, such as KU70, Bax, and P53, in response
to DNA damage and oxidative stress [70,111,112].

In glioblastoma multiforme, SIRT6 induces cell apoptosis by inhibiting the JAK2/STAT3 signaling
pathway [75]. SIRT6 promotes cell apoptosis by modulating the PTEN/AKT and ERK1/2 signaling
pathways in colorectal and hepatocellular cancers [73,78].

As a major deacetylase, SIRT7 is able to deacetylate key cell signaling molecules, such as FOXO3
and DDB1, and thus regulates apoptosis progression in response to DNA damage and oxidative
stress [113,114]. SIRT7 depletion also induces apoptosis by regulating the activity of MYC and
subunits of the NF-κB family or through the mTOR/IGF2 and p38MAPK pathways to address various
stimuli [82,83,115,116]. In addition, SIRT7 can regulate the expression of pro- and antiapoptotic genes
by repressing miR-34a activity [84].

4. Sirtuins and Tumor Metastasis

Tumor metastasis accounts for most cancer-related deaths worldwide and is a difficult challenge
in cancer treatment. Researchers worldwide strive to understand the mechanisms involved in the
migration and invasion of cancer. The functions of various sirtuins have been confirmed in tumor
metastasis (Figure 3), which also play complex and important roles regulating cancer cell migration
and invasion in different kinds of cancer (Table 1). Next, we will provide a basic overview of sirtuins
and tumor metastasis.

The expression level of SIRT1 is related to tumor stage, tumor invasion, lymph node metastasis,
and shortened overall survival in patients with gastric carcinoma [34]. Similarly, in breast cancer
tissues and cells, SIRT1 is correlated with histological grade, tumor size, and lymph node metastasis.
SIRT1 also enhances the activity of PI3K/AKT due to their direct interaction. Regarding AKT depletion,
however, the SIRT1-mediated proliferative effect is only partially decreased in breast cancer [35].
In addition, the transcriptional level of SIRT1 is interrelated with lymph node-positive metastatic breast
cancer [117]. Because of its relevance to lymph node status, stage, distant metastatic relapse, and P53
status in patients with triple-negative breast cancer (TNBC), SIRT1 expression is tightly correlated
with a poor prognosis in TNBC and non-TNBC patients [118]. Moreover, the downregulation of SIRT1
attenuates the migration and invasion of prostate cancer cells. Such a relation highlights the possibility
of SIRT1 as a promising target to preclude prostate cancer metastasis [119].

Experiments on nude mice have shown that SIRT1 promotes invasion and metastasis in breast
cancer when it is weakly expressed, and the loss of SIRT1 in renal tubular epithelial cells exacerbates
injury-induced kidney fibrosis [20]. By deacetylating Smad4 and lessening the impact of TGF-β signaling
on MMP7, SIRT1 decreases epithelial to mesenchymal transition (EMT) in cancer and fibrosis [20].
Likewise, SIRT1 promotes EMT in prostate cancer cells by cooperating with the EMT-inducible
transcription factor ZEB1. SIRT1 silencing restricts the expression of ZEB1. SIRT1 is recruited via ZEB1
to the E-cadherin proximal promoter, thereby deacetylating histone H3 and inhibiting the binding
of RNA polymerase II and ultimately blocking the transcription of E-cadherin. Thus, SIRT1 acts as
a positive regulator of EMT to influence the metastatic growth of prostate cancer cells, while SIRT1
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overexpression serves as a potential therapeutic target to reverse EMT and defend against prostate
cancer progression [17].

SIRT2 has been reported to reduce E-cadherin expression in mouse embryonic fibroblasts
(MEFs) and was recently shown to positively regulate migration and invasion in the context of
cancer [89]. SIRT2 is upregulated in cancer tissues relative to adjacent normal tissues in several kinds
of cancer [43,44,120]. By deacetylating and activating protein kinase B (AKT), it can enhance EMT to
target the AKT/GSK3β/β-catenin signaling pathway in hepatocellular carcinoma [43] and promote the
migration and invasion of gastric cancer through the RAS/ERK/JNK/MMP-9 pathway [44].Cancers 2019, 11, x FOR PEER REVIEW 8 of 22 
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Previous studies have shown the ability of SIRT3 to activate FOXO3A and then to suppress
EMT and the migration and invasion of prostate cancer cells. SIRT3 can simultaneously suppress the
Wnt/β-catenin pathway, thereby triggering EMT-associated processes [54]. As reported previously,
SIRT3 controls the EMT process and metastatic motility of cancer cells through Twist in ovarian
carcinoma [55]. In addition, SIRT3 has the capability to suppress cell migration and invasion in
HCC and pancreatic ductal adenocarcinoma [50,51]. However, some conflicting reports have shown
that the high expression of SIRT3 is interrelated with positive lymph node metastasis in breast
cancer and disclosed an association between the levels of SIRT3 and lymph node metastasis [117].
Furthermore, SIRT3 deletion significantly represses the migration of colorectal cancer cells by reducing
the transcription of metastatic-related genes, such as EGFR and BRAF [48].
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SIRT4 inhibits NSCLC cell invasion and migration, perhaps affecting the invasive capability of
cancer by hampering MEK/ERK activity [57]. A deficiency in SIRT4 facilitates liver tumor development
and lung metastasis in mice with xenografts and Sirt4 knockout (Sirt4-/-) by promoting colony formation
and migration and enhancing the sphere formation of hepatocellular cancer cells [61]. In colorectal
cancer cells, SIRT4 suppresses migration and invasion while upregulating E-cadherin expression.
Its expression weakens with the progression of invasion and metastasis, and a low expression level is
correlated with a poor prognosis [59]. A seemingly important part of gastric cancer (GC), SIRT4, is
involved in regulating EMT. A low expression level of SIRT4 is negatively correlated with tumor size,
pathological grade, and lymph node metastasis and predicts a poor prognosis. SIRT4 also suppresses
cell proliferation. It is responsible for the regulation of EMT, thereby regulating cell migration and
invasion in GC [60].

SIRT5 contributes to cell invasion in HCC by targeting E2F1 [65]. Additionally, targeting SIRT5
enables miR-299-3p to inhibit the migration and invasion of HCC cells [69]. Some reports have noted
the promoting effect of SIRT5 on cell migration by inducing Vimentin acetylation and enhancing EMT
by upregulating Snail and downregulating E-cadherin in HCC [66].

SIRT6, another member of the sirtuin protein family, functions in multiple complex ways in
cancer. SIRT6 expression enhancement is related to clinical and pathological parameters such as T
and N classification in the tumors of NSCLC patients. SIRT6 overexpression not only strengthens the
phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) but also activates MMP9 and
promotes the migration and invasion of tumor cells. In contrast, the deletion of SIRT6 contributes to
the metastasis and development of pancreatic ductal adenocarcinoma by modulating Lin28b [121,122].
In addition, SIRT6 is also an oncogene that promotes cell proliferation and survival by enhancing
COX-2 expression in skin cancer [72]. SIRT6 overexpression in NSCLC is linked to a poor prognosis
but is conducive to metastatic and chemotherapeutic resistance [122,123].

Some reports have indicted SIRT7 as an important regulator of TGF-β signaling and an inhibitor
of breast cancer metastases and that its deficiency can promote the metastasis of breast cancer cells [85].
SIRT7 deacetylates and enhances β-TrCP1-mediated SMAD4 degradation. At the same time, a
deficiency in SIRT7 both activates TGF-β signaling and intensifies EMT. Similar observations have
demonstrated that SIRT7 expression is decreased in OSCC cell lines and human OSCC/OSCC tissues
with lymph node metastasis [81]. Its overexpression not only suppresses the expression of E-cadherin
but also suppresses the expression of mesenchymal markers, lowers the level of acetylated SMAD4
in OSCC cells and hinders OSCC lung metastasis. It is thus notable that SIRT7 drives SMAD4
deacetylation to suppress EMT in OSCC metastasis [81].

5. Sirtuins in Tumorigenesis

The role that sirtuins play in cancer has been a subject of debate. Because they are able to both
promote and suppress tumorigenesis, sirtuins may act as a double-edged sword in cancer (Figure 2
and Table 1). SIRT1 is highly expressed in several cancers, including prostate carcinoma, acute
myelogenous leukemia, colon cancer, and some nonmelanoma skin cancers [124–128]. However, the
expression of SIRTl is also suppressed in many other cancers, such as glioblastoma, bladder cancer,
and ovarian cancer [129]. The two opposite functions of SIRT1 have been reported not only in tumor
promotion and inhibition but also in tumor development. It can serve as either an oncogene or as a
normal epigenetic regulator. Its role relies on the oncogenic pathway specific to particular tumors
because of complexity [30]. As shown in previous studies, SIRT1 functions in tumorigenesis through
its antiapoptotic activity, where it deacetylates proapoptotic proteins and helps cells survive under
genotoxic and oxidative stresses [18,30,130].

Regarding SIRT2, knockout (KO) studies have revealed that the loss of Sirt2 leads to the
development of tumors earlier in KO mice than in wild-type (WT) mice [39]. Despite not discovering
the cancer-prone phenotype in Sirt2 KO mice, Serrano et al. found an increase in tumorigenesis in KO
mice when attacked by carcinogens [131]. SIRT2 may be a weak tumor suppressor in carcinogenesis,
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as mentioned above. Nevertheless, Jing et al. found that inhibiting SIRT2 results in broad anticancer
activity in a variety of cancer cell lines and mouse models of breast cancer [132]. Its anticancer effect is
related to the decrease in the MYC level because SIRT2 inhibition promotes MYC ubiquitination and
degradation. In normal cells, there may be several factors that exert tumor-inhibiting activity, which is
needed for the growth and survival of transformed cells [132].

SIRT3 plays a conflicting role not only in different types of cancer, such as gastric cancer [133,134],
lung cancer [49,135,136], and colon cancer [137–140], but also in malignancies originating from the
same types of tissue. SIRT3 has been found to affect tumorigenesis by depleting reactive oxygen
species (ROS), modulating metabolism, and regulating proliferative or apoptotic pathways [141].
On the one hand, SIRT3 functions as a tumor suppressor, decreasing tumorigenesis by suppressing
glycolysis proliferation and its downstream transcriptional activity under hypoxic conditions [142].
SIRT3 knockdown, a process that can be depressed by treatment with the antioxidant N-acetyl cysteine,
drives tumorigenesis in xenograft models, whereas SIRT3 overexpression impedes tumorigenesis
in xenografts [143]. Moreover, SIRT3 can also function as a tumor promoter. By deacetylating and
activating lactate dehydrogenase, SIRT3 facilitates anaerobic glycolysis and carcinogenesis in gastric
cancer cells [133]. In summary, the role of SIRT3 in tumorigenesis remains a matter of debate.

SIRT4 acts as a tumor suppressor in liver cancer, breast cancer and colorectal cancer [144–146].
Sirt4 KO mice can be spontaneously infected with lung cancer, liver cancer, breast cancer, and
lymphomas [56]. Low SIRT4 expression is associated with poor pathological grading and other clinical
and pathological parameters in gastric, colon, liver, lung, and esophageal cancers [94]. Similarly,
low levels of the SIRT4 protein are correlated with a poor prognosis in colon, lung, and esophageal
cancers [94]. However, SIRT4 has not been proved to act as a tumor suppressor gene [147,148]. It may
also play an oncogenic role in the tumors and conditions mentioned above. However, such a role for
SIRT4 requires further investigation.

Only a limited amount of research has been conducted on SIRT5 in tumorigenesis. Several recent
studies have shown that SIRT5 may play a tumor-promoting role in multiple types of cancer, such as
HCC [65], colon cancer [63], human osteosarcoma [63] and breast cancer [149]. Moreover, the SIRT5
gene frequently shows an increase in duplication in specific cancer types, including uterine cancer,
breast cancer, cutaneous and uveal melanomas, lung cancer, and lymphoma [150]. However, high SIRT5
expression is interrelated with a favorable prognosis for patients with HCC; the downregulation of
SIRT5 is correlated with high ACOX1 succinylation and activity and poor survival in HCC patients [151].
Clearly, further studies are required to examine the possible involvement of SIRT5 in tumorigenesis.

SIRT6 also acts as a double-edged sword in cancer. In most cases, it functions as a tumor inhibitor,
functioning to prevent genomic instability, maintain telomere integrity, and regulate metabolic
homeostasis [152]. However, accumulated data have suggested its oncogenic role in different types of
cancer [122,123]. Therefore, it would be interesting to probe the mechanism involved in its negative
regulation [152].

SIRT7 may promote tumorigenesis in human cancer. Previous research has shown that SIRT7
plays the role of a tumor promotor in various cancers, such as epithelial prostate carcinoma, gastric
cancer, hepatic cancer, cholangiocarcinoma, ovarian cancer and breast cancer [82,84,153–155]. Although
SIRT7 depletion markedly weakens the tumorigenicity caused by human cancer cell xenografts in mice,
SIRT7 itself does not give rise to oncogenic transformation of primary fibroblasts [156]. Therefore,
the tumor-promoting performance of SIRT7 may be a secondary effect most likely due to its positive
impact on ribosome biogenesis [157].

6. Sirtuins and Cancer Immunotherapy

Immunotherapy has arisen as feasible alternatives in the treatment of cancers following the clinical
success of immune checkpoint inhibitors [158]. Immune checkpoint inhibitors have some better efficacy
in treatment of different kinds of cancers, including melanoma, non-small-cell lung cancer and renal
carcinoma [159]. PD-L1 can be transcriptionally regulated by NF-kB, and inhibition by HDAC inhibitor.
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The nuclear factor-kB (NF-kB) signaling plays a major role in inflammation and immunity, which
regulates the expression of cytokines, chemokines and other pro-inflammatory agents [160]. Although
few reports showed sirtuins play important roles on immunotherapy, sirtuins, as deacetylases are
central to immunity. Several sirtuin family members, such as SIRT1, SIRT2, and SIRT6, can regulate
NF-kB-driven immune responses through the protein deacetylation. Recent research demonstrated
that SIRT7 can inhibit the expression of PD-L1 though reducing acetylation of MEF2D in hepatocellular
carcinoma cells not exposed to interferon gamma [161]. The PD-L1 expression of cancer cells can bind
to PD1 on CD8+ T cells, which may prevent T cell proliferation and reduce their anti-tumor immunity
response. Strategies to manipulate the activity of SIRT7 may improve the efficacy of immune therapies
for hepatocellular carcinoma. Furthermore, sirtuin modulators, including activator and inhibitor, have
anti-tumor capability (Table 2). As sirtuin activators, both resveratrol and piceatannol could upregulate
the expression of PD-L1 though HDAC3/p300-mediated NF-κB signaling in breast and colon cancer
cells, which combined with anti-PD-L1 immunotherapy may reap clinical benefits in no or low PD-L1
level cancer patients [159]. However, there are also few reports that sirtuin modulators are involved in
immunotherapy. We firmly believed that sirtuins could make an important contribution to anti-tumor
immunity response and their modulators could improve the efficacy of immunotherapy. Therefore,
further research is needed to better understand the roles of sirtuins on anti-tumor immunity.

Table 2. Selected sirtuin modulators (Activator and inhibitor).

No. Name Roles Modulated Targets Biological Actions for Cancers

1 Resveratrol Activator SIRT1, SIRT3, and
SIRT5 [162,163]

Inducing autophagy in lung cancer cells
[164]; inducing apoptosis and

upregulation of PD-L1 expression in
breast and colon cancer cells [159].

2 Piceatannol Activator SIRT1, SIRT3, and
SIRT5 [162,163]

Inducing apoptosis and upregulation of
PD-L1 expression in breast and colon
cancer cells [159]; inhibiting migration

and invasion in prostate cancer cells [165].

3 SRT2104 Activator SIRT1 [166,167] No report

4 UBCS039 Activator SIRT5 and SIRT6 [168] Inducing autophagy-associated cell death
in cervix, colon and lung cancer [169].

5 Ex-527 Inhibitor SIRT1 [170] Inducing growth inhibition and apoptosis
in lung cancer cells [171].

6 UBCS0137 Inhibitor SIRT2 [172] No report.

7 ELT-11c Inhibitor SIRT1, SIRT2, and
SIRT3 [173] No report.

8 Nicotinamide Inhibitor
SIRT1, SIRT2, SIRT3,

SIRT5, and SIRT6
[24,174,175]

Reducing inflammatory macrophages
and promoting skin cancer

chemoprevention [176];
Chemoprevention of breast cancer

recurrences [177].

7. Conclusions and Perspectives

Proteins of the sirtuin family play a role in both normal and pathological conditions that are closely
related to tumors in several different pathological processes, including tumor cell proliferation,
apoptosis, metastasis, and tumorigenesis. Of these proteins, SIRT1, SIRT3, and SIRT6 play a
dichotomous role in different types of cancer depending on the type, stage and microenvironment
of the tumor. SIRT2 and SIRT4 have been reported to protect against cancer. SIRT5 and SIRT7 play
a tumor-promoting role, as they are overexpressed in human cancer and are also associated with
unsatisfactory outcomes. Therefore, unravelling the underlying mechanisms and conditions that
allow these proteins to play two opposite roles in cancer is perhaps one of the main challenges in
cancer treatment.



Cancers 2019, 11, 1949 12 of 22

Acetylation is a process of transcriptional modification that plays an important role in the regulation
of protein interactions, protein catalytic activity, and stability, and thus in physiological functions,
including proliferation, apoptosis, and metastasis. SIRT1 to SIRT3 have strong deacetylase activity.
SIRT1, as the most well-investigated member of the sirtuin family, is multifaceted in regulating cancer
progression depending on its substrate proteins NF-kB, P53, KU70, HIFs, and so on. The substrate
proteins of SIRT2 include histone H4, α-tubulin, β-catenin, P53, FOXO1, and PEPCK1, which regulate
biological functions by regulating the deacetylation of these proteins. SIRT3, as the major mitochondrial
deacetylase, mainly promotes mitochondrial metabolism and inhibits the production of ROS. In
addition, SIRT3 can bind to and deacetylate the F-box protein Skp2, rendering it unstable, while Skp2
refers to a protein that serves to promote tumorigenesis via the ubiquitination and degradation of tumor
suppressors. The deacetylase activity of SIRT4 to SIRT7 is considered weak or even difficult to detect;
SIRT4 mainly exerts ADP-ribosyltransferase activity. SIRT5 is another member of the sirtuin family
found in mitochondria. It works to mediate FOXO3 deacetylation, a crucial characteristic to protect
lung epithelial cells from the apoptosis induced by cigarette extract. SIRT6 can deacetylate H3K9 at
the HIF1α and MYC promoters to modulate cell proliferation. SIRT7 is a nuclear silencing regulatory
protein mostly located in nucleoli. SIRT7 is also a specific deacetylase of H3K18 that regulates the
biological processes of ribosomes by controlling the synthesis of rRNA, tRNA and ribosomal proteins.
In addition, SIRT7 can be acquired by particular transcription factors, such as ELK4 and MYC, and
can inhibit gene expression by deacetylating H3K18. Interestingly, SIRT7 can attenuate the expression
of PD-L1 though reducing the acetylation of MEF2D. These findings suggest that sirtuin protein
family may involve in immune-regulatory activity in cancer cells, which can provide new ideas for
cancer immunotherapy.

With the development of molecular biology, the sirtuin family has gradually become the target
of disease prediction and of tumor treatment. Thus, developing specific activators or inhibitors of
these sirtuins might reveal a large number of therapeutic opportunities (especially immunotherapy)
for different types of cancer. Histone deactylase (HDAC) inhibitors, sirtuin inhibitors/activators of the
same deacetylase, have been listed on the market but are still at the development phase. Thus, for
each sirtuin protein, its mechanism of action requires a great deal of comprehensive research before it
is profitable. It is possible to intervene in disease or tumor progression with small molecules, either
natural or synthetic. In some pathological mechanisms, such as breast cancer and liver cancer, sirtuin
family proteins are upregulated so significantly that efficient inhibitors are in urgent demand. Most of
the sirtuin inhibitors reported, such as nicotinamide, Ex-527 and the like, are competitively inhibitive
with high selectivity. Furthermore, recent research have shown that several sirtuin activators (such as
resveratrol and piceatannol) could upregulate the expression of PD-L1 in breast and colon cancer cells,
which may exert more clinical benefits though co-administering with anti-PD-L1 immunotherapy.

In summary, recent studies have noted the contribution of sirtuins to the fight against cancer.
Further explorations on sirtuins should evaluate the following: (1) The dichotomous roles should be
further elucidated in different types of tumor cells, tumor tissues, and metastases. (2) Sirtuins are
equipped with various enzymatic activities, such as deacetylase and ribosyltransferase activity. Do they
act alone or in concert? Which play a regulatory role? How to involve in anti-tumor immune-regulatory
activity? (3) What are the potential side effects caused by sirtuin activation and inhibition? How can
sirtuins be maintained at appropriate levels to inhibit the progression of cancer cells? (4) How can more
targeted and nontoxic enzyme inhibitors or activators be designed and synthesized to treat cancer?
Do they improve clinical benefits when co-administered with anti-tumor immunotherapy? (5) What
are the relationships between the expression of sirtuins and cancer? What relationships are helpful
in identifying the population with a high risk of tumorigenesis and metastasis? What relationships
are helpful in finding better ways to prevent, diagnose and treat cancers? Studies on the roles of
sirtuins in cancer progression have deepened our understanding of tumorigenesis so significantly that
advancements might give rise to novel therapeutic strategies. Despite their promising future, a very
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large amount of work is required prior to considering sirtuin proteins as valuable therapeutic targets
in the clinic. Hopefully, the present review will contribute to the development of this field.
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