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Free- radicals (Oxygen and Nitrogen species) are formed in mitochondria during the
oxidative phosphorylation. Their high reactivity, due to not-engaged electrons, leads
to an increase of the oxidative stress. This condition affects above all the brain, that
usually needs a large oxygen amount and in which there is the major possibility to
accumulate “Reacting Species.” Antioxidant molecules are fundamental in limiting free-
radical damage, in particular in the central nervous system: the oxidative stress, in fact,
seems to worsen the course of neurodegenerative diseases. The aim of this review is
to sum up natural antioxidant molecules with the greatest neuroprotective properties
against free radical genesis, understanding their relationship with the Central Nervous
System.
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INTRODUCTION

Oxidative stress is known to be involved in the pathogenesis of several diseases: in particular, a strict
connection between a free-radical increase and the onset of neurodegenerative disorders has been
widely demonstrated (Migliore and Coppedè, 2009).

Free radicals are atoms or molecules characterized by one or more electrons not engaged
in chemical bonds, which, remaining unpaired, tend to accept electrons from other molecules:
this reaction causes their oxidation (Harman, 1956; Valko et al., 2007). An oxidation–reduction
imbalance in living organisms leads to an excess of reactive oxygen and nitrogen species (RONS)
with a consequent oxidative stress status (Valko et al., 2007; Sies, 2015) that is classified as basal,
low, intermediate, and high according to its intensity (Kishida and Klann, 2007; Lushchak, 2014).

There is a large number of antioxidant defensive mechanisms against RONS. The antioxidant
molecules are divided into two groups: enzymatic and non-enzymatic compounds. The enzymatic
group includes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and
glutathione reductase (GR). SOD, one of the main protective mechanisms against ROS, catalyzes
the conversion of O2- to H2O2 and O2 (Halliwell and Gutteridge, 1984), while CAT converts the
generated H2O2 into water and O2 (Rodriguez-Rocha et al., 2013). The non-enzymatic group
involves glutathione (GSH), abundant in brain cells, thioredoxin (Trx), vitamins A, E and C,
selenium, retinoic acid, carotenoids, and flavonoids. GSH reacts with ROS to generate glutathione
disulfide (GSSG) and enters a cycle together with GPx and GR (Cenini et al., 2019).

All these systems are essential to protect us against a possible free radical damage. Since the brain
consumes a large amount of oxygen (about 20% more than other parts of the body), if antioxidant
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defenses are insufficient and levels of polyunsaturated lipids
are high, there will be the possibility of an accumulation
of biomolecules damaged by RONS (Wang et al., 2012). So,
neuronal cells are particularly vulnerable to oxidative damage
because of their high oxygen consumption, the weak antioxidant
defense (Cobley et al., 2018) and high content of polyunsaturated
fatty acids in their membranes: in fact, the lipids of the neuronal
membrane are rich in chains side polyunsaturated fatty acids
(PUFA). PUFAs composed of eicosapentaenoic (C20:5) and
decosahexanoic (C22:6) acids are particularly vulnerable to free
radicals attack due to the double bonds that allow RONS to
remove hydrogen ions (Hawkins et al., 1998).

In particular, RONS overproduction in brain cells reacts with
cell membrane PUFAs causing their peroxidation (Rahman,
2007). More specifically, lipid peroxidation generates a
heterogeneous group of relatively stable products such as
malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), acrolein
and isoprostane (Reed, 2011).

As a result, membrane fluidity decreases causing a greater
permeability. This facilitates a massive entry of substances
into the intracellular system (e.g., K+, Ca2+, etc.), that
could alter membrane proteins, enzymes and receptors
(Fukuzawa and Gebicki, 1983).

Carbohydrates are also influenced by RONS with the
formation of advanced glycation products (AGE) (Gabbita
et al., 1998) involved in the development of neurodegenerative
disorders (Ahmed, 2005).

In addition, RONS alter DNA and RNA heterocyclic bases, in
particular guanine: these alterations occur in Parkinson’s disease
(PD) affected brains. Instead, Alzheimer’s Disease (AD) affected
brains, are characterized by elevated carbonylation and nitration,
that respectively, introduce in proteins carbon monoxide or one
or more NO2 groups derived from nitric acid (Alam et al., 1997;
Ahmed, 2005).

All neurodegenerative disorders share several common
characteristics, such as an abnormally aggregated protein
accumulation and mitochondrial dysfunction that demonstrate
an oxidative stress status (Abramov et al., 2017). In particular,
neurodegeneration-involved reactive species are hydrogen
peroxide (H2O2), superoxide anion (O2

−) and highly reactive
hydroxyl radical (HO ·) (Cooke et al., 2003). They are able to
preclude the protein reduction, cause translation errors in vivo
altering protein structure, and function (Dukan et al., 2000).

In addition, Nitric Oxide (NO) appears to play an important
role in neurological disorders. It has one unpaired electron
that makes it highly susceptible to other molecules. Released
into the bloodstream, it is oxidized to form nitrite and nitrate
(Lundberg et al., 2008; Tewari et al., 2021). The synthesis of NO
is regulated by Nitric Oxide Synthase (NOS) that, in the human
body exists in three forms: inducible nitric oxide synthase (iNOS),
neuronal nitric oxide synthase (nNOS) and the endothelial nitric
oxide synthase (eNOS). The amount of NO, produced by these
different isoforms, shows a different physiological activity. At
low concentrations, NO seems to have a neuroprotective effect:
studies in animals model showed that NOS inhibition correlated
with the genesis and the progression of PD, and with a decreased
neuronal apoptosis (Steinert et al., 2010). Nevertheless, NO at

high concentrations, induces a proinflammatory stimulus with a
neurotoxic effect (Good et al., 1998; Tse, 2017): a study conducted
on PD affected brains, demonstrated that NO and peroxynitrite
were involved in the degeneration of neurons in the substantia
nigra pars compacta (Moncada and Higgs, 1993).

The risk of developing neurodegenerative disorders is also
related to some lifestyle factors, such as obesity, sedentary
lifestyle, and unbalanced diet, because of their role in RONS
genesis (Tan et al., 2018; Nuzzo et al., 2019).

Therefore, considering the fact that oxidative stress is one
of the most important risk factors involved in the onset,
maintenance and progression of neurodegenerative diseases, a
healthy and balanced diet, with its consequent intake of natural
antioxidants, could have a fundamental protective role against
them (Steele, 2007; Johri and Beal, 2012; Kumar and Ratana,
2016; Khan et al., 2018).

The oxidative stress theory and its consequences at cellular
level is shown in Figure 1.

VITAMIN C AND E

A diet characterized by vegetables and fruits, usually rich
in Vitamin C, carotenoids, and Vitamin E, is positively
associated with cognitive efficiency and reduced the risk of
dementia in the elderly.

From a chemical point of view, Vitamin C is defined as
Ascorbic Acid (AA). It has six-carbon compound that contain
two acid-ionizing groups (Ballaz and Rebec, 2019). In the human
body, the brain is the region with the highest concentration
of AA (Smythies, 1996). This high concentration, attests to
the fundamental involvement of AA in the brain function.
Indeed, many studies suggest that AA has a neuroprotective
role thanks to an antioxidant activity modulation (Harrison
et al., 2010a,b). This modulation is related to the buffering
of the oxidizing species induced by methamphetamine (Ito
et al., 2007), homocysteine (Machado et al., 2011), ethanol
(Tian et al., 2016) and other molecules (Gudelsky, 1996;
Stansley and Yamamoto, 2014).

It is interesting to note that the AA activity is quite vast, also
considering the interaction with Vitamin E. Their association
is remarkable in the protection of membranes and other
hydrophobic compartments (Beyer, 1994; Getoff, 2013).

A clinical study has highlighted the association between
vitamin E and C intake and a delayed AD onset in a
group of elderly subjects (Shen and Ji, 2012); similar results
were also obtained by Shen and colleagues in 2012 (Kontush
and Shekatolina, 2004). In fact, it has been shown that
a supplementation of these vitamins and so their greater
concentration in cerebrospinal fluids can prevent lipid oxidation
in AD patients (Taghizadeh et al., 2017).

The importance of vitamin C in preventing and combating
neurological disorders has also been demonstrated in a recent
work: in a murine model, decreased levels of AA levels
influenced the neural network development, and this alteration
correlated with the pathophysiology of neurological disorders
(Ikeda et al., 2021).
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FIGURE 1 | Model of free-radical formation and its consequences at a cellular level. The intense oxygen consumption in the brain induces the formation of reactive
oxygen species (ROS). Their high reactivity leads to an increase of the oxidative stress, which promotes: (i) glycosylation and oxidation of proteins, leading to the
formation of advanced glycation products (AGE) or loss of protein function; (ii) DNA damage with oxidation or nitration of guanine bases; (iii) lipid peroxidation with
reduction of membrane fluidity and increase in cell permeability, resulting in alteration of cellular homeostasis. All these factors can contribute to the development of
neurodegenerative disorders.

In an in vitro study, Lee et al. (2021) investigated the
protective effect of AA administration in preventing age-induced
oxidative damage in hippocampal neurons, demonstrating that a
regular AA treatment protected hippocampal neurons from free
radical damages.

Vitamin E is a lipophilic molecule that could be found in
plants and in many Mediterranean diet food (Schirinzi et al.,
2019). Vit. E is referred to compounds called tocopherols and
tocotrienols (Ulatowski and Manor, 2015). These usually include
eight molecules (α-, β-, γ-, δ-tocopherols and α-, β-, γ-,δ -
tocotrienols), with great antioxidant capacity (Jiang, 2014).

The presence of an electrophilic hydroxyl group on the
chroman ring, allows Vitamin E to be a strong antioxidant.
To understand Vitamin E role as a protective factor in
neurodegenerative disorders, it must be considered what happens
if it is deficient. For example, it is demonstrated that Vitamin
E deficit is related to an impairment of cerebellar Purkinje
neurons that are the main integrators of cerebellar neural circuits
(Ulatowski and Manor, 2015). As far as PD, evidence suggests
that a Vitamin E supplementation can improve symptoms,
functional capabilities and the inflammatory state of affected
patients (Simonetto et al., 2019).

In addition, Khanna et al. (2003) showed a fundamental role
of Vitamin E against glutamate- induced neurotoxicity. In a later
study, it is observed that the co-treatment with vitamin E analogs
can block NO or O2· donor-induced cell death in rat striatal
cultures (Osakada et al., 2004).

Therefore, the use of vitamins E and C as antioxidant
supplements is fundamental to delay the onset of
neurodegenerative disorders and their complications.

FATTY ACIDS

Recently, it has grown an interest in polyunsaturated fatty acids
(PUFAs) and their beneficial effects on health, due to their strong
antioxidant properties (Fotuhi et al., 2009; Sokoła-Wysoczańska
et al., 2018). PUFAs (omega-3 and omega- 6 fatty acids) usually
have two or more double bonds in the carbon chain structure.
Omega-6 fatty acids include linoleic acid (LA), γ-linolenic acid
(GLA) and arachidonic acid (AA). Omega-3 fatty acids include
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

Their intake is important since their limited synthesis
in humans (Youdim et al., 2000; Fotuhi et al., 2009;
Sokoła-Wysoczańska et al., 2018).
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Cell-membrane PUFAs composition could be modified with
dietary supplementation but it depends on age and probably
also on the quantity PUFAs integration (Calder, 2006). High
fatty acid diet increases their percentage in inflammatory cell
membranes of inflammatory cell and reduces AA levels, a
stress-related biomarker and an inflammatory process trigger
(through pro-inflammatory eicosanoids production) (Calder,
2002; Dyall, 2015).

Polyunsaturated fatty acids, in particular EPA and DHA,
are interesting because of their beneficial effects in preventing
cognitive decline through neuroprotective properties such
as increasing nerve membrane neuroplasticity, promoting
synaptogenesis, modulating signal transduction pathways in
neuronal cells, and attenuating inflammatory processes (Youdim
et al., 2000; Miller et al., 2017; Sokoła-Wysoczańska et al., 2018).

Furthermore, DHA, produced by the desaturation and
elongation of α-linolenic acid (ALA), is able to influence
a certain number of membrane proteins, such as receptors,
ion channels and enzymes. Furthermore, DHA can modulate
dopaminergic, serotonergic, and cholinergic neurotransmission,
thus regulating signal transduction pathways (Parletta et al.,
2013). DHA is also considered important for neurogenesis
regulation, neural synapses increase and neuronal damage
protection (Cruz-Jentoft et al., 2019).

In fact, Omega-3 DHA is directly absorbed into cell
membranes: it composes at least 30% of the brain matter (in
general, fats are more than 50% of the brain) (Parletta et al.,
2013). DHA level decreases significantly both in the blood plasma
and in the brain, in physiological aging, above all in AD patients
(Dupont et al., 2019) because of its lower exogenous intake and its
greater oxidation (Yurko-Mauro et al., 2015). However, several
studies suggest that Omega-3 fatty acid integration is beneficial
only in the early stages of cognitive decline (Parletta et al., 2013).

Indeed, there are discrepancies about fatty acid effectiveness
on cognitive functioning (Jiao et al., 2014; Burckhardt et al.,
2016; Zhang et al., 2016; Stavrinou et al., 2020). That because
of multiple variables such as PUFA amount to administer (both
omega-3 and omega-6), the type and quality of their source
(such as fish oil and/or vegetable oil or other), differences among
tests to investigate cognitive efficiency, sample homogeneity
in terms of age and functioning and/or cognitive impairment
(Stavrinou et al., 2020). A recent double-blind randomized study
investigated the effectiveness of fatty acid intake (omega-3 and
omega-6) combined with other antioxidant vitamins in a group
of older people with MCI. Neuroaspis PLP10 R©, a nutraceutical
containing omega-3 [EPA (810 mg) / DHA (4,140 mg)], omega-
6 [GLA (1,800 mg) / LA (3,150 mg)] (1: 1 w / w), vitamin A
(0.6 mg) and vitamin E (22 mg as α-tocopherol plus 760 mg as
pure γ-tocopherol) was administered to the experimental group
subjects for 6 months (Beaudart et al., 2019).

In this study (Beaudart et al., 2019), both tests investigating
overall cognitive function (ACE-R and MMSE) showed a
significant improvement in the experimental group compared
to the control group, regarding memory, language (fluency)
and visual-spatial skills (ACE-R). An attentional functionality
improvement was evidenced too (specifically, in a symbol
cancelation test and in the Stroop test, in particular in the word

and color subtests but not in the test in which the interference
inhibition capacity is investigated). Besides, from a functional
point of view, the experimental group obtained high scores
in tests investigating muscle strength, endurance, power, and
balance. These physical performance parameters are important
since they refer to the most demanding daily activities. In parallel,
an increase in the quality of life, sleep and perceived fatigue
was demonstrated.

The results of this study are similar to what described by
Bo et al. (2017). They showed that 6-month intake of DHA
(480 mg/die) and EPA (720 mg/die) could improve the perceptual
speed, spatial imagery efficiency, and working memory in MCI
elderly. Sinn et al. (2012) has also shown that 6-month intake of
fish oils (1.55 g of DHA and 0.40 g of EPA per day) improves
cognitive functions and in particular executive efficiency. The
same results have not been obtained on patients with known
neurodegenerative diseases such as AD, to indicate that greater
benefit is drawn from taking PUFA in the early stages of cognitive
impairment (Chiu et al., 2008; Cammisuli et al., 2019).

COENZYME Q10

Coenzyme Q10 (2,3-dimethoxy-5-methyl-6-decaprenyl-1,4-
benzoquinone) is a fat-soluble compound also known as CoQ10,
vitamin Q10, ubidecarenone or ubiquinone. An endogenous
substance is produced by mitochondria in doses of about 3–5 mg
per day. It is one of the main elements involved in mitochondrial
oxidative phosphorylation and acts as an antioxidant. In vitro
studies have shown that CoQ10 easily crosses the blood brain
barrier (Somayajulu et al., 2005; Sanoobar et al., 2013).

Thanks to its oxidizing and antioxidant properties, it is a
cellular redox state modulator. CoQ10 is located in the internal
mitochondrial membrane and protects cells from apoptosis at
a morphological and at a molecular level (Beal et al., 1994).
Furthermore, as a lipophilic antioxidant, it can eliminate radicals
from membranes, cytosol and plasma.

It plays an important role in PD. In fact, CoQ10 levels
are significantly lower than normal in neuron and platelet
mitochondria of PD patients. In vitro studies on fibroblasts of
PD patients have shown that CoQ10 intake restores the electron
transport chain activity. The first clinical studies on the CoQ10
neuroprotective effects were reported in Beal et al. (1994): this
study demonstrated the association between 16-month CoQ10
intake (1,200 mg per day) and a reduced functional decline (44%)
in PD patients. Muller et al. (2003) confirmed these data: 28
PD patients showed moderate symptom improvement thanks to
CoQ10 oral administration (360 mg per day).

The antioxidant potential of CoQ10 was further evaluated in a
pilot study (Chiu et al., 2008) on 11 patients with Rett Syndrome,
a severe neurodevelopmental disorder in which hypoxia-induced
oxidative stress associates with the pathogenesis and the disease
progression (De Felice et al., 2012; Di Pierro et al., 2020). After
12-month CoQ10 intake (300 mg/day), there was a significant
improvement in red blood cells’ energy status, suggesting an
attenuation of the oxidative stress (De Felice et al., 2012, 2014;
Biasini et al., 2018).
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Promising results were also observed in a double-blind
randomized clinical trial involving patients with remitting-
intermittent multiple sclerosis (Sanoobar et al., 2015). The
experimental group took 500 mg of CoQ10 for 12 weeks, and
showed a significant reduction in inflammatory markers, such as
tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and matrix
metalloproteinase 9 (MMP-9).

Ghasemloo et al. (2021) investigate the effect of CoQ10
and miR-149-5p mimic on miR-149-5p, MMPs and
Tyrosine hydroxylase in rat PD models. This interaction
resulted fundamental to understand how to counteract
neurodegeneration in PD: the study showed that the combination
of the microRNA miR-149 and CoQ10 was able to prevent the
oxidative damage in dopaminergic neurons and improve motor
function induced by 6-Hydroxypopamine injection by reducing
matrix metalloproteinase 2,9 in an animal model.

NIGELLA SATIVA

Nigella sativa L. (N. sativa), also known as black cumin, is a
plant grown in the Mediterranean countries, in the south and
south-west Asia, characterized by its high bioactive-compound
content seed (e.g., Tocopherols, vitamin A and C, β-carotene,
etc.) and its anti-inflammatory, antioxidant, immunomodulating
and anticancer properties (Gholamnezhad et al., 2016; Isik et al.,
2017; Ikhsan et al., 2018). N. sativa contains fixed oil (22–38%),
volatile oil (0.40–1.5%), proteins (21–31%), carbohydrates (25–
40%), minerals (3.7–7%), vitamins (1–4%), saponins (0.013%)
and alkaloids (0.01%). Its biological activity is associated with its
thymoquinone content (TQ) (Bahareh and Hossein, 2016).

Bordoni et al. (2019) revealed the association between the anti-
inflammatory and antioxidant properties of N. Sativa oil (grown
in the Marche region of Italy) and its conservation. Therefore, the
Stored Extracted Oil (SEO) and the Fresh Extracted Oil (FEO)
were obtained from the same cultivation in order to analyze
their thymoquinone content. The cultivated oil showed a higher
content of thymoquinone (7,200 mg/mL) compared to other
crops (Mohammed et al., 2016; Aziz et al., 2017) and it was higher
in FEO while decreased with storage time.

In murine models, it has been demonstrated that
thymoquinone is useful to obtain a delayed onset of the microglia
degeneration caused by the oxidative stress (Cobourne-Duval
et al., 2016). In addition, TQ is able to improve and regenerate
antioxidants enzymes such as glutathione peroxidase and
glutathione reductase previously repressed by Beta-amyloid in
differentiated cell lines of rats affected by AD (Khan et al., 2012).

The mechanisms by which TQ delays neurodegeneration
have been clearly elucidated in Parkinson’s disease: it reduces
dopaminergic impairment switching on the Nrf2/ARE signaling
cascade that triggers the activation of antioxidant genes including
Heme Oxygenase 1 (HO-1), Quinone Oxidoreductase (NQO1)
and Glutathione-S-Transferase (GST) (Dong et al., 2021).

Moreover, an in vitro study shows that TQ exerts an
inhibition on the α-synuclein aggregation reducing the
inflammatory state and improving antioxidant bioavailability
(Ardah et al., 2019).

CHLOROGENIC ACID

Chlorogenic acid (CA), the main phenolic coffee component,
is another polyphenolic substance with an excellent antioxidant
activity. It belongs to the chlorogenic acid family (CGA) that are
phenolic acids derived from cinnamic acid esterification, such
as caffeic, ferulic and p-coumaric acids. The CGA is also widely
present in drinks based on herbs, fruits, and vegetables.

Chlorogenic acids have antibacterial, antioxidant and anti-
inflammatory activities (Liang and Kitts, 2015). Several in vitro
and in vivo studies have highlighted their ability to counteract
neurodegenerative events. Although a preclinical study on AD
transgenic mice reported that caffeine reduces brain beta-amyloid
(Aβ) levels (Arendash et al., 2006, 2009; Cao et al., 2009), it
is still unknown which element is specifically related to AD.
Currently, few studies have analyzed CGA effects on human
cognitive impairment. Epidemiological studies have found that
coffee drinking habits reduce cognitive impairment and the risk
of developing neurodegenerative diseases such as AD (Panza
et al., 2015; Solfrizzi et al., 2015).

In particular, Kim et al. (2019) investigated the association
between coffee intake and AD neuropathological markers in vivo
(411 healthy elderly subjects).

The results showed that the coffee intake (≥2 cups/day) was
associated with lower levels of Aβ brain deposition compared to
its less intake (<2 cups/day), suggesting that a moderate daily
coffee intake helps to reduce amyloid pathological deposition in
the brain (Kim et al., 2019).

Eskelinen et al. (2009) obtained similar results observing
that coffee intake in middle age reduces the risk of developing
AD in the elderly.

Recently, Kato et al. (Socała et al., 2020) conducted a pilot
study and described cognitive function changes after 6-months
the CGA intake (330 mg /die) in the elderly with subjective
memory loss. Significantly higher scores emerged in tests
investigating attentional, executive and mnesic functionality. In
the same study, there was a significant reduction in Aβ42, Aβ42
/ Aβ40 plasma levels and a significant increase in DHEA-S levels
after the CGA intake.

Previous studies have shown that the CGAs improve blood
pressure and vascular endothelial functions, both associated with
dementia onset (Ota et al., 2010; Kato et al., 2018; Singh et al.,
2020): in fact, hypertension, in middle age, is a risk factor for
dementia and cognitive impairment in old age and continuous
CGA consumption may delay its onset (Ochiai et al., 2004).

Saitou et al. (Watanabe et al., 2006) investigated CGA
effects on healthy subjects with subjective memory loss. In this
randomized controlled double-blind study, experimental group
took a compound based on the CGA caffeoylquinic acids (CQA),
feruloylquinic acids (FQA) and dicaffeoylquinic acids (diCQA)
for 16 weeks; CQA—FQA total amount was 300 mg, obtained
by extraction from green coffee beans. Participants underwent
a neuropsychological examination (MMSE and RBANS) at
baseline, after 8 weeks and after 16 weeks. At the end of the
treatment, significant differences between the CGA intake group
and the placebo one was evidenced: in particular, elevated scores
were recorded in tests investigating motor speed, psychomotor
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speed, and executive functions. The serum concentration of
cognitive impairment-linked biomarkers revealed an increase in
apolipoprotein A1 (ApoA1) and Transthyretin (TTR) levels in
the experimental group at 16 weeks (Watanabe et al., 2006).

Considering these results, the CGA intake may improve not
only motor activity, but also the cognitive functions that control
its execution and monitor its efficiency.

These results confirm what was described previously by the
same authors in a pilot study (Eskelinen et al., 2009).

As far as Parkinson’s disease, an in vitro model demonstrated
that CGA cell pretreatment reduced 6-hydroxydopamine-
induced ROS production and cell apoptosis (Elias et al.,
2012). In PD murine models, the CGA improves motor skills,
mitochondrial activity, and the expression of antiapoptotic genes
like Bcl-2 while reduces the activation of the proapoptotic ones
(Saitou et al., 2018).

SELENIUM

Selenium is an essential micronutrient with a very narrow
recommended dietary range. The RDA for selenium is around
55 µg/day and it can be integrated with a specific dietary intake.
Selenium, in the form of selenocysteine, is a component of
25 selenoprotein classes, including GPx, selenoproteins P, W
and R and thioredoxins (TrxR). As an antioxidant, it provides
protection from ROS-induced cellular damage (Brauer and
Savaskan, 2004; Xiong et al., 2007; Steinbrenner and Sies, 2013).

Its brain concentration changes in Alzheimer’s disease patients
and Multiple Sclerosis ones; therefore, this element may have
an important role in the protection from neurodegeneration
(Wenstrup et al., 1990; Ceballos-Picot et al., 1996; Clausen et al.,
1998; Cornett et al., 1998). Considering that older people are
more exposed to selenium deficiency due to metabolic changes,
lower bioavailability, and diet changes (Planas et al., 2004; Arnaud
et al., 2007; Letsiou et al., 2009), several studies have hypothesized
the possibility of its exogenous assumption in order to prevent
aging-related diseases.

Selenoproteins, such as glutathione peroxidases (GPx), play
an important role in antioxidant defenses. The main brain
selenoproteins are P and GPx: the first one has been identified
in senile plaques and neurofibrillary tangles, suggesting its
important role against oxidative damage (Bellinger et al., 2008;
Takemoto et al., 2010), GPx, which neutralizes peroxides, is
expressed by neurons and glial cells (Garcia et al., 2009; Zhang
et al., 2010). The biosynthesis of selenoproteins depends on
selenium availability. Therefore, an adequate selenium intake
may be particularly important for maintaining the elderly
function (Steinbrenner and Sies, 2013).

Brazil nut (Bertholletia excelsa) is the richest dietary selenium
source, and its intake improves selenium status (Thomson
et al., 2008; Cominetti et al., 2012). Although some studies
have reported that selenium stet is important for maintaining
cognitive efficiency (Berr et al., 2000; Gao et al., 2007; Cardoso
et al., 2010), only a few studies have evaluated its real clinical
efficacy. Cardoso et al. (2010) analyzed the effects of Brazil nut
consumption on cognitive function in a group of older people

with MCI. The experimental group took a 5-gram Brazil nut
per day, containing approximately 288.75 µg of selenium (more
than the recommended levels, 55 µg/day, but not exceeding
the tolerable upper intake level, 400 µg/day) (Cardoso et al.,
2010). Selenium plasma and erythrocyte concentrations, Gpx
activity in erythrocytes, ability to absorb oxygen radicals and
MDA, and lipid peroxidation genotoxic product were recorded
at baseline and after 6 months. The CERAD neuropsychological
battery assessed cognitive functions. After 6 months, no selenium
deficiency was observed in the treated group, while control
subjects had a level below the cut-off (>84–100 µg / L).
Furthermore, an increase in plasma and erythrocyte selenium
concentrations was observed in the experimental group, there
was also a significant improvement in erythrocyte GPX activity.
Although no intergroup changes emerged in overall cognitive
performance, assessed with the CERAD total score, subtests
investigating constructive praxis and verbal fluency showed
higher scores in the treated group.

PROBIOTICS

Probiotics refer to a group of live nonpathogenic
microorganisms, which, when administered in adequate
amounts, can establish the microbial balance, particularly in the
gastrointestinal tract (Wang et al., 2017). Their importance is
also related to their antioxidant properties: they act as metal-ion
chelators, have their own antioxidant enzymatic systems (SOD
and CAT), can produce various metabolites (GSH, butyrate
and folate) and mediate Antioxidant Signaling Pathways
(Wang et al., 2017).

According to the theory of the “gut-brain axes,” the gut
microbiota can have significant effects on cognitive alterations
and these alterations can be partially reversed by colonization
of the gut (Sudo et al., 2004). Bagga et al. (2018) showed
that Probiotic administration for 4 weeks was associated with
changes in several brain activation pathways regarding emotional
memory and emotional decision-making abilities.

Therefore, a rational manipulation of intestinal microbiota
through probiotics, could affect positively Central Nervous
System-associated disorders. Bonfili et al. (2018) showed
that a probiotic formulation (namely SLAB51) counteracted
brain oxidative damages associated with AD. A clinical trial
by Kobayashi et al. (2017) investigated the effects of oral
administration of Bifidobacterium breve strain A1 (B. breve A1)
on behavior and physiological processes in AD model mice.
The consumption of B. breve A1 suppressed the hippocampal
expressions of inflammation and immune-reactive genes that are
induced by amyloid-β suggesting that B. breve A1 has therapeutic
potential for preventing cognitive impairment in AD.

Michael et al. (2019) investigated the neuroprotective role of
two bacterial consortia, known as Lab4 and Lab4b, using the
established SH-SY5Y neuronal cell model. Both consortia were
equally able to attenuate intracellular reactive oxygen species
accumulation in SH-SY5Y cells.

Another clinical trial showed that heat-killed L. buchneri
KU200793 has an important antioxidant activity mediated
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FIGURE 2 | Antioxidants with neuroprotective properties. Following the detachment of Keap1 subunit, Omega-3 increases the antioxidant genes expression.
Vitamins E, C, and Nigella sativa (rich in vitamins) neutralize free radicals thanks to the presence of an electrophilic hydroxyl group on the chromane ring. Coenzyme
Q10 (CoQ10) plays a fundamental role in the electron transport chain protecting cells from apoptosis at a morphological and molecular level. Selenium is able to
reduce neurofibrillary tangle formation while chlorogenic acid reduces amyloid deposition. Probiotics act as metal ion chelators and as antioxidants using their
antioxidant enzyme systems: superoxide dismutase and catalase (SOD and CAT).

by its ability to increase levels of BDNF and so its intake
can be considered useful in PD prevention (Cheon et al.,
2020). Therefore, in accordance with the above, thanks
to their antioxidant properties, probiotics seems to be
fundamental to delay the progression of these neurodegenerative
disorders (Figure 2).

CONCLUSION

Lots of natural compounds contain antioxidant molecules
that are protective against free radical damage affecting brain
cells. In vitro and murine models have widely demonstrated
that antioxidant improve oxidative stress status of brain
cells, cognitive functions and motor skills. Further clinical
trials should be conducted in order to understand if these

natural compounds, alone or in combination with an
appropriate pharmacological treatment, can effectively
delay the potential onset of neurodegenerative disorders
and ameliorate brain functions. Moreover, it should be
better elucidated the actual bioavailability in the central
nervous system of these natural antioxidants, and their
effective ability to pass the blood brain barrier after an
oral intake.
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