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Abstract

Aging is characterized by a progressive decline in the normal physiological functions of an 

organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an 

essential cofactor that plays a critical role in mitochondrial energy production as well as many 

enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in 

several categories of age-associated disease, including metabolic and neurodegenerative disease, 

as well as deficiency in the mechanisms of cellular defense against oxidative stress. The 

kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ 

from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a 

variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both 

fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating 

mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors 

increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and 

the intrinsic relationship to mitochondrial function have been widely studied in the context of 

aging. Mitochondrial function and dynamics have both been are implicated in longevity 

determination in a range of organisms from yeast to humans, at least in part due to their intimate 

link to regulating an organism’s cellular energy economy and capacity to resist oxidative stress. 

Recent findings support the idea that complex communication between the mitochondria and the 

nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial 

number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion 

events. In this review, we discuss how mitochondrial morphological changes and dynamics operate 

during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway 

interacts with these processes.
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1 Introduction

Aging is tightly coupled to metabolism, and research into specific metabolic processes has 

proven a productive strategy to develop novel treatments and preventative measures for age-

associated disease. Accumulating evidence in recent years implicates altered tryptophan 

catabolism through the kynurenine pathway as a potential causative factor in numerous 

forms of age-associated disease (Kim et al., 2019; Sorgdrager et al., 2019). Complementary 

work has identified several intervention targets in the kynurenine pathway that extend 

lifespan in invertebrates (Oxenkrug, 2010; Oxenkrug et al., 2011) and improve outcomes in 

models of neurodegeneration (Chang et al., 2018; Lim et al., 2017; Rejdak et al., 2011; 

Sorgdrager et al., 2019), cardiovascular disease (Song et al., 2017), and acute inflammatory 

or autoimmune disease (Baumgartner et al., 2019; Lytton et al., 2019; Prendergast et al., 

2014). The metabolic processing of tryptophan through the kynurenine pathway produces a 

range of biologically active intermediate metabolites. One branch of the pathway ultimately 

leads to de novo synthesis of nicotinamide adenine dinucleotide (NAD+). NAD+ is an 

essential cofactor that plays a critical role in many enzymatic redox reactions and in 

mitochondrial energy production. NAD levels decrease with age in a variety of tissues. This 

decline has been implicated as a driving factor in the pathophysiology of several categories 
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of age-associated disease. This review explores the complex interplay between kynurenine 

metabolism, NAD+ production, and mitochondrial function in the context of aging and age-

associated disease.

1.1 The kynurenine pathway in aging and disease

Kynurenine metabolism is the major catabolic route for ingested tryptophan and is highly 

conserved throughout the Eukaryotic lineage from yeast to humans. The pathway has two 

major branches, terminating in the production of the neuroactive metabolite kynurenic acid 

(KA) or NAD+, respectively (Figure 1). Each branch is active is different tissues and cell 

types. The dual roles of NAD+ as an enzymatic cofactor and as an energy carrier have made 

it a major focus of aging research recent years and has been the topic of many recent reviews 

(Johnson and Imai, 2018; Rajman et al., 2018; Yaku et al., 2018). The neuroactive properties 

of KA make it a target of interest in neurodegenerative disease as well as other neurological 

disorders not associated with aging (Schwarcz et al., 2012). Beyond the metabolic endpoints 

of the kynurenine pathway, many of the intermediate metabolites in the major branches, as 

well as several metabolites produced in alternative branches (e.g. xanthurenic acid, XA, and 

cinnabarinic acid, CA), are biologically active and represent additional potential intervention 

targets in the context of aging and age-associated disease. Of particular interest for this 

review are intermediate metabolites with redox properties that may influence mitochondrial 

function or the consequences of impaired mitochondrial function, namely 3-

hydroxykynurenine (3HK), 3-hyrdoxyanthranilic acid (3HAA), and quinolinic acid (QA).

Entry into the kynurenine pathway begins with the conversion of tryptophan (TRP) into N-

formylkynurenine (NFK) by one of three enzymes: indoleamine 2,3dioxygenase 1, 2 

(IDO1,2) and tryptophan 2,3-dioxygenase (TDO2) (Figure 1). TDO2 usually functions as a 

tetramer while IDO functions as a monomer, and both functional enzymes contain a non-

covalently bound iron-containing heme group per monomer. The iron-atom present in the 

heme group catalyzes the redox reaction of TRP with molecular oxygen (O2) to open the 5-

member ring in TRP to form NFK (Nelp et al., 2018). The enzyme arylformamidase 

(AFMID) next removes the formyl group, converting NFK to the pathway’s namesake 

metabolite, kynurenine (KYN). KYN represents the major branch point in the pathway, and 

can be converted to kynurenic acid (KA) by one of the three isoforms of kynurenine 

aminotransferase (KYAT1–3) or glutamic-oxaloacetic transaminase 2 (GOT2), to anthranilic 

acid (AA) by kynureninase (KYNU), or to 3HK by the mitochondrial-associated enzyme 

kynurenine 3-monooxygenase (KMO). 3HK is converted either to 3HAA by KYNU or to 

XA by the KYAT enzymes (forming a minor side branch of the pathway). AA is also 

converted to 3HAA through a non-enzymatic reaction. 3HAA is then converted to 2-

amino-3-carboxymuconic semialdehyde (ACMSA) by 3HAA dioxygenase (HAAO), a 

cytosolic monomeric enzyme containing non-heme ferrous iron. 3HAA can also form 

cinnabarinic acid (CA) by oxidation, forming a second side branch). ACMSA spontaneously 

converts to QA, which is processed by QA phosphoribosyl transferase (QPRT) to the NAD+ 

precursor nicotinic acid mononucleotide (NAMN). In third side branch, ACMSA can 

alternatively be converted to 2-aminomuconic semialdehyde (AMSA) by the enzyme 

aminocarboxymuconate semialdehyde decarboxylase (ACMSD), which in turn can be 
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processed to picolinic acid (PA), or to glutaryl coenzyme A and feed into glycolysis 

(Schwarcz et al., 2012).

Evidence in invertebrate models points to a direct role for the kynurenine pathway in aging. 

The earliest reports of lifespan extension directly related to components of the kynurenine 

pathway came from Gregory Oxenkrug at Tufts University, who showed that genetic 

(Oxenkrug, 2010) or pharmacological (Oxenkrug, 2013) inhibition of either TDO (encoded 

by the vermillion gene) or TRP transport into cells extended lifespan in the fruit fly 

Drosophila melanogaster. In subsequent studies, we and others have reported that 

knockdown of tdo-2 (encoding TDO) (Sutphin et al., 2017; van der Goot et al., 2012), 

kynu-1 (encoding KYNU) (Sutphin et al., 2017), or acsd-1 (encoding ACMSD) (Katsyuba et 

al., 2018), or supplementation with TRP (Edwards et al., 2015), similarly extend lifespan in 

the nematode Caenorhabditis elegans. van der Goot et al. (2012) present evidence that at 

least some of the beneficial effects of tdo-2 knockdown are mediated by increased TRP, 

while data presented by Katsyuba et al. (2018) suggest that the benefits of acsd-1 
knockdown are mediated by increased NAD+ production. The mechanism mediating 

lifespan extension from kynu-1 is currently unclear; however, kynu-1 knockdown does not 

increase TRP levels in worms (Sutphin et al., 2017) and should prevent de novo NAD+ 

synthesis (Figure 1), suggesting a distinct mechanism of action.

While kynurenine pathway interventions have yet to be directly tested in the context of 

mammalian lifespan, benefits have been reported for a number of specific disease models. 

The types of disease targeted are closely tied to the tissue-specific expression patterns of 

kynurenine pathway enzymes—the pathway is most active in brain, liver, kidney, pancreas, 

and the immune system—and relevant properties of intermediate kynurenine pathway 

metabolites.

Kynurenine metabolism in the immune system.—Immune function is a major focus 

of disease-specific kynurenine pathway work and the topic of many detailed reviews (e.g. 

(Kim and Jeon, 2018; M. Liu et al., 2018; Mbongue et al., 2015; Routy et al., 2015, 2016)). 

Kynurenine pathways enzymes are widely expressed in immune cells, including microglial 

cells, macrophages (Guillemin et al., 2003), antigen presenting cells (APCs) such as 

dendritic cells (DCs) (Heng et al., 2016), B cells (Shinde et al., 2015), and natural killer 

(NK) cells (Routy et al., 2016).

Entry of tryptophan into the kynurenine pathway in immune cells is largely regulated by 

expression of IDO1 in response to pro-inflammatory signaling. Multiple immune signaling 

pathways—interferon gamma (IFNγ), interferon beta (IFNβ), tumor necrosis factor (TNF), 

Toll-like, transforming growth factor beta (TGFβ), and aryl hydrocarbon receptor (AhR)—

either activate or maintain IDO1 expression (reviewed by Mbongue et al. (2015)). Elevated 

IDO1 activity influences surrounding cells and tissues in two ways: by limiting local TRP 

availability and producing kynurenine metabolites.

Activation of IDO1 depletes TRP from the local cellular microenvironment. This depletion 

has several immune suppressive effects. TRP depletion results in the accumulation of 

uncharged TRP-tRNA, which binds and activates the nutrient-responsive kinase GCN2, 
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which in turn inhibits the eukaryotic initiation factor 2α kinase by phosphorylation. The 

resulting decrease in transcription and translation pushes T effector cells lineages in 

particular toward cell cycle arrest and apoptosis (Munn et al., 2005; Ravishankar et al., 

2015). TRP depletion further suppresses the mechanistic target of rapamycin (mTOR), 

promoting T cell anergy by increasing autophagy (Metz et al., 2012; Xie et al., 2012). In 

combination, GCN2 activation and mTOR suppression promote Treg differentiation while 

suppressing Th1, Th2, and Th17 effector differentiation (Eleftheriadis et al., 2016), with the 

caveat that some aspects of the role of mTOR are an area of active debate (Pollizzi and 

Powell, 2015).

Downstream of TRP, elevated KYN directly binds and activates AhR (Opitz et al., 2011). 

Activated AhR both provides positive feedback by upregulating IDO1 expression (Vogel et 

al., 2008) and, when bound to KYN, contributes to immune suppression by promoting Treg 

differentiation (Grohmann and Puccetti, 2015). Activation of IDO1 by inflammatory 

signaling is of interest to the immune-oncology community due to immunosuppressive 

effects that result from depleting the local cellular environment of TRP (Hornyák et al., 

2018; Labadie et al., 2019; Lee et al., 2010; M. Liu et al., 2018; Sforzini et al., 2019). 

Clinical trials of IDO or TDO inhibitors individually or in combination with inhibitors of 

immune checkpoint proteins—for example PD-1 (Nivolumab) (Bristol-Myers Squibb, 2011, 

2012a) or CTLA-4 (Ipilimumab) (Bristol-Myers Squibb, 2012b)—demonstrate the efficacy 

of these drugs against metastatic clear-cell renal carcinoma and unresectable or advanced 

melanoma (Li et al., 2019; Stein et al., 2019). Overexpression of IDO1 is associated with 

poor patient survival in cancer patients and co-treatment with the IDO1 inhibitor 

Epacadostat show promising results in phase III clinical trials (Komiya and Huang, 2018). 

Another ongoing clinical trial is evaluating the potential of IDO inhibition as a first line 

therapy for patients with liver cancer by blocking tumor growth and metastasis (Edward 

Kim, 2018). Vaccines against IDO peptides are well-tolerated in patients with metastatic 

melanoma (Inge Marie Svane, 2012) and non-small cell lung carcinomas (Inge Marie Svane, 

2010), and significantly improve median survival in metastatic lung cancer patients (Iversen 

et al., 2014). IDO/TDO inhibition is also being pursued as adjuvant therapy. NewLink 

Genetics Corporation is conducting two clinical trials, one for metastatic breast cancer 

patients treated with docetaxel or paclitaxel in combination with the IDO inhibitor 1-methyl-

D-tryptophan (1MT) (NewLink Genetics Corporation, 2013) and a second for pediatric 

progressive primary malignant tumors using temozolomide in combination with 1MT 

(NewLink Genetics Corporation, 2015); however, the results are not yet posted. Elevated de 
novo NAD+ production resulting from increased kynurenine activity may further promote 

tumor chemoresistance through increased activity of the NAD+-dependent poly(ADP-ribose) 

polymerase-1 (PARP1), which facilitates repair of DNA oxidative damage (Heng et al., 

2016; Sahm et al., 2013).

Downstream of KYN, there is accumulating evidence that 3HAA has anti-inflammatory 

properties, perhaps acting as a feedback mechanism within the kynurenine pathway 

following activation of IDO1 by pro-inflammatory cytokines (Krause et al., 2011; Lee et al., 

2016; Zhang et al., 2012). Multiple pre-clinical studies show promise for 3HAA as a 

treatment target in diseases with a primary inflammatory or autoimmune character: (1) Yan 

et al. (2010) found that 3HAA intraperitoneal (IP) injections reduced clinical severity in 
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mice with autoimmune encephalomyelitis, a common model of multiple sclerosis (MS), by 

limiting cytokine production, including IL-6 and INFγ, and promoting a shift toward 

regulatory T cell fate determination; (2) Hayashi et al. (2007) found that intratracheal 

treatment with 3HAA reduced allergic airway hyper-responsiveness and inhibited both 

eosinophil infiltration and cytokine production (IL-5 and IL-13) in the bronchial alveolar 

lavage fluid of mice with experimentally-induced asthma; (3) recently, Parrott et al. (2016) 

demonstrated that Haao knockout mice are protected against behavioral depression and 

working memory impairment induced by an acute inflammatory response with 

lipopolysaccharide (LPS); and finally, (4) Zhang et al. (2012) found that 3HAA IP injections 

reduced atherosclerotic lesion size and markers of local and systemic inflammation in Ldlr
−/− mice fed a high-fat diet.

Kynurenine metabolism in the brain.—The two major branches of the kynurenine 

pathway are segregated by cell type in the brain, with the KA branch active primarily in 

astrocytes and the NAD+ branch active primarily in microglia (Schwarcz et al., 2012). This 

localized expression pattern to the resident innate immune cells—including expression of 

IDO1—means that kynurenine pathway activity is correlated with the elevated 

neuroinflammation in many diseases of the central nervous system (CNS) (Sühs et al., 

2019). Anti-inflammatory benefits of kynurenine pathway inhibition may be offset by 

reduced NAD+ production in the central nervous system due to the high energy demands. 

Indeed, Braidy et al. (2011a) found that inhibition of either IDO or QPRT decreased NAD+ 

levels in cultured primary astrocytes and neurons, lending some credibility to this concern.

The two terminal metabolites in the major branches of the kynurenine pathway have 

opposing neuroactive properties that have made them a focal point for research into 

neurological consequences of altered kynurenine metabolism. KA is an antagonist for both 

α7 nicotinic acetylcholine (α7nACh) and N-methyl-D-aspartate (NMDA) receptors, while 

QA is and NMDA receptor agonist. 3HK levels are selectively increased in striatum, cortex 

and cerebellum of Hungtington’s disease (HD) mouse models, potentially linked to neuronal 

loss and reactive oxygen species (ROS) formation (Guidetti et al., 2006). Thus, the ratio 

between KA and 3HK+QA has been of interest in brain research, and impairing this balance 

is associated with dysfunctional or vulnerable neurons. Schwarcz et al. (2012) propose a 

model in which reducing the KA/3HK+QA ratio may benefit cognitive diseases like 

schizophrenia, while increasing the KA/3HK+QA may improve outcomes in age-associated 

neurodegeneration.

Kynurenine metabolism in other tissues.—Outside of the immune system, 

expression of kynurenine pathway genes is highest in liver, kidney, and pancreas, 

particularly the enzymes HAAO, KYNU, QPRT and ACMSD (Lim et al., 2013; Zheng et 

al., 2019). Entry of TRP into the kynurenine pathway in these tissues is controlled primarily 

by the non-immune responsive TDO, rather than IDO1 (Labadie et al., 2019). Liver is the 

major site of de novo NAD+ synthesis from TRP through the kynurenine pathway, and the 

likely primary target for kynurenine pathway interventions designed to alter systemic NAD+ 

production (Katsyuba et al., 2018; Okabe et al., 2019).
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Tissue-specific processes related to kynurenine pathway activity depend not just on the 

levels of kynurenine metabolites or enzymes in that tissue, but also on the relationship of 

these components to other pathways. For instance, IDO1 expression is induced by pro-

inflammatory cytokines, while TDO expression is induced by corticosteroids and glucagon 

(Lestage et al., 2002) (though there is evidence that TDO expression can be indirectly 

induced by inflammation through activation of the glucocorticoid receptor (Walker et al., 

2013)). The kynurenine metabolite XA can inhibit insulin/IGF-1 signaling in pancreatic 

islets, while suppression of endogenously synthesized XA by long-term administration of 

pyridoxine results in minimal glycaemia and a less pronounced decrease in insulin 

(Meyramov et al., 2015; Oxenkrug, 2015). In an alternative metabolic route to producing 

NAD+, ACMSA can be enzymatically converted to AMSA, which is subsequently converted 

to either picolinic acid, which has not been extensively studied, or glutaryl-CoA, which 

regulates glycolysis among other processes in the cell (Davis et al., 2018; Palzer et al., 2018) 

(Figure 1).

1.2 NAD+ metabolism in aging and disease

Cells produce NAD+ through one of three metabolic pathways (Figure 1). The kynurenine 

pathway is the sole route for de novo NAD+ synthesis (from ingested TRP). Alternatively, 

cells can produce NAD+ from nicotinic acid (NA) via the Preiss-Handler pathway, or from 

nicotinamide riboside (NR) through the salvage pathway. The NAD+ branch of the 

kynurenine pathway concludes with the production of quinolinic acid (QA), which is 

converted into nicotinic acid mononucleotide (NAMN) by the enzyme quinolate 

phosphoribosyltransferase (QPRT). NAMN is converted to nicotinic acid adenine 

dinucleotide (NAAD) through a reaction catalyzed by NAMN adenylyltransferases 

(NMNATs). The metabolite NAAD is converted to NAD+ by the glutamine-dependent NAD
+ synthetase (NADSYN) (Katsyuba et al., 2018). Cells can also generate NAD+ from 

nicotinic acid (NA) through the Preiss-Handler pathway, or from nicotinamide riboside (NR) 

through the salvage pathway. In the Preiss-Handler pathway, NA is converted by the enzyme 

nicotinate phosphoribosyltransferase (NAPRT) to NAMN, where it converges with de novo 
synthesis. In the salvage pathway, NR is converted to nicotinamide mononucleotide (NMN) 

by nicotinamide riboside kinases (NMRKs), and then to NAD+ by NMNATs.

The Preiss-Handler and salvage pathways generate NAD+ by recycling the nicotinamide 

(NAM) produced when NAD+ is consumed by one of a variety of NAD+-dependent 

enzymes (e.g. ART1, CD38, PARP1, PARG1, SARM1, SIRT1–7). Which pathway recycles 

NAM to NAD+ differs by genetic lineages. Mammalian genomes contain the enzyme 

nicotinamide phosphoribosyltransferase (NAMPT), which converts nicotinamide (NAM) to 

nicotinamide mononucleotide (NMN), but not the enzyme nicotinamides (NAMase), which 

converts NAM to NA. The invertebrate C. elegans and D. melanogaster genomes contain 

NAMase but not NAMPT. Thus mammals recycle NAM through the salvage pathway, while 

invertebrates recycle NAM through the Preiss-Handler pathway.

One proposed set of models implicates NAD+ degradation as a primary driver of NAD+ 

decline with age. The two main products of the hydrolysis-mediated degradation of NAD+ 

are ADP-ribose and nicotinamide (NAM). ADP-ribose is consumed during post-translational 
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modification of proteins by PARPs, producing the concatenated poly(ADP-ribose). NAD+ 

hydrolysis can be caused in vitro by thermal degradation at higher temperatures or very-low 

pH (Hachisuka et al., 2017; Oppenheimer, 1994) or enzymatically mediated by any of the 

NAD+-consuming enzymes previously mentioned above. Among these, both the ADPase 

CD38 and PARP1 have been implicated in the age-associated depletion of NAD+. Increased 

PARP1 activity following age-associated accumulation of DNA damage has been proposed 

as a primary driver of NAD+ decline (Imai and Guarente, 2014). In support of this idea, 

deletion of Parp1 in mice or pharmacological inhibition of PARP1 in cells both lead to 

elevated NAD+ levels (Bai et al., 2011). However, both increased and decreased PARP1 

activity have been observed during normal aging or in progeroid syndromes (Bakondi et al., 

2011; Braidy et al., 2011b; Noren Hooten et al., 2012; Scheibye-Knudsen et al., 2014; 

Zhang et al., 2014), suggesting that the role of elevated PARP1 activity in age-associated 

NAD+ decline may be context-dependent. The role of PARP1 in aging and longevity has yet 

to be fully explored, and potential benefits in NAD+ availability and metabolic function 

resulting from PARP1 inhibition may be offset by reduced DNA-repair capacity. CD38 is 

likely the major NADase in mammalian tissue (Aksoy et al., 2006; Young et al., 2006) and 

deletion (Barbosa et al., 2007; Chiang et al., 2015) or pharmacological inhibition (Escande 

et al., 2013; Haffner et al., 2015) of CD38 dramatically increases NAD+ levels in normal and 

obese mice, respectively. One recent study reports that CD38 expression and activity both 

increase with age in mice, and that CD38 was required for the age-dependent decline in 

NAD+ (Camacho-Pereira et al., 2016). They further report an increase in CD38 expression 

in human adipose tissue (Camacho-Pereira et al., 2016). Like PARP1, potential benefits of 

CD38 inhibition in the context of NAD+ availability may be counteracted by negative 

impacts on other processes, including neurological function related to social behavior 

(Lopatina et al., 2012) and immune function (Partida-Sánchez et al., 2001), and more 

research is needed to fully clarify the role of CD38 in aging and longevity. The relationship 

between aging, NAD+ degradation, PARP1, and CD38 is discussed in greater detail 

elsewhere(Aman et al., 2018; Chini et al., 2017; Rajman et al., 2018).

NAD+ is both an energy carrier and an enzyme cofactor that plays a critical role in 

regulating cellular metabolism in eukaryotic cells and is therefore involved in many 

fundamental biological processes in cell signaling, regulation of gene expression, DNA 

repair pathways, and protein homeostasis. Many individual reactions in the Krebs cycle (aka 

the tricarboxylic acid cycle) and glycolysis are tightly regulated by the bioavailability of 

NAD+. Glycolysis requires NAD+ for the activity of the enzymes 

glyceraldehyde-3phosphate dehydrogenase (G3PDH), lactate dehydrogenase (LDH), and the 

pyruvate dehydrogenase (PDH) complex. The TCA cycle requires NAD+ malate 

dehydrogenase (MDH), a-ketoglutarate dehydrogenase (α-KGDH), and isocitrate 

dehydrogenase (IDH), and in regulating complex I (Yang and Sauve, 2016).

NAD+ deficiency during aging and age-associated disease.—Deficiency in NAD+ 

has been implicated in human disease ranging from congenital defects (Shi et al., 2017) to a 

range of age-associated pathologies—diabetes, cerebral and myocardial ischemia, 

neurodegeneration (Johnson and Imai, 2018; Zhang and Ying, 2019). Consistent with these 

links to disease, NAD+ levels decline with age and this decline has been implicated in many 
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of the “hallmarks of aging” (as defined by López-Otín et al. (2013)), including epigenetic 

alterations, DNA damage/genomic instability, and mitochondrial dysfunction (Aman et al., 

2018). One apparent cause for this decline in mammals is an age-associated decline in 

salvage pathway activity resulting from decreasing NAMPT expression at both the mRNA 

and protein level across multiple tissues (Stein and Imai, 2014; Yoshino et al., 2011). 

Exacerbating the decline in NAD+ production, levels of NAD+-consuming enzymes, such as 

CD38 and PARP1 (discussed above), increase with age in multiple tissues as well in the 

context specific diseases (Yang and Sauve, 2016). NAD+ homeostasis during aging is thus 

challenged by both decreasing production and increasing consumption.

Like kynurenine metabolism, NAD+ decline and the severity of the downstream 

consequences will be different in different tissues. For example, tissues with more active 

mitochondrial metabolism, such as brain or liver, may be more sensitive to declining NAD+. 

Specific ablation of the NAD+ biosynthetic enzyme NAMPT recapitulates the same decline 

in hippocampal NAD+ levels and NAMPT enzyme that occurs naturally during age (Stein 

and Imai, 2014). Neural stem/progenitor cell (NSPC) proliferation and self-renewal is 

impaired in adult NSPC-specific tamoxifen-inducible Nampt-knockout (Stein and Imai, 

2014). Hepatic NAD+ levels also decreased with age in mice and humans by compromised 

dysfunction of NAMPT-mediated NAD+ salvage pathway. Deficiency in liver NAD+ pools 

impairs lipid homeostasis and induces moderate inflammation and fibrosis in a diet-induced 

non-alcoholic fatty liver disease (NAFLD) mouse model (Zhou et al., 2016).

Strategies to combat age-associated NAD+ decline with age.—Developing 

strategies to combat this decline in NAD+ availability with age is an ongoing goal of aging 

research directed at NAD+ metabolism. Recent studies demonstrate that supplementation 

with NAD+ or NAD+-precursors is sufficient improve health and promote longevity. Several 

studies have now reported lifespan extension or other health benefits from these supplements 

in both invertebrate and mammalian models.

In C. elegans, supplementation with NAD+ (Hashimoto et al., 2010), NR (Fang et al., 2016; 

Mouchiroud et al., 2013), NA (Schmeisser et al., 2013), or NAM (Mouchiroud et al., 2013; 

Schmeisser et al., 2013) significantly boosts NAD+ levels and extends lifespan. Mouchiroud 

et al. (2013) further show that elevating NAD+ by inhibiting the NAD+-consuming enzyme 

PARP with AZD2281 or ABT-888 also extends lifespan in C. elegans. The longevity 

benefits of NAD (Hashimoto et al., 2010), NR (Mouchiroud et al., 2013), and AZD2281 

(Mouchiroud et al., 2013), but not NAM (Schmeisser et al., 2013), all required functional 

sir-2.1. NAD+ (Hashimoto et al., 2010), NA (Schmeisser et al., 2013), and AZD2281 

(Mouchiroud et al., 2013), but not NR (Mouchiroud et al., 2013), required the FOXO-family 

transcription factor, DAF-16, for lifespan extension. Both AZD2281 and NR promoted 

DAF-16 activation (as measured by DAF-16 nuclear localization and expression of the 

transcriptional target, SOD-3), suggesting a role for insulin/IGF-1-like signaling in these 

benefits (Mouchiroud et al., 2013). All supplements provided protection against oxidative 

stress. These findings suggest that increased activity of NAD+-dependent enzymes and 

inhibition of insulin/IGF-1-like signaling each play a positive role in these benefits, but that 

there are likely subtle differences in the method for boosting NAD+ that are not yet well 

understood. In Drosophila, nicotinamidase (D-NAAM) overexpression extends lifespan 
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(requiring the sirtuin ortholog Sir2) (Balan et al., 2008). Schmeisser et al. (2013) similarly 

report that overexpression of anmt-1, encoding NMNAT, is sufficient to extend lifespan. 

These results suggest that elevating NAD+ recycling from NAM through the Preiss-Handler 

pathway promotes longevity in invertebrates.

In mice, a single report to dates describes lifespan extension from a NAD+ precursor, NR, 

starting in 2 year old C57BL/6 mice (Zhang et al., 2016). The NR-supplemented mice also 

enjoyed improved muscle function and muscle stem cell retention. NR supplementation is 

now being evaluated for lifespan extension by the National Institute on Aging Interventions 

Testing Program (NIA ITP) in genetically heterogeneous UM-HET3 mice. Beyond lifespan 

extension, NR supplementation has been shown to improve or delay pathology in mouse 

models of numerous specific pathologies, including mitochondrial myopathy (Khan et al., 

2014), HFD-induced obesity (Cantó et al., 2012), muscular dystrophy (Zhang et al., 2016), 

ataxia telangiectasia (Fang et al., 2016), and dilated cardiomyopathy (Diguet et al., 2018).

A second study found that NAM extended healthspan (as indicated by measures of glucose 

metabolism and oxidative stress in the liver, as well as motor control/behavior) of male mice 

fed a high-fat diet (HFD), but did not alter lifespan in male mice fed either a standard diet 

(SD) or HFD (Mitchell et al., 2018). Yoshida et al. (2019) employed a different approach to 

elevating NAD+, supplementing mice with extracellular NAMPT (eNAMPT), the enzyme 

regulating the first step in NAD+ salvage (Figure 1), to mice in extracellular vesicles. 

eNAMPT is contained exclusively in these vesicles in both mice and humans and levels 

decline with age. Mice supplemented with eNAMPT in this manner starting at 26 months of 

age had increased physical activity and increased lifespan relative to vehicle controls.

Mouse lifespan studies for NMN have yet to be reported; however, one study examined the 

impact of long-term NMN supplementation and found improvements in many areas of 

health, including protection against age-associated weight gain, improved insulin sensitivity 

and lipid profiles, improved eye function, increased bone mineral density, and increased 

immune function (Mills et al., 2016). NMN supplementation in mice has further been 

observed to protect against weight gain and changes in multiple metabolic measures in mice 

fed HFD (Uddin et al., 2017, 2016; Yoshino et al., 2011) and age-associated vascular 

dysfunction and oxidative stress (de Picciotto et al., 2016), cerebrovascular endothelial 

dysfunction (Tarantini et al., 2019), and susceptibility to acute kidney injury (Guan et al., 

2017).

1.3 Mitochondrial function in aging and disease

Mitochondria are the major site for energy production in cells, but also serve as a hub for 

signaling, ROS production, and maintenance of cellular homeostasis. Like NAD+ 

metabolism, the mitochondria is a major focus of aging research and the topic of numerous 

detailed reviews (Giorgi et al., 2018; Kauppila et al., 2017; Srivastava, 2017; Sun et al., 

2016; Theurey and Pizzo, 2018). Mitochondrial dysfunction—characterized by progressive 

changes in function, abundance, mitochondria DNA (mtDNA) mutation load, structure, and 

production of both energy and ROS—increases with age and has earned its own category in 

the “hallmarks of aging” (López-Otín et al., 2013). Mitochondrial dysfunction has further 

been causally implicated across a wide range of age-associated diseases, including 
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neurodegeneration (Grimm and Eckert, 2017), cardiovascular disease (Kiyuna et al., 2018; 

Siasos et al., 2018), diabetes (Montgomery, 2019), and cancer (Porporato et al., 2018). Here 

we focus on aspects of mitochondrial dysfunction with links to kynurenine and NAD+ 

metabolism, specifically ROS production, turnover, and dynamics (Figure 2).

Mitochondria-derived reactive oxygen species.—The mitochondria, as the organelle 

that produces the vast majority of cellular ROS, plays a critical role in the regulating the 

generation and response to oxidative stress, as well as ROS-mediated communication with 

other organelles and the nucleus. Compared to nuclear DNA, mtDNA is particularly 

susceptible to oxidative damage because of both its proximity to the high levels of 

mitochondrial ROS production and its relatively poor defense against damage. Healthy 

mitochondria contribute to oxidative stress resistance by increasing respiratory capacity, 

increasing levels of NAD+, and producing ATP (Khan et al., 2017), which activates an ROS-

dependent oxidative stress response mediated by the PI3K/Akt/ERK axis (Cruz et al., 2007). 

The antioxidant response is mediated, in part, by the forkhead box transcription factor, 

FOXO3A, which induces expression of the mitochondrial manganese superoxide dismutase, 

SOD2 (Wang et al., 2019), and further regulates several other aspects of mitochondrial 

function including mitochondrial abundance (measured by mtDNA copy number), 

expression of nuclear encoded mitochondrial proteins, and the expression and activity of 

respiratory complexes (Ferber et al., 2012). While early theories placed ROS squarely at the 

mechanistic center of aging, recent evidence suggests that this model is overly simplistic. 

While high-levels of ROS production likely drive age-associated decline though damage to 

macromolecules, lowlevels of ROS can produce a net benefit by activating systemic 

oxidative stress pathways in a process termed “mitohormesis” (Bárcena et al., 2018; 

Gonzalez-Freire et al., 2015; Ristow and Schmeisser, 2014). Both kynurenine- and NAD+-

targeted interventions impact mitochondrial ROS production and related signaling pathways, 

as we discuss further in Section 2.2.

Mitochondrial integrity and turnover.—Due to its bacterial origin, mitochondria 

contain their own genome in the form of a extranuclear double-stranded circular DNA 

(mtDNA) ~16,500 bp in size and encoding 37 genes, 22 tRNAs, 13 proteins, and 2 rRNAs 

(Krishnan et al., 2007). Only about 1% of the ~1,200 proteins required for the normal 

function of mitochondria are encoded by the mtDNA. As previously noted, unlike the 

nuclear genome, mtDNA lacks of protective histones and enjoys less efficient DNA repair 

mechanisms (López-Otín et al., 2013), resulting in a relatively high mutation rate in mtDNA. 

Point and deletion mutations in mtDNA are associated with human longevity (De Benedictis 

et al., 1999) and accumulate in different tissues with age, and mtDNA mutation is thought to 

be one driver of mitochondrial dysfunction and downstream pathology with age.

One mechanism employed by cells to maintain mitochondrial fitness is mitochondrial 

recycling. Recycling is mediated by mitochondrial biogenesis and mitophagy; the latter 

removes damaged mitochondria while the former replicates functional mitochondria. The 

result is a cellular complement of mitochondria with improved efficiency and reduced ROS 

production. NAD+-levels promote mitochondrial biogenesis via SIRT1-mediated activation 
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of PGC-1α (Cantó et al., 2009), while accumulation of mtDNA mutations may deplete 

mitochondrial NAD+ pools through high PARP activity (Clark-Matott et al., 2015).

Mitochondria morphology and dynamics.—The function and turnover of 

mitochondria are tightly regulated by changes in its morphology and 3D structure. 

Morphological regulation occurs as a normal process in the cell, for example during 

progression through the cell cycle. Before the cell divides, it must segregate the 

mitochondria into small segments by a process called fission. When the two daughter cells 

are formed, the mitochondria tend to reassemble into the previous network-like morphology 

by a process called fusion. Outside the context of division, cells alter mitochondrial 

morphology in response to numerous molecular queues from the environment (Wai and 

Langer, 2016). Fission is promoted by excess nutrients, severe cellular stress and 

dysfunction (e.g. during cancer and obesity), and impaired oxidative phosphorylation. The 

resulting fragmented mitochondria are generally associated with metabolic dysfunction and 

disease, and are more susceptible to mitophagy (Weir et al., 2017). Fusion is promoted by 

nutrient withdrawal, mild stress, and increased oxidative phosphorylation. Hyperfused 

mitochondria are protected from mitophagy and thought to preserve cellular integrity in 

response to metabolic stress and other insults.

Mitochondrial fusion and fission events are tightly regulated by a small number of proteins 

that bind to the mitochondrial membrane and regulate physical changes to the membranes 

that govern the interconnectivity of the mitochondrial network. Dynamin 1 Like (DNM1L), 

also referred as dynamin-related protein 1 (DRP1), is a GTPase member of the dynamin 

protein superfamily. DRP1 promotes mitochondrial fragmentation by binding to and 

constricting the outer mitochondrial membrane (OMM) in a process similar to cytokinesis. 

As a consequence of this restriction, the mitochondria is segregated into two smaller 

segments. A second protein, Fission Mitochondrial 1 (FIS1), is anchored to the OMM and 

recruits DRP1. On the fusion side, the GTPases OPA1—localized to the inner mitochondrial 

membrane (IMM)—and mitofusin 1 and 2 (MFN1/2)—localized to the OMM—act in 

concert to bind and fuse the membranes of two mitochondrial segments (Byrne et al., 2019; 

Weir et al., 2017).

Mitochondrial dynamics have been directly implicated in aging. In yeast, promoting 

mitochondrial fusion by deleting of the DNM1L ortholog DNM1 extends replicative lifespan 

in a manner dependent on the presence of OPA1 ortholog MGM1 (Bernhardt et al., 2015). In 

Drosophila, promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy 

lifespan of Drosophila (Rana et al., 2017). In C. elegans, knocking out drp-1 extends 

lifespan, but only in a context where insulin signaling is impaired (Yang et al., 2011). 

Dysfunctional mitochondrial dynamics have been associated with age-associated disease and 

healthspan in mammals (reviewed by Sebastián et al. (2017)), though the ability to promote 

longevity by targeting mitochondrial fission or fusion has yet to be demonstrated. As 

discussed in Section 2.2, interventions in kynurenine or NAD+ metabolism that increase 

lifespan have been observed to alter mitochondrial dynamics.
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2 Linking kynurenine metabolism to NAD+ and mitochondrial function

Mechanistic work on the role of the kynurenine pathway in disease has focused on the role 

of TRP and other TRP-related processes (Cervenka et al., 2017), the immune-responsive and 

immunomodulatory role of TRP depletion or intermediate pathway metabolites (Wang et al., 

2015), the interplay between distinct neuroactive kynurenine metabolites (Schwarcz et al., 

2012), or the pro- or anti-oxidant properties of intermediate kynurenine pathway metabolites 

(González Esquivel et al., 2017). With the recent resurgence of NAD+ and related processes 

as major targets in aging and age-associated disease (Imai and Guarente, 2014; Johnson and 

Imai, 2018), the kynurenine pathway’s alter ego as the de novo NAD+ synthesis pathway has 

increased in prominence as a mechanistic mediator of kynurenine-based interventions 

(Figure 2). Kynurenine metabolism influences NAD+-related processes directly by 

modifying NAD+ production. NAD+, in turn, regulates the TCA cycle and mitochondrial 

function, the epigenetic landscape (through modulation of sirtuin activity), DNA repair 

(through regulation of PARPs), and the hypoxic response (by tuning the energetic state of 

the cell). Intermediate kynurenine pathway activity can also influence NAD+ metabolism 

and mitochondrial function by modulating levels of ROS. Here we discuss potential models 

linking kynurenine and NAD+ in the context of aging and age-associated disease, and 

published evidence in support of these models.

2.1 The impact of altered kynurenine pathway activity on NAD+ production

The observations that supplementing NAD+ or NAD+-precursors can extend lifespan in 

worms (Fang et al., 2016; Hashimoto et al., 2010; Mouchiroud et al., 2013; Schmeisser et 

al., 2013) and mice (Zhang et al., 2016) suggests that increasing de novo NAD+ production 

by increasing metabolic flux through the kynurenine pathway should also increase lifespan. 

Consistent with this model, supplementing C. elegans with TRP has reported to elevate NAD
+ levels (Katsyuba et al., 2018) while both increasing lifespan in wild type C. elegans 
(Edwards et al., 2015; Katsyuba et al., 2018) and delay pathology in C. elegans models of α-

synuclein toxicity (van der Goot et al., 2012). Even more compelling, knockdown of the 

gene acsd-1, encoding ACMSD, shifts metabolism of ACMSA toward QA, resulting in 

elevated NAD+ production and increased lifespan (Katsyuba et al., 2018). Complicating the 

picture, knocking down either tdo-2 (encoding TDO) or kynu-1 (encoding KYNU)—and 

thus blocking de novo metabolism of NAD+ from TRP (Figure 1)—also increases lifespan to 

a similar or greater degree than TRP supplementation or acsd-1 knockdown (Sutphin et al., 

2017; van der Goot et al., 2012). One solution to this apparent paradox would be a 

compensatory upregulation of Preiss-Handler or salvage pathway activity in response. A 

second possibility is that TRP, which accumulates when tdo-2 is knocked down (van der 

Goot et al., 2012), and KYN or 3HK, which accumulate when kynu-1 is knocked down 

(Sutphin et al., 2017), have prolongevity properties independent of NAD+ function. These 

possibilities are not mutually exclusive, which may suggest that combining TDO or KYNU 

inhibition with an NAD+ precursor may produce synergistic benefits (discussed further 

below). These models have yet to be tested.

The impact of interventions targeting one or more components of kynurenine and NAD+ 

metabolism is likely to be tissue-dependent. While a subset of the enzymes in these 
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pathways are widely expressed, the major sites of kynurenine activity are liver, kidney, and 

the immune system. In the central nervous system, the KA- and NAD+-producing branches 

of the pathway are largely segregated to astrocytes and microglia, respectively, and only a 

subset of kynurenine pathway metabolites (TRP, KYN, 3HK) readily cross the blood brain 

barrier (Schwarcz et al., 2012). The entry of TRP into the kynurenine pathway is mediated 

by distinct tissue-expression patterns of IDO1 (primarily immune system), IDO2 (wide, low-

level expression), and TDO2 (primarily liver) (Cervenka et al., 2017). The primary NAD+ 

precursor in the kynurenine pathway, QA, is largely not retained in liver, even after TRP 

loading, suggesting rapid processing to NAD+ in this tissue (L. Liu et al., 2018). QA does 

accumulate in activated immune cells and may act as reservoir for local NAD+ production, 

providing substrate for PARP activity needed to combat DNA damage from increased 

oxidative damage during immune activity (Moffett and Namboodiri, 2003). Alternatively, 

immune cells may excrete QA and utilize its pro-oxidant properties to attack invading 

pathogens (Heyes et al., 1995). This inherent complexity is a double-edged sword, providing 

numerous potential intervention targets for disease in different tissues while elevating the 

risk for unintended side-effects.

2.2 NAD+ synthesis and reactive oxygen species link kynurenine metabolism to 
modulation of mitochondrial function and morphology

The role of kynurenine metabolism in de novo NAD+ production provides one avenue for 

kynurenine pathway interventions to influence mitochondria function. A second potential 

link exists in the oxidant properties of intermediate kynurenine pathway metabolites (e.g. 

3HK and 3HAA).

Cellular NAD+ levels affect key aspects of mitochondrial function, including ATP 

production, mitochondrial dynamics, and the production of ROS (Figure 2). As an important 

co-factor of the ETC and the TCA cycle, NAD+-levels affect ATP production by providing a 

necessary substrate for critical reactions in these processes. In C. elegans, elevating NAD+ 

by supplementing an NAD+ precursor (NR or NAM) (Mouchiroud et al., 2013), 

pharmacologically inhibiting PARP (Mouchiroud et al., 2013), or knocking down acsd-1 
(Katsyuba et al., 2018) both extends lifespan and improves mitochondrial function, as 

measured by increased oxygen consumption, mtDNA content, electron transport chain gene 

expression, and ATP content. NAD+ precursor supplementation and PARP1 inhibition 

further produced temporal changes in mitochondrial dynamics and related processes, 

increasing mitochondrial fission and the mitochondrial unfolded protein response (UPRmt) 

in the short-term, and shifting toward hyper-fused mitochondria with increased oxidative 

stress resistance while maintaining elevated UPRmt in the long-term (Mouchiroud et al., 

2013). These changes in mitochondrial dynamics were driven by changes in expression of 

fusion proteins OPA1 and MFN1/2, encoded by opa-1 (aka eat-3) and fzo-1, respectively, 

rather than expression of fission protein DRP1 (encoded by drp-1) (Mouchiroud et al., 

2013). These effects of NAD+ on mitochondria were largely recapitulated in mammalian 

cells (Katsyuba et al., 2018; Mouchiroud et al., 2013). Supporting these observations, 

boosting NAD+ levels by NR supplementation in a mouse model of mitochondrial myopathy 

displaying a pseudo-starvation response, even when mice were well-fed, and delayed disease 

progression in by elevating mitochondrial biogenesis, reducing mitochondrial structural 
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abnormalities, preventing mtDNA deletions, and stimulating the mitochondrial unfolded 

protein response (Khan et al., 2014).

NR and NMN supplementation have both been shown to reverse multiple aspects of 

mitochondrial dysfunction in a mouse model of ataxia telangiectasia (Fang et al., 2016), 

with NR enhancing survival. The observed shift in mitochondrial structure in the short- vs. 

long-term response to elevated NAD+ hints at potentially critical aspects of temporal 

mitochondrial dynamics that have yet to be explored in detail. Uddin et al. (2016) showed 

that NMN supplementation increased NAD+ levels in muscle and liver, ameliorated HFD-

induced reduction of citrate synthase activity, and improved glucose tolerance in 5 month 

old mice, potentially by regulation of mitochondrial biogenesis and mtDNA copy number. A 

later study by the same group demonstrated that NMN can reverse HFD-induced gain in fat 

mass, improve glucose tolerance, and increase mitochondrial activity and fat catabolism 

(Uddin et al., 2017).

While these studies indicate that NAD+ can influence cellular stress response and longevity 

via changes in mitochondria structure and function, the mechanism by which NAD+ 

influences mitochondrial processes, and the implications for kynurenine-based interventions, 

remain to be fully explored. In the context of mitochondrial recycling, NAD+ can indirectly 

impact mitochondrial biogenesis through SIRT1. In mouse primary muscle cells, AMPK 

stimulates SIRT1 activity by elevating cellular NAD+ levels, promoting SIRT1 activity. 

SIRT1 deacetylates PGC-1α, which stimulates mitochondria biogenesis (Cantó et al., 2009). 

As a second possible mechanism, NAD+ may influence the fission and fusion processes by 

modulating ATP content, and downstream generation of other energy-related molecules such 

as GTP. OPA1 and DRP1 are mitochondrial GTPases required to maintain the mitochondrial 

cycle between fused and fragmented mitochondria (Long et al., 2017). Interventions that 

inhibit de novo NAD+ synthesis (e.g. inhibition of TDO or KYNU) may produce a state of 

“energy stress” by limiting available NAD+, thus promoting mitochondrial fission as a 

compensatory mechanism to promote resistance against oxidative stress. While this remains 

speculation, this resistance may mediate, at least in part, the prolonged lifespan observed in 

C. elegans (Sutphin et al., 2017; van der Goot et al., 2012) and Drosophila (Oxenkrug, 2010; 

Oxenkrug et al., 2011) subjected to genetic or pharmacological inhibition of the NAD+ 

branch of the kynurenine pathway, as well as the improved pathology observed in response 

to KMO or KYNU inhibition in mouse models of neurodegeneration (Zwilling et al., 2011).

Another potential benefit from kynurenine pathway interventions, besides regulating NAD+ 

synthesis, is the generation of antioxidant metabolites such as 3HAA and the reduction of 

pro-oxidant metabolites as QA. Elevated 3HAA may act as an ROS scavenger and work in 

conjunction with altered NAD+ levels to promote a healthy mitochondria. 3HK, like 3HAA, 

has been shown to have antioxidant properties in silico, in vitro, and in vivo, reducing lipid 

peroxidation in rat cerebral cortex and C6 glioma cells (Christen et al., 1990; Leipnitz et al., 

2007; Zhuravlev et al., 2016). In contrast, QA has potent pro-oxidant properties, generating 

ROS via the Fenton reaction catalyzed by complex formation with iron ([Fe(III)]) (Kubicova 

et al., 2013).
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2.3 Multiple mechanistic links to aging open the possibility for synergy from combined 
interventions

The observation that inhibition of kynurenine pathway activity—thus reducing de novo 
NAD+ production from TRP—and NAD+ precursor supplementation both increase lifespan 

suggests that optimal benefit may be derived by combining one or more therapies (Figure 3). 

The benefits of increasing NAD+ production and on mitochondrial function and activation of 

NAD+-dependent enzymes may produce synergistic benefits with the NAD+-independent 

biological activity of intermediate kynurenine metabolites. KA and QA are neuroactive, 

modulating activity of α7nACh and NMDA receptors (Schwarcz et al., 2012) and GPR35 

(Cervenka et al., 2017). These properties are of interest in treating various neurological 

disorders, including neurodegeneration (Schwarcz et al., 2012). Elevating local TRP levels 

by inhibiting IDO1, IDO2, or TDO has potential benefits in both promoting immune-

surveillance of cancer cells (Cervenka et al., 2017) and combatting neurodegeneration (van 

der Goot et al., 2012; van der Goot and Nollen, 2013). The antioxidant properties of 3HK 

and 3HAA (Chobot et al., 2015; Christen et al., 1990; Leipnitz et al., 2007; Thomas et al., 

1996; Zhuravlev et al., 2016)—which can convert to pro-oxidant depending on the 

concentration of metal ions and environmental pH (Goldstein et al., 2000; Pérez-González et 

al., 2017)–and the immunomodulatory activity of 3HK, 3HAA, and QA (Krause et al., 2011) 

have potential benefits in a wide range of age-associated disease.

A straight-forward starting point would be to combine IDO inhibition—to prevent local TRP 

depletion and immune suppression—with an NAD+ precursor supplement to maintain high 

levels of NAD+ production in the absence of de novo synthesis through the kynurenine 

pathway and garner the benefits of increased NAD+ on mitochondrial function and 

activation of NAD+ dependent enzymes. Depending on the specific disease or tissue of 

interest, more complex therapies might include combinations of two or more of the 

following: targeted inhibition of one or more kynurenine pathway enzymes (in particular, 

TDO/IDO, KYNU, HAAO, or ACMSD), TRP supplementation, supplementation with one 

or more intermediate kynurenine pathway metabolite (in particular, 3HK, 3HAA, or KA), 

NAD+ precursor supplementation, drugs directly targeting one or more aspects of 

mitochondrial function (e.g. mitochondrial biogenesis).

The idea behind combining kynurenine inhibition with NAD supplementation has some 

support in the literature. Shi et al. (Shi et al., 2017) demonstrated that mice lacking either 

Kynu or Haao produce only inviable embryos when fed a diet lacking in niacin, suggesting 

that kynurenine metabolism is critical for normal development when a dietary NAD+ 

precursor is not present. Supplementing mice with NA rescued this phenotype. Feedback 

between different aspects of NAD+ production will also impact the optimal combination of 

interventions. For instance, Mitchell et al. (2018) observed that NAM supplementation in 

mice did not extend lifespan but did result in a rebalancing of hepatic NAD+ metabolism, 

suppressing salvage pathway expression while elevating de novo pathway enzymes.

3 Clinical evidence for targeting kynurenine metabolism in aging

As discussed in Section 1.1, most efforts to target kynurenine metabolism in a clinical 

setting use IDO/TDO inhibitors to re-sensitize cancer cells to immune-surveillance. Beyond 
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this specific application in cancer, clinical interventions targeting kynurenine metabolism are 

lacking for treatment of age-associated pathology; however, kynurenine pathway 

components are getting some clinical attention in non-aging contexts. For example, 

metabolite levels of serotonin (5-HT), TRP, and KYN, as well as the enzyme activity of 

monoamine oxidases (MAO) and IDO, have been examined in the context of both septic 

shock (Versailles Hospital, 2004) and stroke (Versailles Hospital, 2012). A recent clinical 

trial is evaluating the ability of N-acetylcysteine to inhibit KYAT in patients with 

Schizophrenia, preventing the conversion of ingested TRP to KA and limiting the 

deleterious consequences of elevated KA on glutamate and dopamine signaling in this 

disease (University of Maryland, 2019). On the NAD+ front, NAD+, NA, NR, NAM, and 

NMN are all being tested in clinical trials for a variety of conditions, including a range of 

age-associated diseases, as are non-NAD+ compounds targeting various aspects of 

mitochondrial dynamics and biogenesis. To date, none of these studies is examining 

potential cross-over effects between kynurenine metabolism, NAD+ production, and 

mitochondrial function. This interplay remains ripe for both pre-clinical and clinical 

evaluation.

4 Conclusions and future directions

The role of NAD+ metabolism and mitochondrial function remain major areas of focus in 

aging research. Kynurenine metabolism is a more recent entrant to this stage, and 

mechanisms linking altered kynurenine pathway activity to longevity, healthy aging, and the 

onset and progression of age-associated disease are just beginning to emerge. The interplay 

between kynurenine metabolism, NAD+ production, and mitochondrial function in the 

context of aging has been examined by only a handful of studies to date, and we anticipate 

the coming years will see a more detailed examination across the spectrum of invertebrate 

and mammalian models. As evidence linking kynurenine metabolism to aging continues to 

grow, we anticipate expanded clinical interest in targeting pathway enzymes and metabolites 

for age-associated disease. Particularly promising is the prospect of combining interventions 

that target kynurenine, NAD+, and mitochondrial metabolism to achieve synergy and 

optimally increase healthy lifespan. For example, knockdown of intermediate kynurenine 

pathway enzymes, such as KYNU, HAAO and KMO, may beneficially increase specific 

metabolites in the pathway that exert antioxidant activity or initiate pro-health signaling 

pathways, with a concurrent detrimental decreased in NAD+ production. Combining this 

inhibition with NAD+ precursors may achieve the benefits of upregulating kynurenine 

pathway metabolites without the consequences of reducing NAD+ availability. Another 

approach to achieving additive or synergistic benefits may be to combine IDO/TDO 

inhibitors—maintaining local tryptophan levels and preventing T cell apoptosis—with direct 

supplementation of beneficial intermediate kynurenine metabolites or NAD+ precursors.
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Highlights

• The kynurenine pathway has recently been identified as a promising target to 

increase healthy longevity.

• Targeted inhibition of kynurenine pathway activity may alleviate several 

pathological conditions and promote healthspan.

• Changes to the production and recycling of NAD+ is a likely mediator of the 

beneficial effects of kynurenine pathway interventions.

• Mitochondrial function and dynamics represent NAD+-dependent processes 

downstream of kynurenine metabolism that may mediate benefits during 

aging.
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Figure 1. The kynurenine pathway represents one of three routes for NAD+ production or 
recycling.
The enzymatic degradation of the essential amino acid tryptophan (TRP) through the series 

of reactions catalyzed by rate-limiting enzymes culminates in de novo synthesis of NAD+ 

constitutes one of the two major branches of the kynurenine pathway. The other major 

branch converts kynurenine (KYN) to the neuroactive metabolite kynurenic acid (KA). Cells 

can also generate NAD+ from nicotinic acid (NA) through the Preiss-Handler pathway, or 

from nicotinamide riboside (NR) through the salvage pathway. Note that mammalian 

genomes contain the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which 

converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), but not the enzyme 

nicotinamides (NAMase), which converts NAM to NA, while the invertebrate C. elegans and 

D. melanogaster genomes contain NAMase but not NAMPT. Thus mammals recycle NAM 

through the salvage pathway, while invertebrates recycle NAM through the Preiss-Handler 

pathway. Each catalytic step is annotated with the human or C. elegans gene encoding the 

corresponding enzyme. Enzymes (enzyme symbol: human gene/worm gene): indoleamine 

2,3-dioxygenase (IDO: IDO1,2/--); tryptophan 2,3-dioxygenase (TDO: TDO2/tdo-2); 

arylformamidase (AFMID: AFMID/afmd-1,2); kynurenine aminotransferase (KYAT: 

AADAT, CCBL1,2/nkat-1,3, tatn-1); glutamic-oxaloacetic transaminase (GOT: GOT2/

got-2.1,2.2); kynurenine 3-monooxygenase (KMO: KMO/kmo-1,2); kynureninase (KYNU: 

KYNU/kynu-1); 3-hydroxyanthranilate 3,4-dioxygenase (HAAO: HAAO/haao-1); and 

aminocarboxymuconate-semialdehyde decarboxylase (ACMSD: ACMSD/acsd-1), 

quinolinate phosphoribosyl transferase (QPRT: QPRT/umps-1), nicotinate 

phosphoribosyltransferase (NAPRT: NAPRT/nprt-1), nicotinamide nucleotide 

adenylyltransferase (NMNAT: NMNAT1,2,3/nmat-1,2), NAD synthetase (NADSYN: 

NADSYN1/qns-1), NAD kinase (NADK: NADK,2/nadk-1,2), nicotinamide riboside kinase 
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(NMRK: NMRK1,2/nmrk-1), nicotinamide phosphoribosyltransferase (NAMPT: 

NAMPT/-), ADP-ribosyltransferase (ART: ART1–5/--), poly(ADP-ribose polymerase 1–16 

(PARP: PARP1–16/parp-1,2), poly(ADP-ribose) glycohydrolase (PARG: PARG/parg-1,2), 

sterile alpha and TIR motif containing (SARM: SARM1/tir-1), sirtuin NAD-dependent 

protein deacetylase (SIRT: SIRT1-7/sir-2.1,2.2,2.3,2.4). Metabolites: tryptophan (TRP); 

Nformylkynurenine (NFK); kynurenine (KYN); kynurenic acid (KA); 3-hydroxykynurenine 

(3HK); 3-hydroxyanthranilic acid (3HAA); anthranilic acid (AA); xanthurenic acid (XA); 2-

amino-3-carboxymuconic semialdehyde (ACMSA); 2-aminomuconic semialdehyde 

(AMSA); and quinolinic acid (QA); glutaryl-coenzyme A (Glutaryl CoA); picolinic acid 

(PA); nicotinic acid (NA); nicotinic acid mononucleotide (NAMN); nicotinic acid adenine 

dinucleotide (NAAD); nicotinamide adenine dinucleotide (NAD+/NADH); nicotinamide 

adenine dinucleotide phosphate (NADP+/NADPH); nicotinamide (NAM); nicotinamide 

mononucleotide (NMN); nicotinamide riboside (NR).
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Figure 2. NAD+ synthesis and mitochondrial fitness.
NAD+ is synthesized in the cell through the kynurenine/de novo biosynthetic pathway using 

quinolinic acid as a primary precursor. Cells also possess additional systems for producing 

NAD+ from alternative precursors. The Priess-Handler pathway generates NAD+ from 

nicotinic acid (NA) while the salvage pathway generates NAD+ from nicotinamide riboside 

(NR). Invertebrates recycle NAM generated from consuming NAD+ through the Priess-

Handler pathway, while mammals recycle NAM through the salvage pathway. NAD+ 

regulates a variety of cellular process that modulates mitochondrial morphology, fitness, and 

function, which in turn impacts downstream processes including as cell death, proteostasis 

and DNA repair.
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Figure 3. Cellular and molecular mechanisms regulated by the kynurenine -NAD+-mitochondria 
axis.
The kynurenine pathway and its interaction with NAD+ metabolism and mitochondrial 

fitness affect many cellular processes. Highlighted are processes and associated genes and 

systems with a known function in aging and age-associated disease. Oxidative 

phosphorylation (OXPHOS), TCA (tricarboxylic acid) cycle, electron transport chain (ETC), 

optic atrophy 1 (OPA1), mitofusin 1/2 (MFN1/2), dynamin-1 like (DNM1L), mitochondrial 

fission 1 (FIS1), kynurenine 3-monooxygenase (KMO), kynureninase (KYNU), 3-

hydroxyanthranilate 3,4-dioxygenase (HAAO), superoxide dismutase 1–3 (SOD1–3), 

forkhead box O3 (FOXO3A), cytochrome c oxidase subunit 1–3 (MTCO1–3), F-box and 

leucine rich repeat 4 (FBXL4), mitochondrial inner membrane protein MPV17 (MPV17), 

ADP-ribosyltransferase 1 (ART1), Poly [ADP-ribose] polymerase 1 (PARP-1), Poly(ADP-

ribose) glycohydrolase (PARG), Sterile Alpha and TIR Motif Containing 1 (SARM1), 

sirtuin 1–7 (SIRT1–7).
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