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ABSTRACT: Mast cells are well known for their involvement in allergic
and anaphylactic reactions, but recent findings implicate them in a va-
riety of inflammatory diseases affecting different organs, including the
heart, joints, lungs, and skin. In these cases, mast cells appear to be acti-
vated by triggers other than aggregation of their IgE receptors (Fc�RI),
such as anaphylatoxins, immunoglobulin-free light chains, superanti-
gens, neuropeptides, and cytokines leading to selective release of media-
tors without degranulation. These findings could explain inflammatory
diseases, such as asthma, atopic dermatitis, coronary inflammation, and
inflammatory arthritis, all of which worsen by stress. It is proposed that
the pathogenesis of these diseases involve mast cell activation by local
release of corticotropin-releasing hormone (CRH) or related peptides.
Combination of CRH receptor antagonists and mast cell inhibitors may
present novel therapeutic interventions.

KEYWORDS: asthma; coronary artery disease; inflammation; der-
matoses; mast cells; skin; stress; vascular permeability

SELECTIVE RELEASE OF MAST CELL MEDIATORS

Mast cells are necessary for the development of allergic reactions, through
cross-linking of their surface receptors for IgE (FcεRI),1,2 leading to de-
granulation and the release of vasoactive, proinflammatory, and nociceptive
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mediators that include histamine, IL-6, IL-8, PGD2, tryptase, and vascular
endothelial growth factor (VEGF).3–5 Mast cells derive from a distinct precur-
sor in the bone marrow6,7 and mature under local tissue microenvironmental
factors.5 In addition to stem cell factor (SCF), mast cell chemoattractants in-
clude nerve growth factor (NGF),8 RANTES, and monocyte chemoattractor
protein 1 (MCP-1).9 They can secrete a multitude of biologically potent medi-
ators (TABLE 1), giving rise to speculations about their possible role in innate or
acquired immunity.5,10,11 In addition to allergic triggers, mast cells can be acti-
vated by anaphylatoxins, antibody light chains, bacterial and viral antigens, cy-
tokines, and neuropeptides.12 Immunoglobulin-free light chains appear to elicit
immediate hypersensitivity-like responses13,14 through mast cell activation
and subsequent induction of T-cell-mediated immune responses15 (TABLE 2).
Increasing evidence also indicates that mast cells are critical for the develop-
ment of inflammatory diseases, especially in the pathogenesis of diseases such
as arthritis, asthma, chronic dermatitis, and coronary artery disease (CAD)
(TABLE 3).12 However, unlike the case in allergic reactions, mast cells are rarely
seen to degranulate during autoimmune16 or inflammatory processes.17 The
only way to explain mast cell involvement in nonallergic processes would be
through “differential” or “selective” secretion of mediators18 without degran-
ulation.19 In fact, this may be the only way this ubiquitous and versatile cell
may regulate immune responses without causing anaphylactic shock.

Instead, mast cells can undergo ultrastructural alterations of their electron-
dense granular core, indicative of secretion, but without degranulation, a
process that has been termed “activation,”20–22 “intragranular activation,”23

or “piecemeal” degranulation.24 During such processes, mast cells can re-
lease many mediators selectively (TABLE 4)25–27 as shown for serotonin18 and
eicosanoids.28–30 Triggers include innate molecules, such as stem cell factor
(SCF), which releases IL-6.31–34 IL-1 can also stimulate human mast cells
to release IL-6 selectively through 40–80-nm vesicles unrelated to the secre-
tory granules (800–1000 nm).35 Corticotropin-releasing hormone (CRH) can
stimulate selective release of VEGF without degranulation.36

SKIN INFLAMMATION

Mast cells are well known for their role in skin hypersensitivity reac-
tions.37–41 Skin mast cells are located close to sensory nerve endings42 and can
be triggered by neuropeptides,43–46 such as neurotensin (NT),47 nerve growth
factor (NGF),48 substance P (SP),49 and pituitary adenylate cyclase activating
polypeptide (PACAP), all of which can be released from dermal neurons.50 In
fact, skin mast cells contain SP,51 while cultured mouse and human mast cells
were shown to contain and secrete NGF.52

Skin appears to have its own equivalent of the hypothalamic–pituitary–
adrenal (HPA) axis,53,54 the main regulator of which, CRH and its receptors,
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TABLE 1. Mast cell mediators

Mediators Main pathophysiologic effects

Prestored
Biogenic amines

Histamine Vasodilation, angiogenesis, mitogenesis, pain
5-Hydroxytryptamine (5-HT,

serotonin)
Vasoconstriction, pain

Chemokines
IL-8, MCP-1, MCP-3, MCP-4, Chemoattraction and tissue infiltration

RANTES of leukocytes
Enzymes

Arylsulfatases Lipid/proteoglycan hydrolysis
Carboxypeptidase A Peptide processing
Chymase Tissue damage, pain, angiotensin II synthesis
Kinogenases Synthesis of vasodilatory kinins, pain
Phospholipases Arachidonic acid generation
Tryptase Tissue damage, activation of PAR,

inflammation, pain
Peptides

Corticotropin-releasing hormone
(CRH)

Inflammation, vasodilation

Endorphins Analgesia
Endothelin Sepsis
Kinins (bradykinin) Inflammation, pain, vasodilation
Somatostatin (SRIF) Anti-inflammatory action
Substance P (SP) Inflammation, pain
Vasoactive intestinal peptide (VIP) Vasodilation
Urocortin Inflammation, vasodilation
Vascular endothelial growth factor

(VEGF)
Neovascularization, vasodilation

Proteoglycans
Chondroitin sulfate Cartilage synthesis, anti-inflammatory action
Heparin Angiogenesis, nerve growth factor stabilization
Hyaluronic acid Connective tissue, nerve growth factor stabilization

De novo synthesized
Cytokines

Interleukins
(IL)-1,2,3,4,5,6,9,10,13,16

Inflammation, leukocyte migration, pain

INF-� ; MIF; TNF-� Inflammation, leukocyte proliferation/activation
Growth factors

CSF, GM-CSF, b-FGF, NGF, VEGF Growth of a variety of cells
Phospholipid metabolites

Leukotriene B4 (LTB4) Leukocyte chemotaxis
Leukotriene C4 (LTC4) Vasoconstriction, pain
Platelet-activating factor (PAF) Platelet activation, vasodilation
Prostaglandin D2 (PGD2) Bronchonstriction, pain

Nitric oxide (NO) Vasodilation

ABBREVIATIONS: TNF-�: tumor necrosis factor-�; INF� : Interferon-� ; MIF: macrophage inflam-
matory factor; GM-CSF: granulocyte monocyte-colony stimulating factor; b-FGF: fibroblast growth
factor; NGF: nerve growth factor; SCF: stem cell factor; VEGF: vascular endothelial growth factor.
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TABLE 2. Mast cell triggers

Antigen + IgE
Anaphylatoxins
CRH
IL-1
Immunoglobulin-free light chains
LPS
NGF
NT
SCF
SP
Superantigens
Ucn
VIP
Viral DNA sequences

ABBREVIATIONS: CRH: corticotropin-releasing hormone; IL: interleukin; LPS: lipopolysaccharide;
NGF: nerve growth factor; NT: neurotensin; SCF: stem cell factor; SP: substance P; Ucn: urocortin;
VIP: vasoactive intestinal peptide.

are present in the skin.55 Acute stress releases CRH in the skin,56 inducing a lo-
cal response.54 Acute stress also induces redistribution of leukocytes from the
systemic circulation to the skin57; it also exacerbates skin delayed hypersensi-
tivity reactions58 and chronic contact dermatitis in rats, an effect that depends
on mast cells and CRH-1 receptors (CRHR-1).59

Computer-induced stress enhanced allergen-specific responses with con-
comitant increase in plasma SP levels in patients with atopic dermatitis.60

Similar findings with increased plasma levels of SP, VIP, and NGF, along
with a switch to a TH2 cytokine pattern, were reported in patients with atopic
dermatitis playing video games.61 Exercise was also shown to increase the

TABLE 3. Inflammatory diseases involving mast cells

Disease Pathophysiologic effects

Asthma Bronchonstriction, pulmonary inflammation
Atopic dermatitis Skin vasodilation, T-cell recruitment, inflammation, itching
Coronary artery disease Coronary inflammation, myocardial ischemia
Chronic prostatitis Prostate inflammation
Chronic rhinitis Nasal inflammation
Fibromyalgia Muscle inflammation, pain
Interstitial cystitis Bladder mucosal damage, inflammation, pain
Migraine Meningeal vasodilation, inflammation, pain
Multiple sclerosis Increased blood–brain barrier permeability, brain inflammation,

Demyelination
Neurofibromatosis Skin nerve growth, fibrosis
Osteoarthritis Articular erosion, inflammation, pain
Rheumatoid arthritis Joint inflammation, cartilage erosion
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responsiveness of skin mast cells to morphine only in patients with exercise-
induced asthma.62

CRH63 and its structurally related peptide, urocortin (Ucn),64 can activate
skin mast cells and induce mast-cell-dependent vascular permeability in ro-
dents. CRH also increases vascular permeability in human skin,65 a process
dependent on mast cells. CRH-R2 receptor expression was shown to be up-
regulated in stress-induced alopecia in humans,66 CRH-R2 expression was
increased in chronic urticaria.67 Acute restraint stress induces rat skin vascular
permeability,68 an effect inhibited by a CRH receptor antagonist and absent in
mast-cell-deficient mice.63,64

Proteases released from mast cells could act on plasma albumin to generate
histamine-releasing peptides,69,70 which would further propagate mast cell ac-
tivation and inflammation. Proteases could also stimulate protease-activated
receptors (PARs), inducing microleakage and widespread inflammation.71,72

Many dermatoses, such as atopic dermatitis (AD), chronic urticaria, and pso-
riasis, are triggered or exacerbated by stress,73 which also worsens eczema74

and acne vulgaris.75

Mast cells are localized close to CRH-positive neurons in the median em-
inence76 and express functional CRH receptors.77 The median eminence is
rich in mast cells78,79 and contains most of the histamine in the brain.80 Hy-
pothalamic mast cell activation can stimulate the HPA axis.81–83 Histamine is
considered a major regulator of hypothalamus84 and can increase CRH mRNA
expression there.85 Moreover, human mast cells can synthesize and secrete
large amounts of CRH86 as well as IL-1 and IL-6, which are independent acti-
vators of the HPA axis.87 The immunoendocrine responses to stress in chronic
skin inflammatory diseases have been reviewed,12,88 and it was proposed that
mast cells constitute the “sensor” of a “brain–skin” connection.89

INFLAMMATORY ARTHRITIS

The presence of mast cells in joints has been known for many years.17,90–96

Moreover, fluid aspirated from joints of patients with arthrosynovitis contains
RANTES and MCP-1,97 both of which are potent mast cell chemoattractants.9

Mast cells are required for autoimmune arthritis98 and inflammatory arthri-
tis,99 as knee involvement was absent in the joints of W/Wv mast cell–deficient
mice as compared to their +/+ controls. Inflammatory arthritis was also sig-
nificantly reduced in CRH knockout mice99 and in mice treated with the CRH
receptor-1 antagonist, Antalarmin.100

Mast cells in the joints of rheumatoid arthritis (RA) patients express CRH re-
ceptors.101 Moreover, CRH,101,102 Ucn,103,104 and CRH receptors are increased
in the joints of inflammatory and RA patients, the symptoms of whom worsen
by stress.105,106
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ASTHMA

Asthma is one of the most common chronic illnesses, affecting roughly
300 million people worldwide.107,108 The morbidity and mortality due to
asthma continues to increase despite advances in both our scientific knowl-
edge, as well as in hygiene and drugs for this disease.108 The World Health
Organization has estimated that 1 of 250 deaths worldwide is due to asthma.
These facts highlight the need for an improved understanding of the cel-
lular and molecular mechanisms that contribute to the pathogenesis of
asthma.

Recent reports indicate that stress can exacerbate asthma.109–114 One study
indicated that maternal stress may be responsible for the subsequent cellular
response in childhood asthma.115 It has been postulated that stress associated
with urban living may contribute to poor asthma control.116 Stress has long
been postulated to have a negative impact on asthma, but the mechanisms by
which this occurs remain poorly defined.109,111,112,114,117,118 One study showed
that adolescents with asthma in a low socioeconomic group, who reported more
stressful and acute life events, had more asthma exacerbation and higher serum
Th-2 cytokines than those in higher socioeconomic status.119 The Inner City
Asthma Study showed a correlation between community violence and asthma
morbidity.120 Post-traumatic psychological stress following the 9/11 attacks on
the World Trade Center correlated with increased symptom severity in subjects
with moderate-to-severe asthma and with utilization of urgent care in New
York City.121,122 In an epidemiological study carried out among 10,667 Finnish
first-year university students (18–25 years old), it was shown that an excess
of stressful events, such as concomitant severe disease or death of immediate
family members or family conflicts, were associated with exacerbation of
asthma.111

Stress associated with final examinations, as compared to mid semester, of
college students with mild asthma increased sputum eosinophil counts, as well
as eosinophil-derived neurotoxin and IL-5 once the eosinophils were cultured
for up to 24 h.117 It was suggested that a shift in cytokine generation to that of
a Th2 type may be the defining parameter.113 In one longitudinal study of 92
adults with asthma, it was determined that subjects who reported more negative
life events and had low levels of social support had more episodes of asthma ex-
acerbation induced by upper respiratory tract infections.123 A large prospective
long-term follow-up community-based cohort study of young adults showed
a dose–response relationship between panic and asthma.124 In fact, one study
indicated that maternal stress may be responsible for the cellular response in
childhood asthma,115 while another showed that greater levels of caregiver-
perceived stress at 2–3 months was associated with increased risk of subse-
quent repeated wheezing among children during the first 14 months of life.125

Such findings cannot be easily explained as the HPA axis apparently functions
normally in asthmatic adult patients, producing appropriate plasma cortisol
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increases in response to stress126 which might be expected to reduce rather
than exacerbate asthma symptoms. One publication showed a significantly
blunted cortisol response to stress only in asthmatic children,127 suggesting
there may be differences due to age.

While no animal model exactly replicates human asthma, the use of animals
has provided helpful information about the mechanisms of airway inflamma-
tion and hyperreactivity seen in asthma.128,129 Chronic exposure to aerosolized
ovalbumin has been shown to be a useful murine model of asthma leading to
airway inflammation, airway hyperresponsiveness (AHR),130 as well as mi-
crovascular leakage in the airways.130–132 Microvascular leakage in the airway
wall may also be important for the airway wall remodeling that is found in
most asthmatics.133,134 More recently, the house dust mite allergen model has
been shown to effectively induce chronic airway inflammation and AHR.133,135

Stress has been shown to increase AHR114 and inflammation114,136 in response
to ovalbumin challenge in murine models of asthma. In one case, exposure to
an ultrasonic stressor, coinciding with the first aerosol challenge, significantly
increased allergen-induced pulmonary reactivity and bronchial inflammation.
Short-term (3 days) stress before allergen challenge decreased the number
of inflammatory cells, but increased IL-6, while long-term (7 days) stress
evidently increased the number of inflammatory cells but did not alter IL-6
levels.136

The role of mast cells in asthma is undisputed.137–139 Rodent mast cells ex-
press bacterial Toll-like receptors (TLRs) 2 and 4.140,141 However, the pattern
of response may be species- and tissue-specific, making generalizations diffi-
cult. TLRs were initially discovered in Drosophila as the receptors responsible
for dorso-ventral patterning in the developing embryo; however, soon after they
were shown to be important in the development of innate immunity to invad-
ing pathogens.142 Subsequently, human homologues for TLRs were identified
beginning with TLR-4, which was shown to bind lipopolysaccharide (LPS).
Ten human TLRs have been identified so far.143–145 Evidence is building that
TLRs play an important role in recognition of ligands associated with bacterial
or viral infections, and play a key role in the development of adaptive immune
responses,144 especially in asthma.146 LPS induced release of TNF-� through
TLR-4, while peptidoglycan induced histamine release through TLR-2 from
rodent mast cells. Fetal rat skin-derived mast cells expressed TLR-3, 7, and 9
and activation by CPG oligodeoxynucleotide induced release of TNF and IL-6,
as well as RANTES and MIP, but without degranulation.147,148 In another pa-
per, LPS could not induce release of GM-CSF, IL-1, or LTC4.141 However,
LPS did induce secretion of TH2 cytokines IL-5, IL-10, and IL-13 and in-
creased their production by FcεRI cross-linking.149 Elsewhere, it was shown
that TLR-2 activation produced IL-4, IL-6, and IL-13, but not IL-1,150 while
LPS produced TNF, IL-1, IL-6, and IL-13, but not IL-4 or IL-5, without de-
granulation.150 Activation of these receptors even in human cultured mast cells
leads to distinct biological effects: Human mast cells express viral TLR-9,151
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activation of which produced the proinflammatory cytokine IL-6,151 while they
produced IFN in response to double-stranded RNA through TLR-3.152 These
findings may explain how viral infections worsen asthma.

Viral infections have been shown to exacerbate asthma and contribute to
as many as 50% of asthma-associated deaths; moreover, more than 80% of
childhood asthma exacerbations are associated with viral airway infections.153

A number of studies have shown that viral infections increase airway hyperre-
sponsiveness and antigen sensitization,154 as well as recruitment of inflamma-
tory cells.155 Synoptical virus, metapneumovirus, rhinovirus, adenovirus,156

as well as influenza and parainfluenza virus have been implicated in the patho-
genesis of asthma.157–159 In fact, rhinovirus infections during infancy appear
to predict childhood wheezing,160 while respiratory syncytial virus during the
first 3 months of life was shown to promote a TH2 response, especially signif-
icantly high levels of IL-4.161 Such early-infancy viral respiratory infections
may also induce metalloproteinases, which are involved in airway remodeling
in asthma.162 However, this field is quite confusing because current discussions
focus on viral nucleic acid inoculation.163

CORONARY INFLAMMATION

Increasing evidence implicates acute psychological stress and cardiac
mast cells in coronary artery disease (CAD), especially when it occurs
without angina, which appears to involve a sizable portion of myocardial
infections (MI).164–167 Cardiac mast cells can participate in the development
of atherosclerosis, coronary inflammation, and cardiac ischemia.168 Mast
cells are particularly prominent in coronary arteries during spasm169 and
accumulate in the shoulder region of human coronary plaque rupture.170–172

The human mast cell proteolytic enzyme chymase is the main cardiac source
of converting enzyme that generates the coronary constrictor angiotensin II;173

the chymase can also induce the removal of cholesterol from HDL particles
and uptake by macrophages that become “foam” cells, major components
of coronary atheromas.174–177 Cardiac mast-cell-derived histamine178 can
constrict the coronary arteries179 and can sensitize nerve endings;180 this is
particularly important because mast cells are localized close to nerve endings
in atherosclerotic coronary arteries.181

Acute stress induces rat cardiac mast cell activation, an effect blocked by the
“mast cell stabilizer” disodium cromoglycate (cromolyn).182 Acute stress can
also induce histamine release from mouse heart,183 as well as increase serum
histamine and IL-6.183,184 These effects are dependent on mast cells and are
greater in apolipoprotein E (ApoE) knockout mice that develop atheroscle-
rosis.183,184 Serum IL-6 elevations in patients with acute CAD were docu-
mented to derive primarily from the coronary sinus.185 Both histamine186 and
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IL-6187 are significant independent factors of CAD morbidity and mortality.
There are also reports of anaphylactic CAD that has been termed the “Kounis”
syndrome.188,189

CONCLUSION

Mast cells have emerged as unique immune cells that can be activated by
many immune and nonimmune triggers, including acute stress through CRH;
it is, therefore, proposed that CRH be renamed SRH (Stress Response Hor-
mone) to reflect its versatile role in stress. Mast cells are critical in the develop-
ment of inflammatory diseases, especially dermatoses, asthma, arthritis, and
CAD. Inhibition of mast cell activation by CRH,190 therefore, is a novel target
for the development of new treatments for inflammatory and autoimmune dis-
orders. Certain dietary supplements have recently been shown to be effective
in this regard191 because they combine the proteoglycan chondroitin sulfate192

and the flavonoid quercetin,193 both of which have mast cell inhibitory and
anti-inflammatory actions.
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