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Abstract

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression
of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses.
We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor
receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells
present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction
between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were
stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression
were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present
study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4,
the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B
(NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in
pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia
suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and
cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results
reinforce the role of the pineal gland as sensor of immune status.
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Introduction

The pineal gland, a circumventricular organ, plays an

integrative role in the neuro-endocrine-immune response [1–3].

In mammals, the major cellular component of the pineal gland is

the pinealocyte. In rats, this cell type comprises around 90% of the

gland and the remainder consists mainly of glial cells and nerve

fibers [4]. The pinealocytes are responsible for synthesizing

melatonin, the darkness hormone, while the functions of astrocytes

and microglia in the pineal gland are currently unclear.

The pineal gland only synthesizes melatonin at night due to

nocturnal gene transcription and an increase in the activity of the

enzyme arylalkylamine-N-acetyltransferase (AA-NAT) induced by

noradrenaline activation of beta-adrenoceptors [5–7]. The daily

rhythm of melatonin is driven by pineal production. Gastroin-

testinal cells, immunocompetent cells, and astrocytes also

synthesize melatonin, which plays a local role related to tissue

protection [8–16].

The pineal and extrapineal sources of melatonin production

have been linked to independent physiological or pathophysio-

logycal contexts. Pineal melatonin, the darkness hormone, is

responsible for effects dependent on low levels (pM range) of the

indolamine, whereas extrapineal melatonin acts as a paracrine

or autocrine mediator reaching higher concentrations (mM

range) [1]. ‘Chronobiotic’ levels of melatonin inhibit both the

rolling and adherence of leukocytes to the endothelial layer, and

reduce vascular permeability [17,18], avoiding unnecessary

innate immune responses. In order to develop a full innate

immune response, nocturnal pineal melatonin synthesis is

suppressed both in birds and mammals [1,19,20]. In addition,

immune-competent cells present in inflamed tissues are stimu-

lated to synthesize melatonin, which acts in a paracrine manner

as an anti-inflammatory mediator [1,9,11,16]. This new

approach in interpreting data regarding the two main functions

of melatonin suggests that it is necessary to stop translating

environmental lighting changes to the body, in order to allow

the induction of inflammatory responses, which are essential for

proper healing.

Prolonged disruption of chronobiotic pineal function correlates

with several pathologies. An understanding of the mechanistic

basis involved in the suppression of pineal melatonin synthesis

during induction of innate immune responses will provide new

insights in the relationship between the temporal organization of

physiological functions and the genesis and maintenance of the

pathological status.
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Recently we have reported that the rat pineal gland responds to

lipopolysaccharide (LPS), an endotoxin found in the outer

membrane of gram-negative bacteria. This pathogen-associated

molecular pattern triggers the activation of the transcription factor

nuclear factor kappa B (NF-kB). In the pineal gland, LPS induces a

rapid and transient activation of this pathway that can suppress

melatonin synthesis [21]. In addition, LPS also triggers TNF

production in vitro [21]. TNF inhibits melatonin synthesis by

blocking AA-NAT gene transcription in cultured rat pineal glands

[22]. High levels of TNF correlate with the inhibition of nocturnal

melatonin in humans [11,12,23]. Furthermore, TNF is one of the

first pro-inflammatory agents produced at the beginning of an

immune response and amplifies and prolongs inflammatory

responses. In the rat pineal gland, TNF is recognized by TNFR1

expressed on astrocytes, microglia and pinealocytes [24]. Howev-

er, the source of TNF production in cultured pineal glands is

currently unknown.

The aim of the present study was to elucidate the mechanism of

action of LPS in the pineal gland, by evaluating its effect on

different cell types. Therefore, we evaluated the localization of

LPS receptors in different pineal gland cell types, and the

downstream activation of NF-kB nuclear translocation which

results in TNF synthesis. In addition, we analyzed the mechanism

involved in the control of melatonin synthesis by LPS. Our data

show that TLR4 is expressed on microglia, astrocytes and

pinealocytes. In addition, we demonstrated that LPS induced

microglial activation and TNF production, which may interact

with TNFR1 that is up-regulated on pinealocytes. Our data also

highlight the relevance of the NF-kB pathway in regulating

melatonin synthesis. In this context, the production of TNF by

microglia indicates an additional mechanism for controlling

melatonin output and suggests a glia-pinealocyte regulatory

network during inflammation. Therefore, we reinforce the

hypothesis that the pineal gland is a sensor of immune status

and provide a molecular basis that explains how melatonin

synthesis is suppressed, as observed during clinical and experi-

mental inflammatory conditions.

Methods

Animals
Pre-pubertal male and female Wistar rats (6 weeks, 84 animals)

from the animal facility of the Department of Physiology (IB-USP,

São Paulo, Brazil), were kept under a 12/12 h light/dark cycle

(lights on at 07h00, considered as Zeitgeber time zero (ZT 0)) and

received water and food ad libitum. The animals were killed by

decapitation at ZT 6. All experiments were carried out in

compliance with ethical standards of our institutional ethical

committee (CEUA/IB-USP: license number 045/2007) and with

the recommendation of the National Council on Experimental

Animal Control (CONCEA).

Drugs
Lipopolysaccharide (LPS, from E. coli serotype 0127:B8),

penicillin/streptomycin, HEPES, BGJb medium and bovine

albumin fraction V, minocycline hydrochloride, N-acetyl-leuci-

nyl-leucinyl-norleucinal-H (ALLN), DL-fluorocitric acid barium

salt, trypsin and trypsin inhibitor were obtained from Sigma (St

Louis, MO, USA); Dulbecco’s Modified Eagle Medium (DMEM),

and 6-diamidino-2-phenylindole (DAPI) were obtained from

Invitrogen (Carlsbad, CA, USA); DL-fluorocitric acid barium salt

was prepared as referenced [25]. Minocycline, ALLN and LPS

were diluted directly in the medium.

Organ Culture
Freshly-removed rat pineal glands were incubated (37uC, 95%

O2, 5% CO2, 48 h) in BGJb medium enriched with 2 mM

glutamine, 100 U/mL penicillin and 10 mg/mL streptomycin

(pH 7.4) in a 24-multiwell plate (1 gland per well, 200 mL of

medium per well), as previously described [26]. The medium was

replaced every 24 h.

Pinealocyte Culture
Primary pinealocyte cultures were prepared from rat pineal

glands as previously described [27], with some modifications.

Briefly, pinealocytes were obtained by trypsinization (0.25%,

37uC, 15 min) followed by mechanical dispersion in the presence

of trypsin inhibitor (0.3%) in a solution containing mmol/L

quantities of the following: 120 NaCl, 5 KCl, 25 NaHCO3,

1.2 KH2PO4, 12 glucose and 0.1% w/v bovine serum albumin.

After centrifugation (15 min, 10006g), the cells were resuspended

in DMEM supplemented with 100 U/mL penicillin and 100 mg/

mL streptomycin (pH 7.4). The total number of cells and

fractional survival was estimated by Trypan blue exclusion. The

survival rate was 90% or higher. Cells (0.7 6105) were seeded on

poly-L-lysine coated 8-well chamber plate and maintained at

37uC, 5% CO2 for 18 h prior to experimental analysis.

In vitro Treatments
The effect of LPS (0.1 mg/mL) on microglial activity and

TNFR1 expression were determined in cultured pineal glands,

and pinealocytes, respectively. The induction of TNF by LPS was

determined both in gland and cell cultures. Microglial and

astrocyte activity was blocked with minocycline (1 to 300 mM, 1 h)

or fluorocitrate (1 to 300 mM, 1 h), respectively. The NF-kB

pathway was blocked with ALLN (12.5 mM) 48 h prior to LPS

stimulation of cultured pineal glands. The control for each

experiment consisted of incubation with the vehicle solution of

each drug used. The medium was stored for no longer than one

month at –20uC before determining the concentration of TNF by

ELISA.

Immunohistochemistry
The expression of TLR4 and double-labeling of TLR4 with

ED-1 or GFAP were performed by immunohistochemistry assay

as previously described [21] in frozen sections o pineal glands

obtained from animals killed at ZT 6. Briefly, animals were

anesthetized by intramuscular injection of ketamine (160 mg/kg)

and xylazine (40 mg/kg) and perfused transcardially with 150 mL

of saline followed by 300 mL of cold 4% paraformaldehyde,

pH 9.5. Each pineal gland was removed from the skull and

maintained at 4uC for 24 h in PBS plus 20% sucrose. Pineal

glands were then embedded in medium for frozen tissue specimens

(Tissue-Tek, Sakura Finetek, Torrance, CA, USA), frozen in dry

ice and stored at –80uC till processing. Cryostat sections cut at a

thickness of 20 mm were fixed in 4% paraformaldehyde (30 min,

pH 9.5) and were incubated with 0.1 M glycine (5 min) followed

by 1% albumin and 0.01% saponin in PBS (1 h, room

temperature). Endogenous biotin was blocked using the Avidin-

Biotin Blocking kit as suggested by the manufacturer (Vector

Laboratories, SP2001, Burlingame, CA, USA). Rabbit polyclonal

antibody anti-TLR4 (1:200, Abcam, Cambridge, MA, USA) was

incubated for 48 h at 4uC followed by incubation with an

appropriate secondary antibody conjugated with FITC (1:200,

Sigma) for 1 h at room temperature. Next, the sections were

incubated with 0.1 M glycine (5 min) followed by 1% albumin and

0.01% saponin in PBS (1 h, room temperature) and then

Glia-Pinealocyte Network
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incubated with appropriate antibodies for the identification of

astrocytes (mouse monoclonal Cy3-conjugated GFAP, 1:500,

Sigma) or microglia (mouse monoclonal anti-ED-1, 1:100, Abcam)

followed by the appropriate secondary antibody conjugated with

Cy3 (1:200, Jackson ImmunoResearch, West Grove, PA, USA).

All procedures were repeated at least 3 times to confirm the results.

Images were acquired by a Confocal Laser-scanning microscope

with a 406or 1006objective and Zeiss LSM 510 (Zeiss confocal

software, Germany). FITC was excited at 488 nm (Argon laser)

and emitted fluorescence was measured at 515–530 nm. Cy3 was

excited at 543/633 nm (HeNe laser) and emitted fluorescence was

measured at 560 nm. An enterprise laser (excitation 364 nm and

emission filter of 435–485 nm) was used for 49, 6-diamidino-2-

phenylindole (DAPI) imaging.

For microglial reactivity analysis, the pineal glands were

cultured and incubated with LPS (0.1 mg/mL, 2 h). The cultured

glands were fixed in 4% cold paraformaldehyde, pH 9.5 for 3 days

at 4uC, followed by 24 h incubation in PBS plus 20% sucrose.

Pineal glands were then frozen and the immunohistochemistry

assay was performed as described previously by incubation with

primary antibody (mouse monoclonal anti-ED-1, 1:100, Abcam)

followed by the secondary antibody conjugated with biotin (1:200,

Sigma). The peroxidase activity was revealed with 3, 39-

diaminobenzidine (DAB substrate kit for Peroxidase, Vector

Laboratories). Photomicrographs were obtained from bright-field

microscope (Nikon Eclipse E1000 coupled to a CoolSNAP-Pro

Color digital camera) using the Image-ProH Plus software (Media

Cybernetics, Silver Spring, MD, USA).

The negative controls were performed by omission of the

primary antibodies from the procedures and the substitution of

normal serum from the same species. Staining was completely

abolished under these conditions.

Immunocytochemistry
The immunocytochemistry assay was performed as previously

described [21]. Briefly, cultured pinealocytes were fixed in 4%

cold paraformaldehyde for 10 min and permeabilized with PBS

plus saponin 0.5% at room temperature. The non-specific binding

sites were blocked with 1% bovine serum albumin fraction V

(BSA) and 0.3 M glycine for 60 min. The cells were then

incubated with primary rabbit polyclonal antibody anti-TNFR1

(1:500, Abcam), anti-CD14 (1:200, Abcam) or anti-TLR4 (1:500,

Abcam) for 18 h at 4uC, followed by secondary polyclonal anti-

rabbit conjugated with Texas Red antibody (1:400, Abcam) or

FITC (1:200, Sigma) for 1 h at room temperature. Nuclei were

stained with DAPI (300 mM, 5 min) at room temperature. Primary

and secondary antibodies were diluted in blocking buffer. Images

were acquired by a Confocal Laser-scanning microscope with a

40 6 oil-immersion objective and Zeiss LSM 510 (Zeiss confocal

software, Germany) using a HeNe 543/633 laser for Texas Red

(excitation 590 nm; emission filter 650 nm), and enterprise laser at

excitation 364 nm and emission filter of 435–485 nm for DAPI

imaging. Fluorescence was quantified by Image J Software

(http://rsb.info.nih.gov/ij).

The negative controls were performed by omission of the

primary antibodies from the procedures and the substitution of

normal serum from the same species. Staining was completely

abolished under these conditions.

Figure 1. Cellular expression of TLR4 in the rat pineal gland.
Representative images of TLR4 co-localization in astrocytes (A-D) and
microglia (F-I). Green staining (A-E and F-I) represents immunoreactivity
of TLR4. Red staining (B and G) represents immunoreactivity of GFAP (B)
or ED-1 (G). Merged images (C, D, H and I) indicate co-localization of
TLR4 and glia staining (double-arrow). As 90% of the pineal gland is
composed by pinealocytes, the adjacent staining of TLR4 suggests

expression in this cell type (single arrow). In order to confirm this result
we performed immunocytochemistry assays and detected constitutive
expression of TLR4 (E) and CD14 (J) in isolated pinealocytes. D and I
correspond to the higher magnification of C and H, respectively (100 6
objective). The nuclei were stained with DAPI (blue).
doi:10.1371/journal.pone.0040142.g001
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TNF Detection
TNF concentration in the medium was measured with a

commercially available rat TNF-alpha ELISA Ready-set-go kit

(cat. 88-7340, eBioscience, San Diego, USA).

Statistical Analysis
Data are presented as the mean 6 S.E.M. Statistical analysis

was performed using the student’s t test or ANOVA followed by

Newman-Keuls test. Values of P,0.05 were considered statisti-

cally significant.

Results

Cellular Distribution of TLR4 in the Rat Pineal Gland
TLR4 expression was detected by immunohistochemistry in

frozen pineal gland sections from rats perfused at ZT 6. TLR4-

positive immunostaining was diffusely observed in the pineal

parenchyma [21]. In order to evaluate the cell type that expressed

TLR4 in the gland we double-labeled the receptor with glial

markers or cultured isolated pinealocytes for immunocytochem-

istry. Here we used ED-1 (CD68, Cluster of Differentiation 68) or

GFAP (Glial Fibrillary Acidic Protein) for double-staining TLR4

Figure 2. LPS induces microglia activation in vitro. Representative immunohistochemistry image of frozen pineal sections stained with ED-1
(CD68) antibody. In control tissue, microglial cells are present as small cellular bodies with long branched processes, as expected in a resting or
surveillance state (single arrow). LPS changed the morphology of the microglia to cells with larger bodies and no branches, suggesting an activated
state (arrow head). n = 3–4 glands. The experiments were repeated twice.
doi:10.1371/journal.pone.0040142.g002

Figure 3. LPS induces TNF synthesis in cultured pineal glands dependent on microglia activation and NF-kB activity. A) The effect of
blocking microglia (circles, minocycline, 1 to 300 mM, 1 h) or astrocyte activation (triangles, fluorocitrate, 1 to 300 mM, 1 h) on TNF levels. As observed,
minocycline or fluorocitrate per se (open symbols) does not induce TNF production in cultured pineal glands. Values obtained in the absence of the
inhibitors (control, C) are also plotted. Minocycline, but not fluorocitrate, blocks LPS-induced (closed symbols) TNF production in a concentration-
dependent manner. These data indicate that microglial cells are the pivotal producers of TNF in the rat pineal gland. The data are expressed as the
mean 6 S.E.M. of 12–14 glands per point obtained in three different experiments. B) The effect of blocking the NF-kB pathway on TNF production. As
observed, ALLN (12.5 mM, 48 h) fully abolished the LPS-induced TNF synthesis in cultured rat pineal gland. The data are expressed as the mean 6
S.E.M., n = 4–5 glands obtained in two different experiments. N.D. = not detected.
doi:10.1371/journal.pone.0040142.g003
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and microglia or astrocytes, respectively. TLR4-positive immuno-

staining co-localized with both astrocyte (GFAP, Fig. 1A-D) and

microglia (ED-1, Fig. 1F-I) markers, and was present on isolated

pinealocytes (Fig. 1E), indicating that these three cell types present

in the pineal gland express TLR4 and are able to respond to LPS.

We also detected constitutive expression of CD14 (Cluster of

Differentiation 14) in isolated pinealocytes (Fig. 1J).

Microglia Mediate LPS-induced TNF Production
Microglial reactivity was evaluated by immunohistochemistry in

frozen sections of cultured pineal glands stimulated with LPS

(0.1 mg/mL, 2 h) and stained with ED-1. Microglial cells were

diffusely distributed in the pineal parenchyma (Fig. 2). In control

glands, microglial cells were present as small cellular bodies with

long branched processes, as expected in a resting or surveillance

state. In LPS-treated pineal glands, the microglia cells present

larger bodies and no branches suggestive to an activated state [28].

Isolated pinealocytes incubated with LPS (0.1 mg/mL, 0 to 6 h)

did not produce detectable amounts of TNF in the medium,

suggesting that other cell types produce this cytokine. The

inhibition of microglia by minocycline, but not of astrocytes by

fluorocitrate, inhibited LPS-induced pineal gland synthesis of

TNF, indicating that microglia were the major cell type that

synthesized this cytokine (Fig. 3A).

As seen in other immune defense cells [29], TNF production in

the cultured pineal glands was mediated by activation of the NF-

kB pathway. LPS-induced TNF production was blocked by

ALLN, a classical inhibitor of proteasomes (Fig. 3B).

LPS Regulates TNFR1 Expression in Isolated Pinealocytes
The time-course of the LPS effect on TNFR1 expression on

isolated pinealocytes was determined after 15, 30, 120 and

240 min of stimulation. LPS induced a bimodal regulation of

TNFR1 expression. Between 30 and 120 min, a down regulation

was observed, while in the interval between 120 and 240 min

there was an up-regulation (Fig. 4).

Discussion

The pineal gland, besides being the neuro-endocrine transducer

of daily dark/light cycles, also plays a relevant role in regulating

immune responses. Besides producing melatonin, the pineal gland

can also be induced to synthesize several cytokines, such as such as

transforming growth factor-beta1, interleukin-6, interleukin-1-beta

and TNF [21,30–32]. The understanding of the relationship

between the synthesis of melatonin and cytokines by pineal glands

challenged with danger signals is in the center of the questions

regarding the role of pineal gland in an innate immune response.

The present paper focused on demonstrating that the microglia

present in the pineal gland, instead of astrocytes or even

pinealocytes are the cells that answer to LPS for synthesizing TNF.

A rise in nocturnal melatonin is one of the mechanisms that

inhibit leukocyte migration to healthy tissues [33]. Reduction of

nocturnal plasma melatonin, a prerequisite for the proper

induction of an inflammatory response, is based on the ability of

the pineal gland to detect and respond to danger signals. We have

previously shown that intravenous LPS injection significantly

reduces plasma melatonin at night, and increases the expression of

adhesion molecules by endothelial cells [34]. In addition, LPS

reduces noradrenaline-induced melatonin synthesis by triggering

the NF-kB pathway through activation of TLR4 [21].

Besides modulating melatonin synthesis, LPS triggers the pineal

synthesis of TNF, detectable in the culture medium after 2 h and

attaining a maximal concentration after 4 h of incubation [21].

We observed that pinealocytes, astrocytes and microglia expressed

TLR4, and therefore could be directly activated by LPS, as

suggested by the activation of microglia after intravenous injection

of LPS [35] or by in vitro incubation (present work). Other

circumventricular organs, such as the organum vasculosum of the

lamina terminalis, area postrema, choroid plexus, meninges,

subfornincal organ and median eminence also express TLR4

[36,37]. Therefore, besides the pinealocytes, microglia and

astrocytes are also able to respond to LPS, raising the question

of whether TNF is synthesized by one specific cell type.

As isolated pinealocytes were not able to synthesize detectable

amounts of TNF, we focused on the glial cells. The pharmaco-

logical inhibition of astrocytes or microglia indicated that only

pineal gland microglial cells were able to produce TNF. This

correlated with observed effects of LPS administration in the

central nervous system, as the rolling and adhesion of leukocytes

and TNF production are blocked by minocycline [38], an

inhibitor of microglia activation that inhibits TNF synthesis in

several areas of the central nervous system. Although astrocytes

are known to synthesize TNF when stimulated with LPS, our data

show that under the experimental conditions of the present study,

no TNF is produced by pineal gland astrocytes.

TLR4 signal transduction occurs mainly through NF-kB, an

important downstream signaling pathway for controlling physio-

logical and pathophysiological conditions [39–41] and a master

modulator of cytokine production [42]. NF-kB acts as either a

repressor or inductor of gene transcription. Usually the homodi-

mer p50/p50, which lacks a transactivating domain, represses

gene transcription while the heterodimer p50/RelA induces gene

transcription [43]. We have previously demonstrated that LPS

induced the nuclear translocation of p50/p50 and p50/RelA

dimers in the rat pineal gland [21]. As melatonin is synthesized by

pinealocytes, and these cells express TLR4 we concluded that

activation of the NF-kB pathway in pinealocytes inhibited

Figure 4. LPS modulates TNFR1 expression in pinealocytes.
Quantitative analyses performed through ImageJ software demonstrat-
ed that LPS (0.1 mg/mL) induced the down-regulation of TNFR1 after
30 min and 2 h of incubation and up-regulation of TNFR1 after 4 h
incubation. The data are expressed as the mean 6 S.E.M. of the %
relative to control samples from 80 cells obtained in 4 different
experiments.
doi:10.1371/journal.pone.0040142.g004
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melatonin production. This inhibition is probably mediated by the

p50/p50 homodimer, while TNF production is dependent on the

activation of the p50/RelA heterodimer in microglia, as it is

inhibited by minocycline and ALLN. In summary, we concluded

that LPS acts on pinealocytes and microglia, impairing the

production of melatonin, and inducing the synthesis of TNF,

respectively.

As activation of TNFR1 impairs noradrenaline-induced mela-

tonin synthesis [22,24] this strongly suggests that TNF produced

by microglia amplifies the LPS-effect mediated by activation of

TLR4 on pinealocytes. It is interesting to note that the peak of

TNF production by microglia [21] and the maximal TNFR1

expression attained in pinealocytes (present paper) occurred

240 min after incubation of pineal glands with LPS. This fine-

tuning between the timing of agonist production and expression of

the receptor suggests that the amplification of the LPS effect by

TNF represents a second activation of the nuclear translocation of

NF-kB. Reinforcing the idea of this strict control in the timing of

the response, LPS initially induced a reduction in pinealocyte

expression of TNFR1 (from 30 to 120 min). It is interesting to note

that in mouse bone marrow granulocytes, receptor shedding

induced by LPS reduced the expression of TNFR1 over a similar

time-course (20 min), by a p38 mitogen-activated protein kinase

dependent mechanism [44], a signaling cascade known to

participate in control of the amplitude and duration of the

nocturnal peak of the key enzyme in melatonin synthesis [45].

Therefore, the initial reduction of TNFR1 receptors also favors the

idea that the peak of NF-kB activation in pinealocytes induced by

TNF is programmed to occur after the initial wave triggered by

direct LPS activation of TLR4 [29,46].

The relevance of pineal production of TNF is currently unclear,

although TNF can inhibit noradrenaline-induced transcription of

AA-NAT and the synthesis of N-acetylserotonin [22,24]. This

mechanism is also important for controlling the nocturnal

melatonin surge in humans. The suppression of the nocturnal

melatonin surge in innate immune responses to mastitis [11] or

surgery incision [12] is inversely correlated with TNF. In addition,

it was observed that the return of nocturnal melatonin pineal

output was strictly dependent upon the conclusion of the TNF

peak [30].

In conclusion, (Fig. 5), the pineal gland is a target for LPS, as

TLR4 is expressed on pinealocytes, astrocytes and microglia. The

effect of LPS on pinealocytes, the effector cells of the pineal gland,

occur not only by direct stimulation of TLR4, but also by inducing

TNF production in microglia. In addition, the expression of

TNFR1 on pinealocytes is under fine-tuned temporal control.

Finally, the complexity of LPS effects on the pineal gland provides

the first insight into strategies that can ensure proper control of the

expression of circadian timing during the evolution of an innate

immune response.
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