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Melatonin is produced in the dark by the pineal gland and is a key regulator of circadian and
seasonal rhythms. A low melatonin level has been reported in individuals with autism
spectrum disorders (ASD), but the underlying cause of this deficit was unknown. The ASMT
gene, encoding the last enzyme of melatonin synthesis, is located on the pseudo-autosomal
region 1 of the sex chromosomes, deleted in several individuals with ASD. In this study, we
sequenced all ASMT exons and promoters in individuals with ASD (n = 250) and compared
the allelic frequencies with controls (n = 255). Non-conservative variations of ASMT were
identified, including a splicing mutation present in two families with ASD, but not in controls.
Two polymorphisms located in the promoter (rs4446909 and rs5989681) were more frequent in
ASD compared to controls (P = 0.0006) and were associated with a dramatic decrease in ASMT
transcripts in blood cell lines (P = 2� 10�10). Biochemical analyses performed on blood
platelets and/or cultured cells revealed a highly significant decrease in ASMT activity
(P = 2� 10�12) and melatonin level (P = 3� 10�11) in individuals with ASD. These results indicate
that a low melatonin level, caused by a primary deficit in ASMT activity, is a risk factor for ASD.
They also support ASMT as a susceptibility gene for ASD and highlight the crucial role of
melatonin in human cognition and behavior.
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Introduction

Melatonin is a powerful antioxidant molecule, in-
volved in the regulation of circadian and seasonal
rhythms and immune function.1–4 It is released
mainly by the pineal gland during the night and is
produced by the conversion of serotonin to N-
acetylserotonin by the rate-limiting enzyme AA-NAT
(arylalkylamine N-acetyltransferase; EC 2.3.1.87),
followed by the conversion of N-acetylserotonin to
melatonin by ASMT (acetylserotonin methyltransfer-
ase; EC 2.1.1.4), also known as HIOMT (hydroxyin-
dole O-methyltransferase).5 Melatonin secretion is
highly heritable in humans,6 modulates neuronal
plasticity7–9 and regulates circadian gene expres-
sion.10 It also plays a key role in communication
behavior related to seasonal changes, such as song
learning in birds.11 Abnormal melatonin concentra-
tions can have a dramatic effect on human behavior,
as shown in patients with Smith–Magenis syndrome,
who have an inverted melatonin circadian rhythm
and display autistic behavior.12 In autism spectrum
disorders (ASD), low melatonin levels have been
reported by three independent groups,13–15 but the
underlying cause of this deficit and its relationship to
susceptibility to ASD was unknown. ASD affect at
least 6/1000 individuals and are characterized by
impairments in communication skills and social
interaction, as well as restricted, repetitive and
stereotyped patterns of behavior.16–18 The genes
responsible for ASD are largely unknown,19,20 but
cytogenetic abnormalities are observed in at least
3–5% of the affected individuals.21 The PAR1 of the
sex chromosomes, located at the tip of their short
arms, has been found to be deleted in several
individuals with ASD.22 Among the 12 PAR1 genes
referenced, ASMT23 is an excellent candidate for
susceptibility to ASD because it encodes the last
enzyme in the melatonin biosynthesis pathway.24 In
this study, using a combination of genetics and
functional experiments, we report evidence showing
that a low melatonin concentration caused by a
primary deficit in ASMT activity is a risk factor for
ASD.

Materials and methods

Subjects

Families with ASD were recruited by the Paris
Autism Research International Sibpair study at
specialized clinical centers in seven countries
(France, Sweden, Norway, Italy, Belgium, Austria
and the United States). Diagnosis was based on
clinical evaluation by experienced clinicians, DSM-
IV criteria and the Autism Diagnostic Interview-
Revised (ADI-R).25 In Sweden, the Diagnostic Inter-
view for Social and Communication Disorders
(DISCO-10)26 was used instead of the ADI-R in some
cases. Patients with Asperger syndrome were evalu-
ated with the Asperger Syndrome Diagnostic Inter-
view.27 Patients diagnosed with medical disorders,

such as fragile X syndrome or chromosomal anoma-
lies, were excluded from the study.

For mutation screening, the study sample (n = 250,
187 men and 63 women) was constituted of 250
independent families (71 subjects from multiplex
families and 179 sporadic cases) and included 233
patients with autistic disorder and 11 with Asperger
syndrome; six individuals narrowly missed the
criteria for autistic disorder and were considered to
have atypical autism (pervasive developmental dis-
order, PDD-NOS). There were 222 Caucasian, nine
Black, three Asian, one Hispanic/Latin-American
family and 15 families of mixed ethnicity. For
association studies, the ASD sample consisted of
278 patients of Caucasian origin (201 men and 77
women) from 72 multiplex families and 206 sporadic
cases. There were 258 patients with autism, 14 with
Asperger syndrome and six with atypical autism. The
control sample (n = 255) comprised 160 French and 95
Swedish individuals. An additional control group of
171 individuals from North Africa was screened for
rare variants because one proband carrying the
splice–site mutation (IVS5þ 2T > C) and one proband
with the L326F variant had parents originating from
this region.

Blood and platelet biochemical analyses were
performed in ASD probands (n = 43; 14 female and
29 male patients, 14.877 years old), their parents
(n = 34; 18 female and 16 male patients: 4479 years
old) and in controls matched for sex and age (n = 75;
30 female and 45 male patients; 27716 years old).
The ASD patients were initially recruited for the
analysis of serotonin levels and not chosen on the
basis on their ASMT genotype. The controls were
recruited at the Department of Orthopedics of the
Lariboisière and Robert Debré hospitals in Paris. The
control group for the biochemical analyses in B
lymphoblastoid cell lines (BLCL) comprised 14
French individuals also used in the association study
and 19 healthy relatives of patients with Hirsch-
sprung syndrome or mitochondrial diseases. The
local research ethics boards reviewed and approved
the study. Informed consent was obtained from
probands (if possible), parents and controls.

Cell culture, DNA and RNA isolation
BLCL were established from EBV-transformed lym-
phocytes and grown at 371C in RPMI-1640 medium
(Life Technologies Inc., Grand Island, NY, USA),
supplemented with 10% undialyzed fetal calf serum,
2 mM glutamine, 2.5 mM sodium pyruvate, 100 mg/ml
streptomycin and 100 IU/ml penicillin, under stan-
dard conditions. DNA was extracted by the phenol/
chloroform method, and RNA was isolated using the
NucleoSpin RNA II kit (Macherey–Nagel, Duren,
Germany). DNA/RNA concentrations were deter-
mined by measuring absorbance at 260 nm on a
biophotometer (Eppendorf, Hamburg, Germany). Hu-
man pineal gland cDNAs were obtained from the
Incyte cDNA library # LHS1565 (BioCat, Heidelberg,
Germany).
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Mutation screening and genotyping
Genotyping for the association study and mutation
screening were performed by direct sequencing or
TaqMan technology. PCR products were sequenced
with the BigDye Terminator Cycle Sequencing Kit
(V3.1, Applied Biosystems, Foster City, CA, USA).
Samples were then subjected to electrophoresis, using
an ABI PRISM genetic analyzer (Applied Biosystems).
Absence of genotyping errors was controlled by
sequencing the PCR product with the opposite
primer in a subset of patients. For primers and PCR
conditions, see Supplementary Table 1.

Association and statistical analyses
The linkage disequilibrium (LD) map for ASMT was
calculated using pairwise LD (D0) between the 13
ASMT variations in 533 individuals (278 ASD and
255 controls). The LD calculation and the case–
control study were performed with Haploview soft-
ware.28 To detect population stratification bias,
individuals with ASD and controls were screened
for three single nucleotide polymorphisms (SNPs)
(rs2289311, rs4782053, rs1921361), five ALU inser-
tions (Ya5NBC27, Ya5NBC51, YaNBC102, YaNBC109,
YbNBC65), and the mtDNA hypervariable region 1
(HVR1). In addition, all mothers from ASD patients
were screened for the androgen receptor microsatel-
lite. No significant genotype difference was observed
for any of the markers tested (Supplementary Table 2).
The transmission disequilibrium test (TDT) was
performed using the family-based association test
(FBAT)29 and haplotype-based association test
(HBAT)30 using the empirical variance (‘-e’ option).
For the TDT, only the four SNPs in promoter B were
tested in 278 ASD families in which both parents had
been genotyped. All SNPs were at Hardy–Weinberg
equilibrium. We evaluated the distribution of the
quantitative variables by the Kolmogorov–Smirnov
test for Gaussian normality. Because the values for
most of the samples were not normally distributed,
we used the two-tailed non-parametric Mann–Whit-
ney U-test to compare two groups and Spearman’s r
test to evaluate the correlation between ASMT activity
and melatonin concentration. We used SPSS version
13 for these tests.

RT-PCR and quantitative RT-PCR
Oligo(dT)-primed cDNA was prepared from 5 mg of
BLCL RNA, using Superscript II (Invitrogen, Grand
Island, NY, USA), according to the manufacturer’s
instructions. The cDNAs were used directly in Taq-
Man assays, using the ABI PRISM 7500 Sequence
Detection System (Applied Biosystems). Samples
were run in duplicate or triplicate on 96-well optical
PCR plates (ABgene, Surrey, UK). ASMT mRNA was
quantified using commercially available assays. Two
different assays were used, one covering the boundary
between exon 1B and exon 2 (Hs00946625_m1), and
the other covering the boundary between exon 8
and exon 9 (Hs00187839_m1). The two assays gave
similar results and only the data obtained with

Hs00946625_m1 are presented. Relative values of
expression were determined for each sample, using
the standard curve method (ABI user’s manual), and
these values were normalized to the threshold cycle
(Ct) values of GAPDH, using the Hs99999905_m1
assay. For ASMT and GAPDH, the thresholds were set
at 0.2 and 0.25, respectively, within the linear region
of the semi-logarithmic plot in all assays (data not
shown). The consequence of the splice–site mutation
was investigated by sequencing the abnormal tran-
script after cloning the RT-PCR product.

Biochemical analyses
Blood samples were collected in the morning,
between 0900 and 1100 h. The procedures for collect-
ing and processing blood samples were designed to
prevent release reactions. The anticoagulant was
ACD-A (1 vol to 9 vol of whole blood). For the
melatonin profile of family ASD 1, blood samples
were collected every 2 h, from 1800 h to 1600 h the
following day. Overnight, blood samples were col-
lected in dimly lit conditions ( < 20 lux). Samples
were drawn from an indwelling forearm catheter into
Becton-Dickinson plastic tubes, centrifuged and fro-
zen at 201C. Platelets were counted with a Colter ZBI
electronic counter. ASMT enzymatic activities were
determined, at least in duplicate, by radioenzymo-
logy,31 on the platelet pellet obtained by centrifuga-
tion of the platelet-rich plasma at 800 g for 20 min at
room temperature and lysis with 100 hemolytic
units of a purified SH-activated toxin (streptolysin
O or alveolysin, generously provided by Professor J
Alouf, Pasteur Institute, Paris). Melatonin content
was measured in the resulting supernatant (that is,
platelet-poor plasma or plasma) by HPLC, with
random controls by mass spectrometry.32

Sleep analysis
The three individuals from family ASD 1 were taking
no medication that could interfere with melatonin
secretion. Sleep analysis was performed by standard
polysomnography (two EEG, two electro-oculograms,
one submental electromyogram, two anterior tibialis
muscle electromyograms and respiratory signals,
Embla N7000, Flaga, Iceland), 1 week before blood
was collected for the melatonin assay.

Results

Rare ASMT variations in ASD
We investigated whether variations in ASMT were
associated with ASD by directly sequencing all
ASMT exons and the two promoters, A and B, in
250 affected individuals. Several ASMT variants were
identified (Figure 1), including a splice–site mutation
(IVS5þ2T > C), four non-synonymous variations
(N17K, K81E, G306A, L326F) and two synonymous
variations (N167N, Q205Q). Two of these variations,
N17K (rs17149149) and L326F, were also observed in
the general population. N17K was found in one
family with ASD from China (ASD 3) and is present
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in the SNP database at a frequency of 0.4–0.7% in the
Han Chinese population. L326F was found in two
ASD families (ASD 6 and ASD 7) and in 3 out of 426
controls (two from Sweden and one from North
Africa). The splice–site mutation (IVS5þ 2T > C) was
present in two ASD families (ASD 1 and ASD 2)
(Figure 1a), but not in controls (n = 426). Using BLCL
RNA from the ASD 1 proband, we detected abnormal
ASMT transcripts, encoding a putative truncated
ASMT protein lacking the methyl-transferase domain
(Figure 1a). Biochemical analysis of the IVS5þ 2T > C
and L326F variations indicated that these mutations
were associated with very low levels of ASMT activity
and melatonin (Figure 2a, b). We could not analyze
the functional consequences of the remaining muta-
tions due to a lack of blood samples or cell lines.
Interestingly, the nine individuals with ASD carrying
rare mutations were also hyperactive and several had
sleep problems (see clinical description of the
patients in Supplementary Table 3).

ASMT polymorphisms in ASD
We investigated whether frequent polymorphisms of
the ASMT gene were associated with ASD by study-
ing one insertion/deletion located in promoter A and

12 SNPs with a minor allele frequency greater than
5%, capturing most of the haplotype diversity (Figure
3a). ASD patients (n = 278) differed significantly from
controls (n = 255) in terms of the allelic frequency
of two SNPs – rs4446909 (P = 0.006) and rs5989681
(P = 0.007), located in promoter B (Figure 3b, Table 1
and Supplementary Figure 1). The H1 GGGC haplo-
type in promoter B was more frequent in
ASD (P = 0.002) than in controls, whereas the haplo-
type H3 ACGC was more frequent in controls than in
ASD (P = 0.005). We carried out a TDT using
FBAT and HBAT on 278 families (Supplementary
Table 4), and observed an overtransmission of
haplotype H1 GGGC to probands (additive model
P = 0.05; dominant model P = 0.02) and overtransmis-
sion of alleles G and C of the SNPs P1BC (dominant
model P = 0.02) and rs6644635 (dominant model
P = 0.04), respectively.

We then explored the relationship between these
frequent variations of the ASMT gene and ASMT
expression. Promoter A activity is restricted to the
retina,24 whereas promoter B is active in BLCL and in
the pineal gland. In view of the results of quantitative
RT-PCR, ASMT transcript level was found to be
significantly associated with the two SNPs linked to

Figure 1 Non-synonymous ASMT variations in autism spectrum disorders (ASD) families. (a) Pedigree structure of the
families carrying the splice–site mutation IVS5þ 2T > C; reverse transcriptase-polymerase chain reaction (RT-PCR)
amplifying exons 4 to 6 of the ASMT cDNA from B lymphoblastoid cell lines of the ASD 1 proband carrying the splice–
site mutation IVS5þ 2T > C (lane 1 þRT, lane 2 �RT) and a control (lane 3 þRT, lane 4 �RT). The insertion (þ Ins) of 31 bp
in the ASMT transcript originates from a cryptic donor splice–site downstream from exon 5. This insertion should lead to the
additional sequence indicated in red and to a frame shift (characters in italics), causing premature truncation of the protein,
lacking the methyl-transferase domain. Wt, wild-type. (b) Pedigree structure of the families carrying rare non-synonymous
ASMT variations and conservation of the variant amino-acid in different species. Color codes in the pedigrees: autism with
mild (orange) or severe (red) mental retardation, Asperger syndrome or high-functioning autism (yellow), attention-deficit/
hyperactivity disorder ADHD (light blue) and depression (pink). The proband ASD 3 fulfilled diagnostic criteria for both high
functioning autism and ADHD. The proband ASD 7 fulfilled diagnostic criteria for both Asperger syndrome and ADHD. The
asterisk and the dot indicate the presence of the mutation and the absence of a DNA sample for analysis, respectively.
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ASD – rs4446909 and rs5989681 (Figure 3c). Interest-
ingly, the G alleles of both SNPs were more frequent
in ASD patients and were associated with a decrease
in ASMT transcript levels by a factor of 4 to 20,
respectively (rs4446909, P = 2�10�8 and rs5989681,
P = 2� 10�10).

Serotonin, ASMT activity and melatonin concentration
in ASD
We then measured the serotonin concentration, the
ASMT activity and melatonin concentration in blood
platelets from 43 ASD patients, 34 parents of ASD
patients and 48 control individuals. Consistent with
previous studies,33 the serotonin level was signifi-
cantly higher in individuals with ASD (P = 2�10�11)
and their parents (P = 10�8) than in controls (Figure
4a). In contrast, the ASMT activity levels were
significantly lower in individuals with ASD
(P = 2� 10–12) and their parents (P = 10�5) than in
controls (Figure 4b). This deficit in ASMT activity
was accompanied by a lower plasma melatonin

concentration in patients with ASD (P = 3� 10�11)
and their parents (P = 9�10�5) than in controls
(Figure 4c). Platelet ASMT activity and plasma
melatonin levels were not correlated in controls
(Figure 4d), whereas they were strongly correlated
in patients with ASD (P = 0.83; P = 10–6). Thus, the
decreased ASMT activity in ASD patients acted as a
limiting factor for the production of melatonin. We
investigated this ASMT deficiency further by analyz-
ing BLCLs from 53 individuals with ASD (for 15 of
whom blood samples had already been tested) and 33
new independent controls (Figure 4e). We found that
ASD patients had lower levels of ASMT activity
than controls (P = 7�10�8), as shown previously with
platelets. These results obtained with cultured cells
replicate our previous finding and exclude possible
effects of environmental factors or regulation acting at
a higher physiological level. We found no significant
correlation between the severity of the deficit and
clinical phenotype (IQ, language level or ADI-R scores
in the three major domains of impairment: Reciprocal

Figure 2 Impact of the ASMT mutations on enzyme activity and melatonin concentration. (a) ASMT activity, measured in
platelets of the members of families autism spectrum disorder (ASD) 1 and ASD 6 carrying the splice–site IVS5þ 2T > C and
the L326F ASMT mutations, respectively. (b) Blood melatonin concentration in the same individuals. (c) Nocturnal
melatonin profile of family ASD 1. The proband (male, 24 years old) and his mother (53 years old) are heterozygous (m/þ )
for the splice–site mutation IVS5þ 2T > C. The proband’s father (55 years old) has no ASMT mutation (þ /þ ). Error bars
represent s.d. C: controls; F: father; M: mother; P: proband.
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Social Interaction, Communication and Repetitive
Behaviors and Stereotyped Patterns) (data not
shown).

Melatonin cycle and sleep pattern in family ASD 1
Finally, we investigated circadian melatonin syn-
thesis in vivo and sleep patterns in family ASD 1, in
which the unaffected mother and the son with ASD
carry the splice–site mutation. Neither of the indivi-
duals carrying the ASMT mutation showed the
normal increase in melatonin during the night (Figure
2c). They displayed modest sleep abnormalities, with

poor sleep efficiency (proband 70 and mother 82%;
controls > 85%) and a moderately high arousal index
(22 and 17/h; controls < 10/h), but had normal
proportions of rapid eye movement sleep (26 and
24%; control range 15–30%) and a normal amount
of slow wave sleep (61 and 104 min; control range:
60–120 min).

Discussion

Abnormal melatonin concentration was previously
observed in individuals with ASD by three indepen-

Figure 3 Association studies and transcript analyses of the ASMT gene. (a) Haplotype block structure of the ASMT gene.
The relative physical position of each single nucleotide polymorphism (SNP) is given in the upper diagram, and the pairwise
LD (D0) between all SNPs is given below each SNP combination. (b) Plot of the case–control P-values (�log10) for all
variations studied within ASMT. 1: E1A; 2: rs4446909; 3: rs5989681; 4: P1BC; 5:rs6644635; 6: rs6588802; 7: rs28675287; 8:
rs6588809; 9: I6A; 10: rs7471973; 11: rs5431942; 12: rs4933063; 13: rs11346829. SNPs located in promoter B are included in
the shaded box. P-values for the risk haplotype GGGC are indicated as straight lines with close (cases vs controls) or open
circles (transmission disequilibrium test (TDT)). (c) Quantification of ASMT transcripts relative to rs4446909 and rs5989681
genotypes (A represents the individuals with an A/A or A/G genotype; C represents the individuals with C/C or C/G
genotype; G represents the individuals homozygous G/G). Black and white circles indicate individuals with autism spectrum
disorders (ASD) and controls, respectively. The gray symbols indicate individuals homozygous A/A and C/C for rs4446909
and rs5989681, respectively. Real-time reverse transcriptase (RT)-PCR was performed with B lymphoblastoid cell lines from
38 ASD probands and 29 controls. Horizontal bars indicate medians. No statistical difference was observed between ASD and
controls (Mann–Whitney U-test).
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dent groups using different methodological
approaches.13–15 Our results confirm that low plasma
melatonin concentration (half the mean of the control
values) is a frequent trait in ASD patients, as observed
in 65% of the patients tested, a proportion
very similar (63%) to that previously reported by
Tordjman et al.15 We show for the first time that
abnormal melatonin levels are also present in
the unaffected parents of ASD patients, suggesting a
genetic origin. Indeed, the melatonin deficit observed
in the patients was associated with low ASMT
activity, suggesting that variations in the ASMT gene
could be the cause of this deficit. This hypothesis
was supported by the identification of genetic varia-
tions, which probably contribute to the enzymatic
deficit by decreasing transcript levels, or altering
the sequence of the ASMT protein. However, other
unidentified genetic or epigenetic factors are con-
tributing to the ASMT deficit since non-conservative

mutations were observed only in a limited number
of patients and the genetic association with the
polymorphisms located in the ASMT promoter does
not solely contribute to the enzymatic deficiency.
Furthermore, we found unaffected relatives and
controls with ASMT mutations and/or low melatonin
concentration in the blood. Therefore, low ASMT
activity cannot be considered as a direct cause
of ASD, but as a susceptibility factor for this condi-
tion (less than 100 pmol melatonin/109 platelets/
30 min; odds ratio: 77; 95% confidence interval:
19 < OR < 320).

Individuals with ASD frequently show irregulari-
ties in the circadian sleep–wake cycle34–36 and some
show a free-running pattern, which is suppressed by
melatonin treatment.37 In view of these clinical
observations, it was postulated that one alteration at
the origin of autism may occur as the child is entering
into the day–night cycle.38 In agreement with this
hypothesis, the deficit in melatonin may cause
abnormal sleep–wake cycle in affected individuals.
Additionally, since melatonin influences synaptic
plasticity,5,7–9,11,39,40 a deficit in this molecule may
also weaken neuronal networks, thereby increasing
the effect of other pathological processes, such as
abnormal synaptogenesis.41–44

Taken together, these findings indicate that a
subgroup of individuals with ASD and low melatonin
levels could benefit from the use of melatonin as a
therapeutic compound. Melatonin treatment seems to
help patients with ASD to fall asleep and to sleep
through the night,37,45–48 but it remains unknown if
melatonin could have a more beneficial effect if given
before 3 years of age. Further studies are required to
determine the role of the melatonin deficit in the
affected individuals, and more generally of circadian
and seasonal rhythms, in the susceptibility to neu-
ropsychiatric disorders.
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processing the samples from the French families; C
Bouchier and S Duthoy for the use of sequencing
facilities at the Génopole Pasteur; A Hchikat, L
Margarit and G Rouffet for technical assistance; and
Luis Barietos, Jean-Pierre Hardelin, Ken McElreavey,
Lluis Quintana-Murci and David Skuse for reading
the manuscript and making helpful comments. This
work was supported by the Pasteur Institute, IN-
SERM, Assistance Publique-Hôpitaux de Paris, FP6
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Table 1 Frequencies of the polymorphisms located in
ASMT promoter B in ASD patients and controls

ASD
(n = 278)

Controls
(n = 255)

SNPs
rs4446909

f(G) 0.77 0.70
P-value (Pc-valuea) 0.006 (0.10)
OR (95% CI)b 1.5 (1.1–2)

rs5989681
f(G) 0.73 0.65
P-value (Pc-value) 0.007 (0.12)
OR (95% CI) 1.4 (1.1–2)

P1BC
f(G) 0.90 0.90
P-value 0.78

rs6644635
f(C) 0.65 0.63
P-value 0.66

Haplotypesc

H1 GGGC 0.36 0.27
P-value (Pc-value) 0.002 (0.04)

H2 GGGT 0.26 0.28
P-value 0.54

H3 ACGC 0.21 0.29
P-value (Pc-value) 0.005 (0.08)

H4 GGAT 0.097 0.09
P-value 0.78

H5 GCGC 0.055 0.06
P-value 0.88

Abbreviations: ASD, autism spectrum disorders; CI, con-
fidence interval; OR, odds ratio; SNP, single nucleotide
polymorphism.
aPc-value: Significance levels corrected for multiple com-
parisons using a stepdown permutation procedure (com-
prising 100 000 permutations).
bOdds ratio: major allele vs minor allele.
cHaplotype using rs4446909, rs5989681, P1BC and
rs6644635.
Results with significance < 0.05 are indicated in bold.
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