
Mycobacteria, Metals, and the Macrophage

Michael Niederweis1, Frank Wolschendorf2, Avishek Mitra1, and Olivier Neyrolles3,4

1Department of Microbiology, University of Alabama at Birmingham, USA

2Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 
USA

3Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie 
Structurale, Toulouse, France

4Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie 
Structurale, Toulouse, France

Summary

Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host 

macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking 

inside infected macrophages to ensure survival and replication inside the phagosome. Here we 

describe the recent fascinating discoveries that the mammalian immune system responds to 

infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals 

which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has 

developed multi-faceted resistance mechanisms to protect itself from metal toxicity including 

control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to 

infections combines this metal poisoning strategy with nutritional immunity mechanisms that 

deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. 

Both immune mechanisms rely on the translocation of metal transporter proteins to the 

phagosomal membrane during the maturation process of the phagosome. This review summarizes 

these recent findings and discusses how metal-targeted approaches might complement existing TB 

chemotherapeutic regimens with novel anti-infective therapies.
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Introduction

Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host 

macrophages and other cell types, in which it resides in a membrane-bound vacuole, the 

phagosome, and can also escape into the cytosol at late stages of infection (1–3). The ability 
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of M. tuberculosis to resist killing by macrophages relies mostly on its ability to arrest 

phagosome maturation, i.e. to manipulate the host cell endocytic machinery in order to 

prevent phagosome fusion with late endosomes and lysosomes (4, 5). Intracellular survival 

and replication of the bacillus also relies on the acquisition of various host compounds such 

as lipids and amino acids as carbon (6–8) and nitrogen (9, 10) sources. In addition, M. 

tuberculosis is well equipped to resist acid stress and reactive oxygen and nitrogen species 

that are copiously produced during infection (11).

A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside 

infected macrophages. Essential micronutrients, e.g. iron and manganese, are kept away 

from intracellular M. tuberculosis through sequestration by host proteins such as transferrin 

and ferritin or through efflux from the phagosome by the divalent metal cation transporter 

NRAMP1 (natural resistance-associated membrane protein) (12–14). To overcome iron 

deprivation, M. tuberculosis has evolved efficient iron capture systems based on the 

siderophores mycobactins and carboxymycobactins (15, 16) and the recently identified 

capability of M. tuberculosis to utilize heme (17, 18). More recently, other metal cations, 

namely copper and zinc ions, were shown to accumulate inside the mycobacterial vacuole to 

toxic levels (19, 20). To resist metal intoxication, M. tuberculosis uses metal efflux and 

detoxification systems, such as P-type ATPases, oxidases and sequestration (21–23). In this 

review, we highlight the recent progress in metal biology of M. tuberculosis and the dual 

roles of several metals in host-pathogen interactions as micronutrients for the bacteria and 

toxic weapons for the host. In particular, we discuss the emerging concept that the host 

immune system has exploited this vulnerability by overloading M. tuberculosis with excess 

metals to kill the bacteria. Thus, the mammalian immune system in response to M. 

tuberculosis infection seems to combine nutritional immunity mechanisms by depriving M. 

tuberculosis from some metals (Fe, Mn), while poisoning the bacteria with others (Cu, Zn). 

These fascinating developments open novel venues to better understand host-pathogen 

interactions and to design new intervention strategies in tuberculosis therapy.

Metal acquisition by M. tuberculosis and its role in intracellular survival: 

the case of iron

The physiological role of iron

Iron switches readily between its two most prevalent oxidation states, Fe(II) (ferrous) and 

Fe(III) (ferric), and is therefore particularly suited to carry out single electron transfer 

reactions (24). Iron ions in both oxidation states form complexes with several ligands and 

different coordination numbers and geometries. This versatility enables fine-tuning of the 

redox potential of Fe(III)/Fe(II) between −500 mV to 600 mV in proteins and makes iron an 

ideal co-factor in many redox reactions including respiration and DNA synthesis (25). Not 

surprisingly, iron is an essential metal for all known bacterial pathogens with the notable 

exception of Borrelia spp. (26). Iron is abundant in the human body (27), but it is also one of 

the least accessible micronutrients due to sequestration by host proteins (28). Approximately 

70–75% of the iron in the human body is bound to porphyrin to form heme, which is 

essential for oxygen transport, enzymatic reactions and cellular respiration (24). Since free 

heme is toxic due to its association with membranes, ~95% of host heme is bound by 
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proteins (29). Iron that is not bound by heme is sequestered by the transport proteins 

transferrin and lactoferrin or stored in ferritin (30, 31). These host mechanisms usually keep 

free iron below the level required for bacterial growth and are regulated by the hormone 

hepcidin which orchestrates an innate immune response to further reduce available iron and 

to slow or stop growth of bacterial pathogens (32, 33).

However, iron can also be toxic, because it can generate highly toxic hydroxyl radicals from 

hydrogen peroxide (34), an endogenous byproduct of aerobic respiration (35). Although 

hydroxyl radicals react with most biomolecules, the damage inflicted on genomic DNA was 

considered for a long time as the principal mechanism accounting for the toxicity of 

hydroxyl radicals and thus of iron (34).

Iron acquisition by bacterial pathogens

To counter iron deficiency, bacterial pathogens have developed high affinity acquisition 

systems for iron-loaded siderophores, heme and for the host proteins transferrin and 

lactoferrin. Most bacteria secrete small iron chelators called siderophores, which bind ferric 

iron with high affinity and transport it into the bacterial cell (28, 36, 37). Iron utilization by 

Staphylococcus aureus is well studied and serves as a paradigm for Gram-positive bacteria 

(38). Binding of the iron-loaded siderophores staphyloferrin A and B by the lipoproteins 

HtsA and SirA, respectively, induces conformational changes leading to uptake by their 

cognate membrane-spanning permeases HtsBC and SirBC, respectively (39–42). The 

presence of a second membrane makes iron uptake by Gram-negative bacteria substantially 

more complicated. In E. coli, iron-loaded siderophores, such as enterobactin and 

ferrichrome, are first bound by the outer membrane receptors FepA and FhuA, respectively, 

which transport the iron-loaded siderophores into the periplasm. The energy for this 

transport is derived from the electrochemical gradients across the inner membrane and is 

transduced by the TonB-ExbB-ExbD protein complex to the outer membrane receptors (43–

45). Then, the iron-siderophore complex is bound by siderophore-specific periplasmic 

proteins, which mediate transport across the inner membrane through their cognate 

permeases (28, 37, 46, 47).

Almost 70% of the host iron is bound in heme (27). Thus, many bacterial pathogens secrete 

sphingomyelinases to lyse erythrocytes and to gain access to hemoglobin-bound heme (48–

50). Hemoglobin is captured by the surface protein IsdB of S. aureus (51) and is then 

imported and degraded by other proteins of the iron-regulated surface determinant (Isd) 

system (52). Gram-negative bacteria often secrete proteins called hemophores, which 

sequester heme from host hemoproteins (42, 53). The high affinity heme uptake system Has 

in Serratia spp. utilizes the secreted hemophore HasA, which sequesters heme from host 

hemoproteins (54, 55). Thus, in Gram-negative bacteria hemophores, host hemoproteins or 

heme released from hemoglobin after proteolytic degradation are bound to specific outer 

membrane receptors (53). Then, heme is removed from these proteins and transported into 

the periplasm in a TonB-dependent manner where it is bound by heme-binding proteins and 

transported across the inner membrane through cognate inner membrane permeases (53).

The host proteins transferrin and lactoferrin transport iron to the cells and control the level 

of free iron in the blood and external secretions (56–58). These proteins constitute 
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approximately 12% of the iron in the human body (27) and, not surprisingly, represent 

another iron source utilized by bacteria (30, 59). The best studied example are Neisseria spp. 

which, unlike most Gram-negative bacteria, do not produce siderophores but instead extract 

iron directly from serum transferrin (60). To this end Neisseria produce the outer membrane 

receptor complexes TbpA/TbpB and LbpA/LbpA (61) which bind transferrin and 

lactoferrin, respectively. The mechanism of TonB-dependent iron removal from transferrin 

by the concerted action of TbpA and TbpB has been elegantly elucidated (62). Iron is 

channeled through the TbpA pore, bound by periplasmic proteins and then imported across 

the inner membrane by ABC transporters (63).

Iron acquisition by M. tuberculosis

M. tuberculosis, as most other bacterial pathogens, requires iron for growth (15, 64). For 

years it was believed that M. tuberculosis only relies on its siderophores, mycobactin (MBT) 

and carboxymycobactin (cMBT), for iron acquisition (64). This view was supported by 

observations that mycobactin biosynthesis is critical for growth of M. tuberculosis after the 

internal iron stores have been depleted. Carboxymycobactins are capable of removing iron 

from transferrin and ferritin (65) in contrast to most other bacterial siderophores (66). 

Consistent with this observation is the finding that a mycobactin synthesis mutant did not 

grow with human transferrin as the only iron source, demonstrating that M. tuberculosis has 

no active transferrin uptake system in vitro (17). M. tuberculosis attracts transferrin both in 

vitro (67) and in macrophages (68, 69). However, the conclusion by Boradia et al. that M. 

tuberculosis can internalize human transferrin (67) is based on a flawed use of a wild-type 

M. tuberculosis strain which secretes siderophores capable of removing iron from transferrin 

(65). By contrast, it has been conclusively shown that siderophore-deficient M. tuberculosis 

mutants can utilize heme as an alternative iron source (17, 18).

Compared to other bacteria relatively little is known about siderophore-mediated iron 

acquisition by M. tuberculosis. Since mycobacteria have two membranes (70–72), in 

principle secretion and uptake mechanisms resemble more closely that of Gram-negative 

bacteria (73). Siderophores are synthesized by cytoplasmic synthases encoded by two mbt 

operons (74, 75). Synthesis and transport of siderophores are likely coupled (76) and depend 

on the membrane proteins MmpS4 and MmpS5 that are associated with the transporters 

MmpL4 and MmpL5 of the resistance-nodulation-cell division (RND) superfamily (76). 

Export of siderophores across the outer membrane probably requires an as yet unknown 

outer membrane channel. Secreted carboxymycobactins bind iron, but it is unknown how 

they are re-captured by M. tuberculosis and how they cross the outer membrane. Ferric-

carboxymycobactins are transported across the inner membrane by the IrtA/IrtB protein 

complex (77). Iron is probably released from the imported carboxymycobactins by a 

reductive mechanism rather than by enzymatic degradation (78). This mechanism leaves the 

siderophores intact so that they can be recycled by the export system consisting of MmpL4/

MmpS4 and MmpL5/MmpS5 as recently shown (79). The type VII protein secretion system 

Esx-3 of M. tuberculosis is required for iron acquisition, but its mechanistic role is unclear 

(80–83). Recently, it was observed that M. tuberculosis releases membrane vesicles 

containing ferric mycobactins under iron limitation (84). It has been proposed that these 

vesicles might be a means to share iron between M. tuberculosis cells; however, it is not 
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clear what advantage these vesicles have over secreted carboxymycobactins, which are 

accessible to all M. tuberculosis cells. Maybe the role of these vesicles is rather to gain 

access to host iron stored in hydrophobic environments that are not accessible for cMBT or 

to traverse the hydrophobic extracellular matrix of an M. tuberculosis biofilm as suggested 

previously (79)? Even less is known about heme uptake by M. tuberculosis. M. tuberculosis 

produces the heme-binding protein Rv0203, which appears to improve but is not essential 

for heme utilization (18). Rv0203 was found in the culture filtrate of M. tuberculosis and 

was proposed to be a hemophore. However, Rv0203 transfers heme to the extracellular 

domains of the inner membrane proteins MmpL3 and MmpL11 (85, 86). This finding rather 

indicates a localization of Rv0203 in the periplasm. The roles of the proposed heme 

importers MmpL3 and MmpL11 are also unclear, since MmpL3 has been shown to export 

trehalose monomycolate (87, 88) and other known MmpL proteins are exporters of lipids or 

lipid-like molecules (76, 89–92). Intracellular heme is then degraded by the non-canonical 

enzyme MhuD without releasing CO. This unusual heme degradation mechanism may have 

evolved to avoid producing a signal for transition of M. tuberculosis to dormancy (93).

Regulation of iron homeostasis in M. tuberculosis

Iron uptake and utilization are tightly regulated by M. tuberculosis to avoid free iron in the 

cell cytoplasm. Transcriptional profiling revealed that 155 genes are differentially regulated 

as a result of iron availability and approximately one-third of those genes are regulated by 

the iron dependent regulator (IdeR) (94). In the presence of iron, IdeR binds to the so-called 

iron boxes at promoters and represses expression of genes for siderophore synthesis and 

activates genes encoding iron storage proteins, such as the bacterioferritins BfrA and BfrB 

(95–97). IdeR is essential for growth of M. tuberculosis in vitro because unregulated iron 

uptake increases oxidative stress and leads to accumulative self-damage eventually killing 

M. tuberculosis (98). This study also showed that IdeR is required for survival of M. 

tuberculosis in mice indicating the importance of iron homeostasis for virulence of M. 

tuberculosis.

Role of iron in tuberculosis and in virulence of M. tuberculosis

In the late 19th century, the French physician Armand Trousseau recognized that treating 

anemic tuberculosis patients with iron salts exacerbated the disease (99). These 

circumstantial findings have been substantiated in clinical studies (100, 101) and reproduced 

in model systems (102, 103). For example, an iron-rich diet increased the bacterial burden in 

mice infected with M. tuberculosis (103). Further, β-2-microglobulin-deficient mice suffer 

from iron overload in tissues and increased replication of M. tuberculosis. Treatment of 

these mice with lactoferrin reduced M. tuberculosis counts in organs establishing that iron 

overload represents an exacerbating factor for tuberculosis (103). Conversely, host factor 

polymorphisms also support the conclusion that iron availability is important in tuberculosis 

pathogenesis in humans. For example, mutations of the natural resistance-associated 

macrophage protein 1 (Nramp1), a divalent metal transporter expressed exclusively in 

phagocytic cells, have been associated with increased susceptibility to tuberculosis (104, 

105) (Fig. 1).
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These observations suggested that iron acquisition is essential for virulence of M. 

tuberculosis. However, it has been difficult to obtain conclusive experimental evidence for 

this hypothesis for several reasons. We have observed that M. tuberculosis requires 

siderophores to grow in vitro even under high iron conditions (79). This makes it impossible 

to obtain truly mycobactin-deficient mutants without constructing conditional mutants or 

supplementing with iron-loaded siderophores or heme (106). In addition, gene deletions in 

the main mycobactin operon (mbtB-mbtH) often do not disrupt the expression of 

downstream genes and do not fully disrupt mycobactin biosynthesis because the lack of 

individual enzymes in this pathway may be compensated for by other Mtb enzymes at a low 

level, in contrast to the lack of several Mbt enzymes. Such a phenomenon might be the 

explanation why an mbtD::hyg deletion completely abolished mycobactin production, but 

not the unmarked mbtD::loxP mutant (79). Such a mechanism may also explain the residual 

mycobactin production by the M. tuberculosis mbtB mutant (107). However, this study did 

show that even a reduced mycobactin synthesis impaired replication of M. tuberculosis in 

macrophages. Reddy et al. (108) also demonstrated that a mutant lacking mbtE did not 

synthesize siderophores anymore and failed to grow in low iron medium. However, this 

study is controversial because infection of guinea pigs with the mbtE mutant and wildtype 

M. tuberculosis showed similar pathology for both strains, but only wildtype M. tuberculosis 

was recovered on plates with organ homogenates (106). The inner membrane transporter 

IrtA/IrtB is required for efficient uptake of carboxymycobactin, but the residual 

carboxymycobactin uptake by the irtAB mutant also indicated the presence of a second 

transporter (77). Nevertheless, deletion of irtAB significantly impaired the ability of M. 

tuberculosis to grow under iron limiting conditions in vitro and in mice lungs, indicating that 

the carboxymycobactin uptake is mainly mediated by IrtAB and that the activity of IrtAB is 

required for full virulence of M. tuberculosis (77). By far the strongest in vivo phenotype 

was obtained for the M. tuberculosis mmpS4-mmpS5 double mutant. Lack of MmpS4 and 

MmpS5 strongly reduced siderophore secretion and growth of M. tuberculosis under iron 

limiting conditions and made M. tuberculosis avirulent in mice (76). However, this virulence 

defect can only partially be attributed to reduced iron uptake and might, in fact, be largely 

caused by self-poisoning of M. tuberculosis by taking up active siderophores in the absence 

of a functional siderophore recycling system consisting of MmpS4/MmpL4 and MmpS5/

MmpL5 (79). Another complication in assessing the role of iron for M. tuberculosis in vivo 

is the availability of heme as an alternate iron source in addition to the partial redundancy in 

siderophore uptake systems and the occurrence of secondary effects when siderophore 

secretion is impaired. Hence, it might be necessary to construct a conditional mutant that 

cannot utilize both iron sources to elucidate the real importance of iron acquisition for M. 

tuberculosis in vivo.

Role of other transition metals in virulence of M. tuberculosis: the case of manganese, 
nickel, and cobalt

Although iron is by far the best studied transition metal, other transition metals such as 

manganese, nickel, and cobalt are also essential micronutrients for M. tuberculosis. 

Manganese is critical for the viability and virulence of many bacterial pathogens. Emerging 

evidence indicates that invading microbes utilize manganese to resist the effects of host-

mediated oxidative stress and this metal thus plays a significant role in adaptation of 
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pathogenic bacteria to the human host (109). Not surprisingly, the host immune system tries 

to restrict the availability of both manganese and zinc in response to bacterial infections by 

using the chelating protein calprotectin (110–113). Interestingly, S100 proteins such as 

calprotectin are the dominant proteins produced by neutrophils in lung granulomas of TB 

patients (114), indicating that our immune system tries to sequester manganese and zinc 

from M. tuberculosis in tissues to restrict its growth and resistance to reactive oxygen 

intermediates (Fig. 1). However, direct evidence for this hypothesis is lacking. Nickel and 

cobalt are the two remaining out of six first-row 3d-block transition elements that function 

as inorganic co-factors in up to 25% of all proteins in cells (115). Nickel is a co-factor of the 

M. tuberculosis urease Rv1848 (116). Cobalt is required for the biosynthesis of vitamin B12 

(43). The transcriptional regulators KmtR and NmtR of M. tuberculosis function as two 

nickel-cobalt sensors, further suggesting physiological significance for these ions (117). 

While uptake of cobalamin is utilized by M. tuberculosis to syntesize vitamin B12 and may 

contribute to M. tuberculosis survival in macrophages, cobalt acquisition systems are not 

known (118). It is apparent that our knowledge about the role of manganese, nickel and 

cobalt in tuberculosis is rudimentary at best, and further studies are required in order to 

decipher the mechanisms involved in acquisition and utilization of these metal species.

Copper in host defense against M. tuberculosis and in mycobacterial 

virulence

The physiological roles of copper and its toxicity

Copper is a redox-active metal and, like iron, cycles mainly between two oxidative states 

Cu(I) (cuprous) and Cu(II) (cupric) under physiological conditions. The Cu(II)/Cu(I) redox 

potential in proteins is higher than that of Fe(III)/Fe(II) ranging from 250–750 mV enabling 

catalysis of oxidations using oxygen (24). This has been exploited by most living organisms, 

including mycobacteria and humans. One prominent example of the many known copper 

enzymes and proteins is the cytochrome c oxidase, which is a key component of aerobic 

respiration (119–121).

Copper also is able to engage in Fenton chemistry with hydrogen peroxide (122), an 

endogenous byproduct of aerobic respiration (35), to generate hydroxyl radicals in a similar 

manner as known for iron. Hydroxyl radicals react with most biomolecules including DNA 

(34) and membrane lipids (123). DNA damage was broadly accepted as the main 

mechanism of copper cytotoxicity (124). However, a recent study (124) did not find any 

evidence of oxidative DNA damage in E. coli overloaded with copper. Since neither DNA 

damage nor lipid peroxidation could fully explain the bactericidal properties of copper ions, 

Macomber and Imlay (125) investigated the direct effect of copper overload on cellular 

proteins. They found that the antibacterial properties of copper ions on E. coli are mainly 

due to inhibition of intracellular dehydratases with exposed iron-sulfur clusters in a ROS-

independent process (125). Copper was found to remove, as opposed to replace, Fe from 

iron-sulfur clusters, which further deteriorated by an undefined mechanism until only the 

apoenzyme remains (125, 126). In agreement with these findings, iron-sulfur cluster proteins 

were also targeted by copper in B. subtilis (127). Microarray data from M. tuberculosis 

exposed to copper also indicated damage on iron-sulfur cluster enzymes (128). Taken 
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together copper is an essential micronutrient for most cells, but its uptake and reactivity 

must be strictly controlled to ensure cellular survival.

Copper homeostasis in macrophages

Eukaryotic cells including macrophages utilize an array of copper uptake, sequestration and 

trafficking proteins to maintain copper homeostasis and ensure that all copper ions securely 

reach their target sites. Divalent copper in the blood must be reduced prior to entering the 

cell, possibly by the action of membrane associated copper reductases (129). Cu+ is taken up 

by the high affinity Cu+ import protein CTR1 (Fig. 1), while copper toxicity is prevented by 

cytosolic metallothioneins, which sequester any surplus copper to prevent cellular damage 

(130, 131). Intracellular copper trafficking is mediated by chaperones which typically 

receive Cu+ immediately after it enters the cell (131). The exact mechanism of copper 

transfer between CTR1 and cytosolic copper chaperons is unknown, but may involve 

glutathione (132, 133). The copper chaperon Cox17 is known to supply copper to 

mitochondrial cytochrome c oxidase (134) and CCS supplies cytosolic superoxide dismutase 

1 (SOD1) (135), while ATOX1 delivers the Cu+ ions to the copper transporter ATP7A or 

ATP7B of the secretory pathway for incorporation into copper requiring proteins that pass 

through the trans-Golgi network (e.g. lysyl oxidase, tyrosinase) (136, 137). ATP7A also 

translocates to the plasma membrane pumping excess cytosolic copper out of the cell (138), 

and to the phagosome (139).

Immunological functions of copper

In humans, nutritional or inherited copper deficiency (Menkes Syndrome) is associated with 

multi-system pathologies, including increased susceptibility to bacterial infections (132, 

140). Correspondingly, induced or natural copper deficiency in animals has been shown to 

impair the ability of macrophages and neutrophils to generate an oxidative burst and 

effectively kill phagocytized microbes (141, 142). Despite the long-standing observations 

that copper promotes a healthy immune system (143), the recognition of copper as an 

integral part of innate immune responses is relatively recent. Several lines of evidence now 

indicate that copper redistribution and mobilization in mammalian tissues and individual 

cells is a key immune response to bacterial infections (144–146). We previously investigated 

the distribution of copper in lungs of M. tuberculosis infected guinea pigs and found 

significantly elevated copper levels in primary granulomas while the copper content in 

unaffected lung tissue remained low (19). Hypoxia, a hallmark of tuberculosis granulomas 

(147), has been shown to induce the expression of ctr1 in human lung tissue (148) and in 

macrophages (149) and may constitute the signal for the copper increase at the site of M. 

tuberculosis infection. In macrophages, this phenomenon also occurs in the absence of 

hypoxia, where proinflammatory molecules such as INF-γ or bacterial TLR agonists (e.g. 

LPS) induce a similar response (139). White et al. (139) demonstrated that within E.coli 

infected macrophages, ATP7A translocates to the phagosomal membrane and enhances their 

bactericidal activity by presumably facilitating the transport of copper into the phagosome. 

However, M. tuberculosis is unique, as it has seemingly evolved to circumvent this immune 

response and has adapted to thrive in this copper-rich environment by pursuing two major 

strategies: impairing macrophage phagosome functions (150–153) and maintaining an 

extremely low intracellular copper content (19, 154).
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Mycobacterial copper homeostasis and copper resistance proteins of M. tuberculosis Only 

one copper enzyme in M. tuberculosis is known with relevance for both in vitro growth and 

survival in the host. The aa3-type cytochrome c oxidase is a key component of aerobic 

respiration in the cytoplasmic membrane (155). Its two core subunits, CtaC (Rv2200c, 

subunit II) and CtaD (Rv3043c, subunit I), are essential for growth of M. tuberculosis and 

harbor two copper centers which are jointly responsible for the electron transfer from 

cytochrome c to dioxygen (156, 157). Surplus energy from this intramolecular electron 

transfer process is used to generate a proton gradient across the cytoplasmic membrane 

which propels ATP synthesis (156). Interestingly, mycobacteria also have a copper-

independent terminal oxidase, the cytochrome bd oxidase, which is critical for adaptation to 

an oxygen restricted environment (155, 158, 159) in which copper ions are also the most 

toxic to microbes (160). The switch to a copper-independent metabolism may thus also 

protect, at least partially, from copper-mediated toxicity when oxygen is scarce.

The stress response of M. tuberculosis towards copper has mainly been studied in vitro. 

Microarrays identified 30 Cu-responsive genes (128). Expression of some of these genes 

was also induced in macrophages and in animal models (128) suggesting that M. 

tuberculosis encounters copper toxicity in host cells. Several copper resistance mechanisms 

of M. tuberculosis have been identified. The first line of defense is M. tuberculosis ’s outer 

membrane (71, 161). Copper uptake across mycobacterial outer membranes is controlled by 

channel proteins as shown for M. tuberculosis and MspA in M. smegmatis (162). The inner 

membrane of M. tuberculosis hosts CtpV, a P-ATPase cation transporter that likely acts as a 

copper efflux pump (154, 163). However, CtpV deletion does not result in virulence defects 

in mice perhaps because M. tuberculosis has the capacity to at least partially compensate for 

the loss of CtpV by expression of alternative metal efflux pumps (154, 163). Indeed, 3 out of 

the 12 P-type ATPases (CtpA, CtpB, CtpV) of M. tuberculosis have predicted preference for 

Cu, as discussed below (163). Another membrane protein, MctB, also decreases intracellular 

copper levels and is required for full M. tuberculosis copper resistance and virulence in mice 

and guinea pigs (19, 164). However, its exact function in copper homeostasis remains 

undefined and its precise location within the cell envelope is not known (22). In addition to 

controlling copper uptake by membrane proteins, M. tuberculosis attempts to detoxify and 

sequester copper ions. The periplasmic multicopper oxidase MmcO is a homolog of E. coli 

CueO and probably oxidizes Cu(I) to the less toxic Cu(II) (165). MmcO expression is 

induced by copper, though a virulent clinical strain of M. tuberculosis lacks the gene (166), 

suggesting a redundancy with other copper resistance mechanisms. The metallothionein 

MymT binds multiple copper ions within the cytoplasm (21). Finally, M. tuberculosis may 

employ yet unknown resistance mechanisms which are regulated on a transcriptional level 

by CsoR and RicR. CsoR has a very high affinity for copper ions (K ≥ 1019 M−1) which 

allows M. tuberculosis to respond to small amounts of free Cu(I) and to induce transcription 

of the copper-sensitive operon cso (167). The cso operon encodes CsoR itself, CtpV, and 

two proteins of unknown function (Rv0978, Rv0980). Recently, RicR was identified as an 

additional regulator in M. tuberculosis that also dissociates from its cognate DNA binding 

sites upon binding copper (168). The ric regulon comprises ricR, mymT, two genes encoding 

the predicted membrane proteins LpqS and Rv2963, and the socAB locus of unknown 

function (168). Interestingly, absence of any single copper resistance gene controlled by 
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RicR is not sufficient to induce copper susceptibility, but mutation of the copper binding 

residue in RicR, and thus ablation of its copper-sensing ability, increases copper 

susceptibility and reduces virulence of M. tuberculosis (169).

Role of copper in the phagosome

The majority of these mechanisms were studied in bacterial cell culture and may not 

accurately reflect the situation in macrophages. Bioavailability of copper and its reactivity 

are dependent on many factors including medium composition and preparation, pH, and 

redox status (160, 170, 171). For example, E. coli is more susceptible to copper under 

anaerobic conditions resembling a reducing environment while aerobically cultured bacteria 

are quite resilient (160). Similarly, E. coli appears to be more sensitive to copper in minimal 

medium (MIC < 0.01 mM) than when grown in rich medium (MIC > 1 mM) (172, 173), 

which, also holds true for M. tuberculosis (154, 169, 174). One prerequisite for copper 

toxicity to take place in the phagosome is therefore the presence of a chemical environment 

that promotes copper toxicity at concentrations reported for phagosomes (0.02–0.4 mM) 

(175). In addition, E. coli transcriptionally and metabolically adapts to copper in vitro, by 

using alternative enzymes or activating pathways that are less affected by copper. However, 

such adaptation may not be possible in vivo due to nutrient starvation, energy limitation and 

the abundance of antibacterial molecules in the phagosome (e.g. metal ions, ROS, acidity, 

antibacterial peptides).

In the phagosome, it is likely that copper ions encounter hydrogen peroxide outside of the 

bacterial cell. NADPH oxidase, a membrane integral protein that is recruited to the 

phagosomal membrane, generates superoxide radical anion from molecular oxygen (176, 

177). The dismutation of the superoxide anion generates hydrogen peroxide in the lumen of 

the phagosome which could potentially provide the means for copper ions to undergo Fenton 

chemistry as described above (146). The inflicted oxidative damage on lipids may not kill 

the bacteria per se but could prime the bacterial cell for subsequent destruction by other 

phagosomal functions. The potential synergism of bactericidal mechanisms in the 

phagosome, e.g between copper overload and oxidative burst (146), may also prevent to 

experimentally determine the relevance of individual resistance mechanisms in vivo.

Zinc in host defense against M. tuberculosis and in mycobacterial virulence

Zinc toxicity results from replacing other cations in essential enzymes, thereby blocking 

their activity (178). In addition, Zn2+ competes with Mn2+ uptake systems, leading to Mn2+ 

deficiency. For instance, the Streptococcus pneumoniae Mn2+ importer PsaA is blocked by 

Zn2+, inducing Mn2+ deprivation and increased sensitivity to oxidative stress (179, 180). 

Whether Zn2+ can inhibit the putative Mn2+ importer MntH (Rv0924c) of M. tuberculosis 

remains to be evaluated.

In addition to copper, a novel host defense mechanism against infections relying on 

intoxicating microbes inside phagosomes through zinc overload has recently been reported. 

We (20, 181) have shown that zinc accumulates in the mycobacterial phagosome as well as 

in vacuoles containing other microbes, such as E. coli, during infection, and that the P-

ATPase CtpC is required for optimal intracellular growth of M. tuberculosis. Interestingly, 
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we showed that zinc also accumulates in phago-lysosomes containing non-pathogenic 

species such as E. coli and that a mutant of E. coli in the well-characterized zinc efflux P-

ATPase ZntA was killed faster than its wild type counterpart in macrophages.

The total amount of zinc in living organisms is highly regulated (0.1–0.5 mM representing 

the so-called ‘zinc quota’) and because of its toxicity, free zinc is present in very limited 

amounts in cells, most zinc atoms being bound to proteins such as metallothioneins, 

ribosomes etc., referred to as the ‘zinc proteome’. In the presence of an excess of free zinc, 

eukaryotic cells react by translocating the zinc-sensing metal transcription factor MTF-1 to 

the nucleus, which induces expression of zinc detoxification genes, such as the 

metallothionein-encoding genes mt1 and mt2, and the zinc efflux transporter-encoding gene 

znt1/slc30a1 (182).

The observation of such a signature of zinc stress in M. tuberculosis-infected macrophages 

prompted us to evaluate whether free zinc was present in excess amounts in infected cells, 

which was confirmed by confocal microscopy (20). However, zinc labelling was clearly 

concentrated to small intracellular compartments in infected macrophages. Such 

compartments are referred to as ‘zincosomes’ in the literature (183). They may allow zinc 

storage and buffering, thereby avoiding zinc to be present in excess in the cytosol (184). 

Zincosomes have been suggested to represent a subset of the late endosomal pool. Indeed, 

most zincosomes stain positive for the late endosomal and lysosomal markers LAMP-1 and 

Cathepsin D (20). However, we also observed a fraction of zincosomes staining positive for 

the early endosomal marker Rab5, strongly suggesting that zincosomes span over the entire 

endocytic pathway. Our results suggest that free zinc is released from an intracellular pool 

rather than being influxed from the outside of the cells in M. tuberculosis-infected 

macrophages. Release of zinc from intracellular zinc-containing proteins is blocked by 

chemical inhibitors of the NADPH oxidase (e.g. apocynin) implying a role of oxygen 

radicals generated upon infection in this immune response (20). However, the exact origin of 

the free zinc fraction observed in infected macrophages, the signals leading to zinc release, 

the transporters involved in zinc relocalization to the zincosomes, and most importantly the 

mechanisms and putative transporters implicated in zinc accumulation in phagosomes are 

unknown. ZnT1-10 (SLC30A1-10) form a family of eukaryotic zinc transporters that are 

expressed in various cells and tissues, and that localize to the plasma membrane and 

intracellular vesicles, thereby allowing zinc efflux from the cytosol to the extracellular 

milieu, or zinc influx from the cytosol to the lumen of intracellular compartments (182). It is 

anticipated that zinc mobilization to zincosomes and phagosomes in macrophages is due, at 

least in part, to one or more ZnT transporter(s), which remains to be further explored.

Equally important will be to understand the exact function of CtpC, and possibly other M. 

tuberculosis P-ATPases, in mycobacterial resistance to zinc intoxication. In this regard, the 

putative CtpC cognate metallochaperone Rv3269 is highly intriguing and its function should 

be further dissected. Rv3269 is a small putative peptide of 93 amino acid residues, with a 

Val5-Tyr24 putative transmembrane domain, and a cytoplasmic Asp87-Leu-His-Asp-His-

Asp-His93 C-terminal domain. The facts that rv3269 is induced together with ctpC in 

response to zinc (20) and that the two genes are encoded in an operon strongly suggest a 

common function. It is tempting to speculate that Rv3269 binds Zn2+ through its C-terminal 
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domain and transfer the metal ion to CtpC for active efflux. Finally, the CtpG-encoding gene 

is also induced by Zn2+ stress (20) indicating that this transporter also contributes to zinc 

efflux.

Metal efflux in M. tuberculosis

In prokaryotes, resistance to metal toxicity heavily relies on efflux systems and this appears 

to be the case for M. tuberculosis as well. Metal efflux systems belong to three main 

families: heavy metal efflux members of the RND superfamily (HME-RND), the cation 

diffusion facilitators (CDF) family, and the P-type ATPase family (185). Gram-negative 

bacteria frequently expel toxic metal ions through tripartite efflux pumps of the RND 

superfamily that form a complex with a periplasmic membrane fusion protein and an outer 

membrane channel spanning both the inner and outer membranes. For example, the 

CusCBA efflux system extrudes biocidal Cu(I) ions (186, 187). This efflux system is 

capable of picking up the metal ions from both the periplasm and the cytoplasm and uses 

methionine residues to export Cu(I) ions (188). By contrast, we do not know any outer 

membrane component of metal efflux systems in M. tuberculosis and we are only beginning 

to identify inner membrane efflux pumps and to determine their metal specificity. The M. 

tuberculosis genome (189) contains no member of the HME-RND family and only one 

putative CDF transporter (Rv2025c). Expression of rv2025c is repressed by the 

transcriptional repressor KmtR (Rv0827c) and is induced by Ni2+ and Co2+, suggesting that 

Rv2025c transports Ni2+ and Co2+ (117). In addition, M. tuberculosis contains no member 

of the recently discovered MntX family involved in Mn2+ efflux (190) and no close 

homolog of ZntB, a member of the CorA family shown to mediate Zn2+ efflux in 

Salmonella (191). However, the M. tuberculosis genome codes for the striking number of 12 

P-type ATPases (named Ctp for cation-transporting protein), whose substrate specificities 

are still partially unknown (181, 192). Ions are transported by P-ATPases by coupling ATP 

hydrolysis at the cytoplasmic domain with ion translocation across the inner membrane 

through the transmembrane (TM) domain of the transporter. This mechanism is well 

conserved throughout evolution. The M. tuberculosis P-ATPases are members of different 

families. While KdpB (Rv1030) is a putative P1A-type ATPase K+ transporter, CtpA 

(Rv0092), CtpB (Rv0103c), CtpC (Rv3270), CtpD (Rv1469), CtpG (Rv1992c), CtpJ 

(Rv3743c) and CtpV (Rv0969) are P1B-ATPases involved in the transport of metal cations. 

CtpF (Rv1997c) is a putative P2A-type Ca2+ transporter. CtpE (Rv0908), CtpH (Rv0425c) 

and CtpI (Rv0107c) constitute atypical P-ATPases with no substrate prediction. CtpE, CtpF, 

CtpH, and CtpI exhibit a Pro-Glu-Gly-Leu-(Pro/Val) motif in the membrane spanning helix 

located upstream the phosphorylation site. This motif is found in all Ca2+-ATPases where it 

is part of the calcium transport site. Interestingly, upstream of the ctpC, ctpG and ctpV genes 

are genes encoding putative metallochaperones (Rv3269, Rv1993c, and Rv0968) that might 

play a part in metal selectivity and transport mechanism of their cognate P-type ATPase, as 

recently demonstrated for a similar transport system in Streptococcus pneumoniae (193).

Inference on selectivity of P-type ATPases for metal ions is difficult, and relies on 

similarities to known transporters, on the presence of conserved metal-binding motifs, the 

function of neighboring genes and on gene regulation by metal ions. Metal transporting P1B-

ATPases have been classified into five subfamilies on the basis of sequence homology 
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(194). Interestingly, this study revealed that each subfamily possesses conserved amino 

acids in TM helices 6, 7, and 8, likely to be involved in metal coordination. According to 

these criteria CtpA, CtpB, and CtpV may be part of the P1B1-type subfamily of Cu+-

ATPases, while CtpD and CtpJ belong to the P1B4-type subfamily of Co2+-ATPases (195, 

196). This classification of CtpJ is in agreement with the regulation of this transporter by the 

Ni2+/Co2+-sensing DNA-binding repressor NmtR (197). CtpG is embedded in an operon 

together with the Cd2+/Pb2+-sensing regulator CmtR (Rv1994c), suggesting CtpG is a 

Cd2+/Pb2+ efflux transporter. The hypothesis that CtpV might efflux copper is supported by 

the facts that (i) the ctpV gene, together with that of its cognate regulator- and putative 

metallochaperone-encoding genes csoR and Rv0968, is induced in response to Cu+ excess 

(128); and (ii) a ctpV-null mutant of M. tuberculosis is highly sensitive to Cu+ (198). 

Similarly an excess of Co2+ induces the CtpD- and CtpJ-encoding genes, and mycobacterial 

mutants inactivated in these transporters accumulate Co2+ (196), suggesting CtpD and CtpJ 

transport Co2+.

While we and others found the ctpC gene is strongly induced by Zn2+, and a ctpC-null 

mutant of M. tuberculosis is highly sensitive to Zn2+ intoxication (20, 199), kinetics using 

recombinant CtpC suggested the protein might transport preferentially Mn2+ over Zn2+ 

(199). This apparent discrepancy might be explained by the fact that the study by Padilla-

Benavides et al. (199) did not include the putative CtpC metallochaperone Rv3269 in their 

in vitro systems. Rv3269 contains a clear putative zinc-binding motif (DLHDHDH) in its C-

terminus end, which might confer zinc-specificity to CtpC. Recent studies suggested a role 

for CtpC, CtpD, and CtpV, as well as for other metal efflux or resistance systems in M. 

tuberculosis virulence, suggesting that in addition to metal withholding, mammalian 

phagocytes exploit the toxic properties of transition metals to control bacterial infections 

(200).

Novel intervention strategies to enhance metal toxicity against M. 

tuberculosis: the case of copper

Early experiments showed that the anti-mycobacterial activity of isoniazid, a main drug in 

current tuberculosis chemotherapeutic regimens, was enhanced by copper binding indicating 

a synergistic effect (201, 202). These findings suggested that it might be possible to identify 

novel copper-chelating compounds with anti-mycobacterial activities. Indeed, a copper-

dependent drug screen identified copper complexes of bis-thiosemicarbazones with activities 

against M. tuberculosis (174). The minimal inhibitory concentration of GTSM 

[glyoxalbis(N(4)-methyl-3-thiosemicarbazone] was ~300 nM and killed non-replicating M. 

tuberculosis at a concentration of 2.5 μM. An interesting feature of bis-thiosemicarbazones 

copper complexes is their ability to accumulate in hypoxic tissues (203, 204). While this 

ability is currently exploited for diagnosis and potential treatment of certain cancers and 

neurodegenerative diseases (205, 206), it will also be beneficial in tuberculosis 

chemotherapy as hypoxia is a well-known condition of infected lung tissue (147). The 

GTSM-copper complex also inhibits the growth of methicillin-resistant Staphylococcus 

aureus and Neisseria gonorrhoeae in a copper-dependent manner (207, 208). By contrast, 

zinc and iron, which are the two most abundant transition metals in the human body (209), 

Niederweis et al. Page 13

Immunol Rev. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



did not impede Cu(II)-GTSM activity (207), suggesting specificity of copper-binding by 

GTSM in vivo. McEwan and coworkers (210) found that copper overload did not occur in 

GTSM-treated N. gonorrhoeae cells which is consistent with the fact that the active 

concentration of 30 nM GTSM is too low to significantly raise the average cellular copper 

content of 10 μM. Instead, the authors showed that Cu(II)GTSM specifically targets NADH 

and succinate dehydrogenase, two respiratory enzymes which are no longer able to maintain 

electron flow to terminal oxidases upon binding of the copper complex and its reduction by 

the enzyme (208). For the first time, this study revealed that copper complexes with small 

molecules act on defined bacterial targets and by novel mechanisms distinct from the 

general toxicity of free copper ions. These studies indicate that it is possible to enhance the 

toxicity of metals to kill bacterial pathogens by selectively targeting essential cellular 

processes. Whether similar strategies can be used to enhance the toxicity of other metal ions 

such as zinc remains to be explored.

Conclusions and perspectives

A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside 

infected macrophages to ensure survival and replication inside the phagosome. However, we 

are just at the beginning to discover all the components of metal acquisition and 

detoxification systems of M. tuberculosis. We have no clue about how these proteins interact 

with each other to guide metal cations in both uptake and efflux processes. A better 

understanding of metal transport processes in M. tuberculosis is not only important for 

deciphering the physiology of M. tuberculosis in vivo, but will also likely provide a plethora 

of novel molecular mechanisms as apparent from the few known metal-related transport 

systems (18, 76, 79). Occasionally, knowledge of these pathways may reveal an unexpected 

vulnerability of the tuberculosis bacillus. A recent example is that blocking siderophore 

export leads to self-poisoning of M. tuberculosis (79) and converts it into a non-pathogenic 

bacterium (76). Conversely, the mechanisms by which metal is transported into or out of the 

phagosome in macrophages and the signals controlling these events are poorly understood. 

However, these mechanisms might offer avenues for novel anti-infective approaches, which 

are urgently needed considering the failing existing tuberculosis chemotherapeutic regimens 

as recently pointed out by Nathan (211). First, metal-targeted nutritional immunity (200) 

against M. tuberculosis could be enhanced by promoting metal depletion through 

stimulating transporter translocation to the phagosome and utilizing chelators combined with 

dietary changes. Second, the metal defense systems of M. tuberculosis could be targeted by 

novel drugs to enhance the susceptibility of M. tuberculosis against copper and zinc. Third, 

it is possible to enhance the toxicity of metals utilized by the immune system to kill bacterial 

pathogens as shown in a novel drug-screening approach which identified copper-boosting 

compounds effective against replicating and nonreplicating M. tuberculosis strains (174). 

Hopefully, the fascinating recent discoveries of new metal homeostasis mechanisms both in 

M. tuberculosis and in macrophages as described in this review will stimulate more efforts 

to understand the battle for metal between M. tuberculosis and the host.
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Fig. 1. Role of metals during infection with M. tuberculosis
CTR1 translocates Cu+ from the extracellular space to the cytoplasm of macrophages 

infected with M. tuberculosis. Then, Cu+ is bound by the chaperone ATOX1, which delivers 

copper to the ATP7A pump resulting in copper accumulation in the phagosome (19, 139, 

175, 212). V-type ATPases and an unknown transporter pump protons and Zn2+, 

respectively, into the phagosome (20, 181). NRAMP1 exports Fe2+ and Mn2+ out of the 

phagosome. Fe2+ is bound by intracellular ferritin (200). The extracellular proteins 

transferrin sequesters iron, while calprotectin sequesters Mn2+ and Zn2+ (200). Calprotectin 

is secreted by neutrophils in tuberculosis granulomas (114) likely to deplete granulomas 

from Mn2+ and Zn2+.
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