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Summary

Body iron has a very close relationship with the liver. Physiolog-
ically, the liver synthesizes transferrin, in charge of blood iron
transport; ceruloplasmin, acting through its ferroxidase activity;
and hepcidin, the master regulator of systemic iron. It also stores
iron inside ferritin and serves as an iron reservoir, both protecting
the cell from free iron toxicity and ensuring iron delivery to the
body whenever needed. The liver is first in line for receiving iron
from the gut and the spleen, and is, therefore, highly exposed to
iron overload when plasma iron is in excess, especially through
its high affinity for plasma non-transferrin bound iron. The liver
is strongly involved when iron excess is related either to hepcidin
deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin
receptor 2 related haemochromatosis, or to hepcidin resistance,
as in type B ferroportin disease. It is less involved in the usual
(type A) form of ferroportin disease which targets primarily the
macrophagic system. Hereditary aceruloplasminemia raises
important pathophysiological issues in light of its peculiar organ
iron distribution.
� 2015 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Iron is the best and the worst thing for the human body. Iron is
deeply involved in a number of critical metabolic processes, a
lack of this metal impairs body functioning, especially in the
haematological domain. Conversely, excessive body iron is
the source of multiple cellular and visceral damage. These two
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‘‘mirror” hazards explain why iron homeostasis is a crucial need
for the body. For this physiological purpose, a myriad of
metabolic actors, particularly proteins, are involved in iron meta-
bolism. Structural and/or functional disturbances of these actors,
of acquired or genetic origin, may cause severe diseases relating
to either an iron deficiency or an iron overload. The liver plays
a key role in iron homeostasis, not only as the source of major
protein actors, among which transferrin, ceruloplasmin, and
mostly hepcidin, but also as the main iron storage organ and a
preferential target of iron overload toxicity [1]. Although the iron
domain has benefited from major advances, a number of issues
remain to be solved.

• The liver produces most proteins of systemic iron metabolism: 
transferrin (plasma iron transport), ceruloplasmin (plasma iron 
delivery), haptoglobin (linkage with haemoglobin), hemopexin 
(linkage with free heme), and hepcidin, the master regulator of 
iron homeostasis.

• The liver is a major iron storage organ, concerned mostly by 
parenchymal (hepatocytic) but also by macrophagic (Kupffer 
cell)  iron deposition.

• Non-transferrin bound iron (NTBI) is avidly taken up by 
hepatocytes and is toxic through its reactive form (labile plasma 
iron-LPI).

• The liver accumulates iron and undergoes its toxicity mainly in 
hepcidin deficiency-related haemochromatosis (types1, 2, and 3 
haemochromatosis).

• The liver is less impacted by iron overload in the usual form of 
the ferroportin disease (type 4-A haemochromatosis).

• The mechanisms whereby hepatocytic iron deposition occurs in 
hereditary aceruloplasminemia are not fully elucidated.

• Hyperferritinemia is the usual diagnostic call sign for iron 
overload, and its interpretation requires a rigorous approach.   

Key points
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Fig. 1. Iron homeostasis. Plasma iron comes from duodenal absorption and from
the spleen (iron recycling following erythrophagocytosis).

Review

Iron metabolism: ‘‘The ten iron laws’’

Iron homeostasis is governed by inescapable laws. A failure to
follow these rules, especially due to inborn errors, favors the
development of iron metabolism diseases [2–4].

Iron is not dispensable

Total body iron load normally approximates three to four grams.
Two-thirds of this iron quantity are contained in red blood cells,
within the haemoglobin molecules. Iron (Fe) is part of the por-
phyrin ring of the hememolecule, and has a major ability for link-
ing oxygen [5]. Erythrocytic iron circulates in the plasma and
delivers oxygen to all cells, while being itself delivered to the
bone marrow in order to contribute to the daily production of
approximately 200 billion of new red blood cells [6]. Therefore,
iron plays a major role in the respiratory process, and without
iron, the human body could not breath. This is as truer as iron
is also involved at the cellular and molecular levels, in the respi-
ratory chain which serves to the generation of energy through
ATP production. The muscle, through iron incorporation inside
myoglobin, has a special place in this energy process. Iron is also
involved in multiple enzyme activities catalysing metabolic pro-
cesses such as xenobiotics biotransformation, lipid metabolism,
collagen production, or DNA synthesis.

Iron is not produced by the body which is therefore exposed to iron
deficiency

The only iron source is alimentary. A normal diet provides 10–
20 mg per day, of which only one tenth (1–2 mg) is absorbed
[4]. Within the digestive tract, iron exists under two forms: heme
iron (meat, fish) and non-heme iron (cocoa, cereals with the high-
est content in lentils). As to spinach, its iron content is far from
initially (erroneously) reported (the ‘‘Popeyes’ syndrome”. . .),
but remains significant since it is close to that of meat. Iron is
absorbed at the duodenal level and this absorption process is
approximately five times more efficient for heme iron than for
non-heme iron.

Chronic lack of dietary iron unavoidably leads to iron defi-
ciency. Two main situations are concerned. If digestive absorp-
tion is normal, deficient alimentary input is either ‘‘absolute”
(malnutrition) or ‘‘relative” (increased physiological iron needs,
especially during infancy, adolescence, pregnancy, and lactation).
The second mechanism is defective iron absorption. It may be
due to alimentary co-factors which are capable of decreasing iron
absorption (for example, tannins contained especially in tea and
at a lesser degree in coffee, or phytates contained in seeds,
legumes, and nuts) or to increase it (vitamin C [7]). These co-
factors interfere preferentially with non-heme iron absorption.
Beside the role of co-factors, defective iron absorption may be
related to damage of the absorption process itself (corresponding
to malabsorption, such as occurring in coeliac disease [8]).

The fate of iron after intestinal absorption is mainly the erythrocyte
(Fig. 1)

Once iron has crossed the digestive barrier, at the duodenal level,
it reaches the blood, is linked to its carrier protein transferrin, and
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is predominantly (up to 80%) directed toward the bone marrow.
It enters the erythroblasts via transferrin receptor 1 and under-
goes the classical transferrin iron cycle. The remnant part (20%)
goes into the various extramedullary cells in order to participate
in many metabolic processes (respiration, xenobiotics biotrans-
formation, DNA synthesis).
Iron cannot circulate within the body or be stored in a free form

Being a metal, iron is neither soluble in the plasma nor in the
cytosol. Therefore, it must be linked to other molecules in order
to avoid toxicity due to the ability of iron to generate reactive
oxygen species (ROS).

In the blood, plasma iron is physiologically taken up by
transferrin, with a normal linkage ratio between the theoretical
capacity of iron binding to transferrin (2 iron atoms per trans-
ferrin molecule) and plasma iron concentration of less than
45% (transferrin saturation [TS]). Whenever TS increases over
45%, new circulating iron species can appear, named non-
transferrin bound iron (NTBI) [9]. NTBI has a very special kinet-
ics. In contrast with transferrin iron, it targets preferentially –
and with very high affinity – the parenchymal cells, especially
the hepatocytes [10,11]. NTBI uptake by the hepatocytes
involves mostly solute carrier SLC39A14 (ZIP14) [12,13]. This
NTBI is not a ‘‘free” iron but is likely linked to low molecular
weight ligands (citrate, acetate) or to carboxylic groups of albu-
min [14]. When TS exceeds 75%, a peculiar NTBI form, called
labile plasma iron (LPI) or reactive plasma iron, defined by its
capacity for producing ROS, may appear. It corresponds to a
potentially toxic form of circulating iron [15–19]. Iron can also
be transported by indirect systems, such as haptoglobin, binding
haemoglobin, and hemopexin, binding free heme (coming from
intravascular hemolysis).

In the cytosol, iron is essentially stored inside the ferritin
molecules. Each ferritin molecule may store up to 4500 iron
atoms. Ferritin acts as an iron ‘‘sponge”, storing the metal in case
6 vol. 64 j 505–515
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of excessive influx for avoiding cellular iron toxicity, and releas-
ing iron in case of body iron deficiency to avoid anemia.

The iron redox state maintenance is functionally critical

The iron property to exist under two redox forms, the oxidized
one; ferric iron (Fe3+) and the reduced one; ferrous iron (Fe2+)
is of major functional importance at four main levels (Fig. 2).

Transmembrane iron transport
Whatever the cell (enterocyte, hepatocyte, macrophage), iron
crosses its plasma and intracellular membranes under the ferrous
form (Fe2+). This explains the importance of iron reducing pro-
teins. The main ferro-reductases are DCYTB (duodenal cyto-
chrome B) [20], which reduces alimentary non-heme iron to
permit its luminal entry into the enterocyte through DMT1 (diva-
lent metal transporter 1) [20], and STEAP3 (six-transmembrane
epithelial antigen of the prostate 3) [21]. STEAP3 reduces intra-
endosomal iron thus permitting, through DMT1 expressed on
the endosomal membrane, its cytosolic delivery for cellular meta-
bolism or storage.

Plasma iron delivery and transport
Iron is carried by transferrin under the ferric form. Since it is
released from the cells in the ferrous form, ferroxidases are nec-
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essary for enabling ferrous iron to be taken up by transferrin. This
role is ensured by multicopper oxidase proteins: ceruloplasmin
[22] for macrophages, and hephaestin [23] for enterocytes.

Cellular iron storage
Iron is stored within ferritin [24] under its ferric form (Fe3+) and
needs reduction to be released. Ferritin is formed by 24 subunits
of two forms (L and H, encoded by two different genes). The H
form possesses a ferroxidase activity permitting iron internaliza-
tion. Vitamin C, when acting as a reducing agent, can favor iron
delivery from ferritin [25].

Iron toxicity [26]
The transition from ferric to ferrous iron, through the Fenton
reaction, generates the production of ROS which can damage cel-
lular membranes and nuclei. This mechanism is recognized as the
main cause of cellular and organ damage in iron overload.

The iron body has limited excretory capacities and is therefore
exposed to iron overload

The main exit pathways of iron are represented by intestinal
exfoliation, skin desquamation, sweat, urine, bile and, in women,
menstruations. Although biliary iron excretion may undergo
some adaptation to body iron load [27], it is globally admitted
6 vol. 64 j 505–515 507
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that the ability of the human body to regulate its iron stores
through iron excretion is very limited.

As a consequence of its poor excretory capacity, the human
body is prone to iron overload, whatever the iron source. These
sources can be either enteral as in hepcidin-deficient related
haemochromatosis [28] or dyserythropoiesis [29], or parenteral
as caused by uncontrolled iron injections (for iron deficiency ane-
mia [30]) or repeated transfusions [31] (for haemoglobinopathies
or myelodysplastic syndromes).

Iron recycling is a crucial permanent process

Since the daily quantity of iron entering and leaving the body is min-
imal (1–2mg), as compared to the daily body iron needs (of the
order of 20 mg), an intense and constant recycling process, involving
a bone marrow-spleen-bone marrow ‘‘virtuous” circle, occurs to
ensure plasma iron sufficiency. It is estimated than one billion iron
atoms are required daily for producing the hemoglobin of new red
blood cells [32]. The ‘‘ecological attitude”, and therefore energy
preservation, are hallmarks of iron metabolism.

Systemic iron homeostasis necessitates a finely tuned regulation: the
hepcidin–ferroportin duo (Fig. 3)

The master regulator of iron metabolism is the protein hepcidin
[33–36] which acts in close connection with ferroportin.
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Hepcidin is mainly produced by the liver (hepatocytes). This
hormone is a small peptide whose mature and active part
consists of 25 aminoacids. Body iron load is a main regulator of
hepcidin synthesis [37]. Physiologically, iron homeostasis func-
tions as follows: when plasma or hepatocyte iron concentration
increases, there is an activation of signalling pathways, including
the extracellular signal regulating kinase (ERK)/mitogen acti-
vated protein kinase (MAPK) pathway, and the bone morpho-
genetic proteins (BMP)/son of mothers against decapentaplegic
homologues (SMAD) pathway, respectively. There are likely
crosstalks between these two pathways [38–40]. As to HFE,
which may be primarily concerned by the ERK–MAPK pathway,
it has been reported to interact with the BMP type 1 receptor
ALK3 to regulate hepcidin expression [41]. It is likely that these
two types of signals (plasma iron and hepatocytic iron) corre-
spond to differential chronological reactivity. Thus, the regula-
tion initiated by plasma TS levels would act within a few hours
vs. several days for hepatocyte iron excess [42–44]. Whatever
its cause, increased signalling pathway activation induces hep-
cidin mRNA expression, leading in turn to increased plasma hep-
cidin concentration which has a double consequence: on the one
hand, a decreased duodenal iron absorption, and on the other
hand a decreased release from the spleen of the iron coming
from the normal red blood cell degradation (erythrophagocyto-
sis). The overall result is a decrease of plasma iron concentration
aiming to counteract the initial plasma and/or cellular iron
in
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increase. A mirror situation occurs in case of decreased plasma
and/or cellular iron.

For exerting its biological effect, hepcidin interacts with ferro-
portin which is mainly localised in the cell membrane of entero-
cytes and macrophages. This results in hepcidin internalization
followed by lysosomal degradation of ferroportin [45,46]. Ferro-
portin, besides acting as a hepcidin receptor, is the only known
cellular iron exporter, so that the final biological consequence is
a decreased iron delivery into the plasma. Hepcidin also inter-
feres with intestinal iron absorption by downregulating the
expression of DMT1, which is involved in non-heme iron uptake
at the apex of the enterocyte [47].

It should be noted that, beside iron load, several factors are
able to regulate hepcidin synthesis. One major mechanism is rep-
resented by inflammation, which stimulates hepcidin production
through the interleukin-6 (IL-6) [48] (and IL-22 [49])-STAT3 (sig-
nal transducer and activator of transcription) signalling pathway,
and through activin B which likely implicates the BMP–SMAD
pathway [50]. The other key mechanism is dyserythropoiesis
which decreases hepcidin synthesis via the action of the bone
marrow hormone erythroferrone (ERFE) [51,52]. A further mech-
anism is hepatocellular failure since hepcidin is synthetized by
the hepatocytes [53,54].

Local intracellular iron regulation completes systemic iron regulation
to ensure body iron homeostasis (Fig. 4)

A local regulation exists as a complement of this hepcidin-driven
systemic regulation. It involves the iron responsive element
(IRE)-iron regulatory protein (IRP) 1 and 2 system [55,56]. In case
of decreased cellular iron, an IRP-1 conformational change and an
IRP-2 level modulation occur which enhance physical interaction
of IRPs with the IRE nucleotidic sequence located at the 50 non-
coding region of L-ferritin mRNA. This, in turn, inhibits ferritin
translation. Simultaneously, at the 30 extremity of transferrin
receptor 1 mRNA, IRP hyperfixation on IREs inhibits transferrin
degradation. These two combined mechanisms result in
decreased iron storage capacity (decreased ferritin synthesis)
and increased iron entry capacity (increased transferrin receptor
1 expression), a ‘‘logical” process for counteracting the initial cel-
lular iron decrease in cells. The reverse phenomenon occurs in
case of increased cellular iron concentration.
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Fig. 4. Local (cellular) iron regulation. Decreased cellular iron content activates
iron responsive element (IRE) fixation on iron regulatory protein (IRP), leading to
decreased ferritin synthesis and to increased transferrin receptor 1 (TFR1)
expression. Inverse situation in case of increased cellular iron content.
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Major advances in iron metabolism understanding does not mean
complete knowledge

Anumberof issues remain to be solved. Among them: (i) themech-
anism whereby heme iron is taken up by the enterocyte, the pre-
cise role of the candidate protein heme carrier protein 1 (HCP1)
remaining to be identified [57,58]; (ii) the biochemical nature of
NTBI [59]; (iii) the way iron circulates within the cytosol with
the possible role of chaperone molecules such as Polyr�-Binding
Protein1 (PCBP) [60–62]; (iv) the factors determining transferrin
gene expression [63]; (v) the interactions between immunity and
iron metabolism [64]; (vi) the mechanisms underlying the meta-
bolic connections between iron and non-iron metals [35]; (vii)
the mechanisms which drive cellular ferritin delivery into the
plasma [65]; (viii) the precise mechanisms by which erythrofer-
rone is acting; and (ix) the mechanisms accounting for ‘‘brain pro-
tection” in most situations of systemic iron overload.
Iron-related genetic diseases

The maintenance of iron homeostasis requiring multiple actors
and regulators, iron metabolism can be impacted by mutations
Iron burden
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Fig. 5. Mechanisms of iron overload in haemochromatosis. (A) Hepcidin
deficiency- and hepcidin resistance-related haemochromatosis: increased plasma
iron generates NTBI (non-transferrin bound iron) which is quickly taken up by the
parenchymal cells (here: one hepatocyte); (B) Ferroportin disease: impairment of
the iron exporter ferroportin at the macrophagic level causes cellular iron
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occurring in a large number of genes. Many of them have been
identified and contribute to most iron-related genetic diseases
resulting in iron overload or iron deficiency. However, the pheno-
typic expression variability despite similar mutations in the same
gene, the discrepancies sometimes observed between phenotypic
expression of a disease and the theoretical impact of the involved
mutation in the considered gene, together with the existence of
unexplained iron overload phenotypes, do suggest that yet unrec-
ognized elements remain to be identified.
Genetic iron overload disorders

Iron excess can be found at the systemic level or involve only
specific cellular structures.

Diseases with total body iron overload:
Haemochromatoses
Two main types of haemochromatoses (HC) should be considered
[66,67] (Fig. 5).

Hepcidin deficiency related HC
– Hepcidin deficiency is the commondenominator and is respon-

sible for organ iron excess through increased cellular iron
entry. The involved iron species is NTBI which, as previously
mentioned, occurs in the plasma following increased transfer-
rin saturation, which is itself due to elevated serum iron
concentration. This may correspond to quantitative hepcidin
deficiency or to hepcidin resistance. Quantitative hepcidin
deficiency is by far the most frequent situation. In this
setting, decreased hepatic synthesis is responsible for chronic
hypo-hepcidinemia. The related diseases are: (i) primarily,
HFE-related HC. It is due, most often, to homozygote mutation
in the HFE gene (located on chromosome 6) p.Cys282Tyr/
pCys282Tyr (C282Y/C282Y) and corresponds to type 1 HC; some
rare HFE mutations in association with C282Y (compound
heterozygosity) may give a similar phenotypic profile; (ii)
much more rarely, non-HFE-related HC are involved. They are
related to mutations in genes also coding proteins involved in
hepcidin expression induction such as hemojuvelin (HJV) or
transferrin receptor 2 (TFR2)-related HC (type 3 HC) (chromo-
some 7), or in hepcidin gene (HAMP) leading to decreased hep-
cidin production and/or activity. Mutations in hemojuvelin or
hepcidin genes, which concern chromosomes 1 and 19 respec-
tively, induce juvenile HC (types 2A and 2B HC). Hepcidin resis-
tance corresponds to a refractory state of the cells to circulating
hepcidin. This resistance state is related to ferroportin (SLC40A1:
solute carrier family 40, member 1) mutations altering the
‘‘hepcidin receptor” function of ferroportin [68–71]. The corre-
sponding disorder, which involves chromosome 2, is sometimes
referred to as ferroportin disease typeB (type 4BHC), but should
rather be named ‘‘hepcidin resistance-related HC”.

– All HC forms related to quantitative hepcidin deficiency corre-
spond to endocrine disorders [72] involving the liver as source
and/or target [73].

– The phenotype of these various HC forms shares numerous
features which can be grouped under the concept of ‘‘hepcidin
deficiency syndrome”: (i) increased serum iron concentration
and TS; (ii) iron deposition within the parenchymal cells
(mostly hepatocytes, but also pancreatic, pituitary, and car-
diac cells), contrasting with the lack of iron in the macro-
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phages (Kupffer cells, splenic macrophages). This means on
liver biopsy performed at early stages, exclusive hepatocytic
iron deposition with Perls staining, and on magnetic reso-
nance imaging (MRI) diffuse hepatic iron excess without sple-
nic iron (aspect of ‘‘black liver and white spleen”) [74–77];
(iii) serum ferritin is well correlated to liver and body iron
overload, and is therefore a valuable parameter for the indica-
tion of venesection therapy (>300 lg/L in men and >200 lg/L
in women), for following its efficacy (on a monthly basis) and
for reaching and maintaining the desaturation target (50 lg/L)
[78]; (iv) chronic iron overload progressively damages the
hepatocytes and is responsible for moderate cytolysis (serum
transaminases less than 3 times the upper normal limit), hep-
atomegaly, and progressive fibrosis (especially in cases of co-
factors such as alcoholism or fatty liver), leading to cirrhosis
with the risk of hepatocellular carcinoma. This risk persists
despite total iron removal if the treatment was initiated while
cirrhosis was already present; (v) a further feature of this
hepcidin-deficiency syndrome is the strong efficiency of
bloodletting therapy [79] due to the effectiveness of phle-
botomies for enhancing iron recycling which is needed to
ensure post-venesection induced erythropoiesis.

– Family studies follow the rules of a recessive disease and is
mainly based on C282Y testing (together with plasma TS and
ferritin) in major siblings. However, the high mutation preva-
lence (of the order of 1/10 in the Caucasian population) justi-
fies to check also the major offspring [80].

– Some important differential aspects exist between hepcidin-
related HC forms: (i) type 1 HC is only present in Caucasian
populations; (ii) type 1 HC has a low penetrance [81] and a
major issue is to identify the factors which modulate pheno-
typic expression, both in terms of iron excess and organ dam-
age. Alcoholism is an acquired factor which may both
accentuate liver fibrosis [82] and favor iron overload possibly
through an hepcidin-decreasing effect. Overweight which
attenuates disease expression in women possibly through
increased hepcidin production [83]. Genetic factors are
increasingly identified, including the roles of digenism, speci-
fic mutations [84] or various polymorphisms [85]. Neverthe-
less, much remains to be discovered to fully explain the
basis of disease expression [86–88]; (iii) type 2 HC (or juvenile
HC) correspond to severe disorders with predominant heart,
pituitary and liver damage and their treatment may require,
besides venesections, the use of chelation therapy.

– In the future, apart from the hepcidin resistance syndrome,
these hepcidin-related HC will benefit from innovative thera-
peutic approaches, based on the underlying pathophysiology,
and aiming to increase hepcidin by using mini or complete
hepcidins, hepcidin agonists or by modulating actors of the
BMP–SMAD pathway which could stimulate hepcidin synthe-
sis. Another way could be to favor ferroportin internalization
and/or degradation [72,89].
The ferroportin disease [90–92]
This term should be reserved for the usual form of genetic iron
overload related to ferroportin mutations (SLC40A1) and pre-
ferred to the designation ‘‘type 4A HC”. Those mutations, by alter-
ing the iron export property of the protein, cause iron overload by
an intracellular retention mechanism. The ferroportin-related HC
phenotypic profile is almost point by point opposed to that of
hepcidin-related HC: (i) serum iron and TS are not elevated
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(and sometimes decreased); (ii) iron deposition occurs essentially
in the macrophages, due to the decrease of iron export activity
related to ferroportin dysfunction in those cells, so that, on liver
biopsy, iron predominates in the Kupffer cells, and, on MRI, iron
overload prevails in the spleen as compared to the liver (‘‘black
spleen and grey liver”); (iii) serum ferritin, probably due its pre-
vailing macrophagic origin in this setting, is usually much higher
than in hepcidin-related HC and has not the same predictive
value of total body iron load. This should lead to special attention
in the use of this parameter both for diagnostic and therapeutic
purposes; (iv) there is limited damaging effect of this macropha-
gic iron, making this disease a relatively benign one; (iv) blood-
letting may be moderately tolerated with the risk of anemia
due to poor recycling capacity.

As to family studies, they should follow the rules applied to a
disease with a dominant mode of transmission.

The hereditary aceruloplasminemia (HAC) case

– This rare recessive iron overload disease is due to mutations
within the ceruloplasmin (CP) gene (chromosome 3) [93,94].
The disease phenotype of the disease is a mixed one. On the
one hand, it shares a major feature of hepcidin-related HC that
is hepatocytic iron deposition without macrophagic iron over-
load (MRI shows a picture of ‘‘black liver and white spleen” on
the T2 sequence) [95–99]; on the other hand, serum iron and
TS are extremely low with a frequent profile of iron-deficient
anemia, suggesting intracellular iron retention, similar to ane-
mia of chronic diseases. Moreover, iron deposition in the cen-
tral nervous system, namely beyond the blood brain barrier, is
very peculiar to the disease.

– The classical mechanistic explanation for the development of
iron overload is not fully satisfactory. Indeed, it is frequently
advocated that the impairment of the ceruloplasmin-related
ferroxidase activity prevents ferrous iron from being oxi-
dized in order to be taken up by plasma transferrin in
plasma. This could favor a disturbance in the export activity
of ferroportin causing intracellular iron retention and
decreasing serum iron and TS [100], similarly to the ferro-
portin disease. However, this mechanism does not explain
the dramatically low level of plasma iron and, more impor-
tantly, the parenchymal type of iron deposition with macro-
phage sparing. The development of brain iron overload is
likely related to the expression, in the brain, of a glycosylpho
sphatidylinositol/inositol (GPI) ceruloplasmin isoform,
anchored in cell membrane and resulting from an alternative
splicing of the CP gene (in contrast with the secretory form
expressed in the hepatocytes) [93]. It is noteworthy that
the mutations within the CP gene may lead to: (i) decreased
secretion of the mutated ceruloplasmin form through reten-
tion of the protein within the endoplasmic reticulum, thus
leading to the classical form of HAC, with very low or unde-
tectable serum ceruloplasmin; or (ii) altered association of
apoceruloplasmin to the copper atoms that are essential for
the ferroxidase activity of holoceruloplasmin, thus leading
to a biological picture where ferroxidase activity of the ceru-
loplasmin is strongly decreased whereas serum ceruloplas-
min levels are less or not affected compared to the
classical HAC form (Review in [94]).

– Considering that hepcidin deficiency has been reported both
clinically [101,102] and experimentally [103], it cannot be
excluded that some degree of duodenal iron hyperabsorption
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occurs, especially if, like in the brain, hephaestin could
partially compensate the lack of ceruloplasmin-related ferrox-
idase activity.
Other diseases with systemic iron excess

Hereditary atransferrinemia (HAT)
HAT is a rare recessive disease due to transferrin (TF) mutations
on chromosome 3, affecting young individuals [104]. In the
absence of transferrin, anemia develops due to a lack of transfer-
rin iron delivery to the bone marrow, and iron overload occurs
due to circulating NTBI.

DMT1-related iron disorder [105,106]
Given the dual role of this protein in dietary iron uptake at the
apical membrane of the duodenal enterocyte and in iron egress
from cytosolic endosomes, DMT1 (SLC11A2: solute carrier family
11, member 2) mutations (located on chromosome 12) lead to a
peculiar picture. Indeed, this rare recessive disease associates
microcytic anemia, present from birth and resistant to oral sup-
plementation, associated with visceral iron overload.

Diseases with relative iron excess
Friedreich ataxia
This recessive disease is due to mutations of the frataxin (FXN)
gene (chromosome 9) [94]. These mutations lead to mitochon-
drial iron accumulation without total body/organ iron overload.
The clinical consequences are spinocerebellar degeneration and
frequent cardiomyopathy.

Other diseases
They correspond to disturbances in heme synthesis, encompass-
ing some forms of: (i) congenital sideroblastic anemias (by
mutations of the following genes ALAS2 [107], SLC25A38 [108],
ABCB7 [109], glutaredoxine 5 [110]); and (ii) hereditary
porphyrias [111].

Genetic iron deficiency disorder: IRIDA

Iron refractory iron deficiency anemia (IRIDA) is caused by muta-
tions of TMPRSS6 (chromosome 22) which encodes matriptase-2,
a transmembrane serine protease expressed on cell membranes
of hepatocytes which is involved in the BMP/SMAD hepcidin
regulatory pathway by processing hemojuvelin protein, a co-
receptor of BMPs [112]. TMPRSS6 mutations are responsible for
chronic hyperhepcidinemia which leads to decreased plasma iron
levels, thus inducing severe iron deficiency anemia that is refrac-
tory to oral iron supplementation and only partially responsive to
parenteral iron [113,114]. It should be noticed that TMPRSS6
polymorphisms have been associated to iron deficiency anemia
partially responsive to oral treatment [115].

Genetic iron metabolism-related disorders without iron excess or
iron deficiency

L-ferritin mutations (chromosome 19) are responsible for a dom-
inant inherited disorder expressed by serum ferritin elevation
(often >1000 lg/L), with normal TS and without cellular iron
excess. Depending on the mutation location on the L-ferritin
mRNA, clinical consequences are either expressed by early
cataract [116–118] or totally absent [119]. These syndromes are
different from other situations involving L-ferritin mutations,
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Review
called neuroferritinopathies [120]. This exceptional dominant
disease is an adult-onset neurodegenerative disorder related to
iron overload in the basal ganglia which, clinically, is expressed
by extrapyramidal neurological features with low serum ferritin
values.

In conclusion, from the hepatologist viewpoint, the liver is a
key organ in iron metabolism. It is the source of multiple proteins
playing major roles in plasma iron transport (transferrin), in
transmembrane iron passage (ceruloplasmin), and in systemic
iron regulation (hepcidin). This means that the synthesis of all
these proteins can be affected by hepatocellular failure. The liver
is also a major iron storage organ and, when overwhelmed by
chronic and massive iron burden, can be severely damaged, open-
ing the way to extrahepatic iron-related complications. Increased
serum ferritin is the usual initial biochemical finding leading to
evoke iron overload. A careful diagnostic strategy should drive
the interpretation of hyperferritinemia (Fig. 6), based on four
types of key data: clinical data, TS levels, MRI assessment of liver
and spleen iron load, and targeted genetic searches with the help
of reference centers.

However, despite tremendous advances in the iron patho-
physiological domain, a number of molecular mechanisms
remain to be elucidated, with the stimulating perspective of
512 Journal of Hepatology 201
finding novel potential targets which could be valuable for the
diagnostic and therapeutic management of patients affected by
iron-related disorders.
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