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Abstract
The trace minerals zinc, copper, iron, and selenium are essential micronutrients, and because of their antioxidant activity, they are
hypothesized to improve cardiovascular health. However, their associations with different risk levels for cardiovascular diseases
are less clear. Data from the National Health and Nutrition Examination Survey 2007–2014 were used. In this study, the ratio of
total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C) was used as a risk marker for cardiovascular disease, and a
ratio ≥ 5 was considered to indicate high risk. A total of 7597 adults (3673 men and 3924 women) were included, and 15.9% of
the participants had a high risk of cardiovascular disease. Using quantile regression analysis, we found the negative correlation
between zinc, copper, iron, and selenium intakes and TC/HDL-C. The effects of copper and zinc were enhanced with increasing
quantiles of risk levels. In addition, the difference in the associations of the trace minerals was sex-dependent. The correlation
between iron and cardiovascular risk in males was stronger than those in females, while that of copper was weaker than that in
females. Moreover, a significant nonlinear relationship between selenium and the TC/HDL-C ratio was only found in females,
and this relationship was U-shaped. Our findings suggest that among healthy adults in the US, zinc, copper, iron, and selenium
intakes are inversely associated with cardiovascular disease risk, and the effect is enhanced with increasing quantiles of risk
levels, with magnitudes differing by sex. Therefore, trace minerals may have the ability to prevent cardiovascular disease.
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Introduction

Cardiovascular disease (CVD) is a great challenge for public
health worldwide and is the leading cause of death in the
United States (> 800 000, or approximately 1 in 3 overall
deaths/y) [1, 2]. Studies have demonstrated that lipid metabo-
lism indicators, such as the ratio of total cholesterol to high-
density lipoprotein cholesterol (TC/HDL-C), are potent

predictors of CVD incidence, and a TC/HDL-C ratio ≥ 5 is
considered to indicate high risk [3–5]. Oxidative stress was
shown to alter lipid metabolism, and underlie the mechanism
of CVD [6–9]. Recently, some studies have shown that anti-
oxidants might improve lipid metabolism by acting on oxida-
tive stress [10, 11]. Although minerals have antioxidant activ-
ity, their association with lipids remains controversial. In ad-
dition, limited published research has examined the
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relationships of minerals with the TC/HDL-C ratio cardiovas-
cular disease risk predictor.

In recent years, researchers have shown that better diet con-
trol can improve cardiovascular health [12, 13]. Nutritional
antioxidants such as zinc, copper, iron, and selenium, which
are essential micronutrients for the body, can be ingested in the
diet or through supplements [14]. As one of the most common
antioxidants, zinc plays a substantial role in metabolic syn-
drome [15]. The association between zinc deficiency and the
development of CVD has been supported by numerous studies
[16, 17]. Studies have demonstrated that dietary zinc supple-
mentation may reduce total cholesterol, but the role of dietary
zinc supplementation in HDL is controversial [18]. Moreover,
dietary copper deficiency has been associated with inflamma-
tion and a variety of CVDs [19]. Copper and zinc are important
components of extracellular superoxide dismutase (EC SOD),
which is an antioxidant that acts against oxidative stress [20,
21]. Studies have shown that zinc intake is associated with EC
SOD activity [22, 23]. In addition, some studies have shown
that excessive zinc intake may affect copper status, which
might have adverse consequences on blood lipids [24, 25].
Iron is important in regulating cellular function and oxidative
stress [26]. Regarding iron, Mark J SarnakMD et al. identified
anemia as an independent risk factor for CVD [27]. Meroño T
et al. showed that iron-deficiency anemia was associated with
oxidative stress and functionally deficient HDL particles [28].
Selenium is required for selenoproteins and glutathione-
peroxidase (GPX), which had antioxidant activity [29].
Several studies have demonstrated that selenium deficiency
may increase the risk of CVD [30, 31]. Joachim Bleys et al.
found that elevated serum selenium was associated with ele-
vated serum concentrations of TC [32].

In particular, the development of dyslipidemia is a long and
continuous process. Thus, in logistic regression, some infor-
mation might be lost when hyperlipidemia is viewed as a
categorical variable. Additionally, the distribution of lipids is
nonnormal. Compared with linear regression, quantile regres-
sion has great advantages when predicting an entire distribu-
tion, such as when analyzing extreme data. In addition, most
studies focus on the effects of dietary supplementation on
hyperlipidemia but neglect the roles of dietary supplementa-
tion on normal people. Therefore, we used quantile regression
to analyze the effect of trace minerals from diet and supple-
ments on the levels of CVD risk; we particularly analyzed the
effect on low risk levels to explore “early prevention.”

Materials and Methods

Data Collection and Study Population

National Health and Nutrition Examination Survey (NHANES)
is a cross-sectional survey that uses a complex multistage

probabilistic sampling method and that is designed to provide
a representative sample of the US noninstitutionalized civilian
population. The NHANES database includes publicly available
data released in 2-year cycles and is available from the
NHANES website. The data from 4 cycles of NHANES
(2007–2008, 2009–2010, 2011–2012, and 2013–2014) were
combined for the present analyses. Out of a total of 40,617
participants in the 2007–2014 NHANES, we chose 23,482 in-
dividuals whowere not younger than 20 years old. Among these
individuals, we excluded pregnant women (n = 247).
Additionally, we excluded participants who did not participate
in the dietary interview (n = 2439), who did not have a whole
blood lipid examination (n = 11,322), and who were missing
lifestyle data (including BMI and smoking (n = 85)).
Additionally, we excluded patients who used blood-lipid lower-
ing prescriptionmedicines (n= 1805). Ultimately, this studywas
limited to participants aged 20 years and older and included a
total of 7597 participants (3673 males and 3924 females).

Lipid Assessment

Laboratory methods are described in detail in NHANES
documentation. Briefly, the Roche Modular P chemical
analyzer (enzymatic method) was used to determine the
total cholesterol and high density lipoprotein levels of all
participants 20 years and older. Then TC and HDL were
used to obtain the TC/HDL-C ratio. The NHANES quality
assurance and quality control (QA/QC) protocols meet the
1988 Clinical Laboratory Improvement Act mandates.
According to the National Cholesterol Education
Program Adult Treatment Panel III [33]: a high TC/
HDL-C ratio is ≥ 5.

Dietary and Supplement Intake Assessment

The dietary intake interviews included total nutrient intake
and dietary supplement intake. All participants participated
in two 24-hour total nutrient recall interviews. The first
recall interview was conducted in person in the Mobile
Examination Center (MEC), and the second interview
was conducted through telephone 3 to 10 days later. In
our study, we used the average total mineral nutrient intake
if the individual completed two 24-hour recalls. Otherwise,
we used the data from the first 24-hour recall. Additional,
we used an average of 30 days of dietary mineral supple-
ment intake to assess the participants’ dietary supplement
intake level. Notably, NHANES does not account for the
influence of soil selenium levels on the selenium content of
many foods. According to the NHANES documentation,
all analyses incorporated these dietary weights and provid-
ed nationally representative estimates of dietary intake.
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Covariates

In addition to blood lipid index and dietary, we also investi-
gated the influence of potential confounding factors, which
included demographic characteristics: age (analyzed as con-
tinuous variable), sex (male and female), race (non-Hispanic
White, non-Hispanic Black, and other race); anthropometric
characteristics: BMI; and behavioral characteristics: smoking
status (having smoked at least 100 cigarettes throughout life or
not) and physical activity (the individuals’ physical activity
intensity level in a typical week was classified into three
levels: sedentary, moderate, and vigorous).

Statistical Analysis

We used quantile regression in R version 3.5.0 for data anal-
ysis. The distribution of blood lipids was different, so we
analyzed men and women separately. Additionally, the distri-
butions of dietary intake and lipids were nonnormal. The de-
scriptive characteristics of the male and female groups are
shown as the median (quartile) and frequency (percentage)
for continuous and categorical variables, respectively. Chi
square tests were used to compare the percentages of categor-
ical variables. Then, a rank sum test was performed to analyze
the differences between males and females in continuous var-
iables. Finally, QR in the quantreg package was used to esti-
mate the relationship between the different percentiles of TC/
HDL-C distribution and mineral intake. All statistical tests
were 2-sided and a P value < 0.05 was considered statistically
significant.

Results

Descriptive Characteristics of Participants by Sex

Overall, 7597 adults aged ≥ 20 years with complete informa-
tion were included in the analysis. As shown in Fig. 1, dietary
mineral intake and TC/HDL-C were nonnormally distributed.
Tables 1 and 2 show the basic characteristics of the partici-
pants. Among the participants, 1250 had a high risk status of
TC/HDL-C ≥ 5 (15.9%), with a difference between males
(22.1%) and females (10.2%). Significant differences in de-
mographics (race, smoking, and physical activity) between
males and females (P < 0.001) were found. Additionally, there
were significant differences in terms of iron, zinc, copper, and
selenium intake between females and males (P < 0.001).
Moreover, as shown in Table 3, the distributions of the TC/
HDL-C ratio were different between males and females.
Therefore, the QR model was used to separately analyze the
relationship between TC/HDL-C and dietary elements for
males and females.

QR Statistics Relationship Between Dietary Mineral
Intake and TC/HDL-C in Males

Table 4 shows the QR coefficients and P values of the rela-
tionship between TC/HDL-C and dietary mineral intake (iron,
zinc, copper, and selenium) in males. After adjusting for age,
race, BMI, smoking, and physical activity, we found that iron
intake was negatively associated with TC/HDL-C in males at
all normal levels. The intake of zinc was negatively associated
with TC/HDL-C. Moreover, the intake of copper was nega-
tively associated with TC/HDL-C, with a stronger correlation.
In particular, we found that copper was also correlated at ab-
normal levels, but the validity of this finding needs to be
examined. However, the intake of selenium in males was not
correlated with the TC/HDL-C distribution.

QR Statistics Between Dietary Mineral Intake
and TC/HDL-C in Females

The relationship between dietary intake and TC/HDL-C in
females is shown in Table 5. Similar to males, after adjusting
for age, race, BMI, smoking, and physical activity, we found
that iron and zinc intakes were negatively associated with TC/
HDL-C in higher quantiles among individuals with normal
levels. In addition, the intake of copper was negatively asso-
ciated with TC/HDL-C at all normal levels, and this associa-
tion was stronger with increasing quantiles. Additionally, the
intake of selenium was negatively associated with TC/HDL-C
in most of the normal quantiles.We found that the relationship
was nonlinear, with the correlation coefficient fluctuation
changing.

Comparison of QR Statistics Correlation
Between Mineral Dietary Intake and TC/HDL-C
in Males and Females

Figure 2 shows that the nonlinear correlation of iron in males
was stronger than that in females, so iron may be more effec-
tive in regulating lipid levels in males. In contrast, the copper
correlation in males was weaker than that in females, so cop-
per may be more effective at improving lipid levels in healthy
females and in individuals in high quantiles. Copper had a
negative association with high TC/HDL-C ratio only in males.
In addition, selenium was only associated in females, and the
relationship was nonlinear and appeared U-shaped.

Discussion

Our findings further support the effect of antioxidant minerals
on CVD.We used quantile regression which clearly shows the
relationship between trace minerals and different risk levels
indicated by TC/HDL-C; the analysis was adjusted for age,
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Table 1 Descriptive characteristics of categorical variables of participants by sex

Variable Male Female χ2 Pb

n % 95% CIa n % 95% CIa

Race 10.349 0.025
Non-Hispanic white 1618 66 (62, 69.8) 1730 66.9 (63.4, 70.2)
Non-Hispanic black 696 9.8 (8.2, 11.7) 773 11.5 (9.7, 13.6)
Other 1359 24.1 (20.9, 27.7) 1421 21.6 (19.0, 24.5)

Smoking 147.48 < 0.001
yes 1900 50.6 (47.5, 53.7) 1382 36.8 (34.1, 39.6)
no 1773 49.4 (46.3, 52.5) 2542 63.2 (60.4, 65.9)

Physical activity 483.821 < 0.001
high 421 12.1 (10.4, 13.9) 111 2.8 (2.2, 3.6)
medium 1404 41.2 (38.5, 44.0) 1007 27.9 (25.4, 30.6)
low 1848 46.7 (44.0, 49.5) 2806 69.2 (66.5, 71.8)

TC/HDL-C ≥ 5%c 836 22.1 (20.2, 24.1) 414 10.2 (9.0, 11.6) 199.875 < 0.001

a 95% confidence interval by number of case
bP value by χ2 test
c A ratio of total cholesterol to high-density lipoprotein cholesterol ≥ 5

Fig. 1 The distribution of TC/HDL-C ratio (a), iron (b), zinc(c), copper (d), and selenium (e)
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race, BMI, smoking, and physical activity. We found that the
dietary intake of iron, zinc, and copper was negatively corre-
lated with TC/HDL-C levels. And, the effects of copper and
zinc tended to be stronger when the risk increased. In addition,
the correlation between iron and CVD risk in males was stron-
ger than that in females, while the association of copper was
weaker than that in females. A nonlinear negative correlation
between selenium and TC/HDL-C ratio was only found in
females.

To date, several epidemiological studies reported the asso-
ciation between dietary zinc intake and lipids with controver-
sial conclusions. In the present study, the association between
dietary zinc and TC/HDL-C was negative in high quantile.
Some studies have demonstrated that the intake of zinc has
positive effects on plasma lipid parameters [15, 18]. However,
several studies have shown that zinc supplementation can de-
crease HDL concentrations [34, 35]. Some of the negative
results may result from high-dose zinc supplements affecting
copper status [25, 36]. Compared with previous studies, we

chose a complex predictor. It has been shown that a simple
indicator has not provided comprehensive; for example, sim-
ply increasing the HDL-C concentration did not reduce the
risk of CVD [4, 5, 37]. Consistent with present results, a pre-
vious study reported a significant reduction in the TC/HDL-C
ratio after zinc supplementation [38]. The biological mecha-
nism of zinc was found to be the suppressing of reactive ox-
ygen species production, the reduction in oxidative stress, and
the participation in lipid metabolism [15, 39]. Therefore, zinc
supplementation might play a preventive role and reduce
CVD.

In the current study, dietary copper intake was inversely
associated with the predictor of CVD. Similar to our findings,
research has shown that increasing copper intake could reduce
the risk of CVD [40]. In addition, it has been reported that low
copper concentrations may influence serum lipids through ox-
idative stress processes [41, 42]. However, in contrast with our
study, a study demonstrated a weaker positive association be-
tween serum copper and 10-year coronary risk [43]. It was

Table 2 Descriptive characteristics of continuous variables of participants by sex

Variable Male Female t Pb

mean 95% CIa mean 95% CIa

Age 43.19 (42.28, 44.11) 45.31 (44.53, 46.09) 122.191 < 0.001

BMI 28.14 (27.79, 28.49) 28.62 (28.26, 28.99) 223.285 < 0.001

Iron intake(mg/d) 19.41 (18.90, 19.91) 17.87 (17.13, 18.62) 94.243 < 0.001

Zinc intake(mg/d) 17.56 (16.86, 18.27) 14.39 (13.89, 14.90) 69.652 < 0.001

Copper intake(mg/d) 1.48 (1.44, 1.51) 1.18 (1.15, 1.21) 98.743 < 0.001

Selenium intake(mcg/d) 154.37 (150.03, 158.71) 110.86 (107.82, 113.89) 97.914 < 0.001

HDL (mmol/L) 49.15 (48.37, 49.92) 59.29 (58.51, 60.09) 181.198 < 0.001

Triglyceride (mmol/L) 125.59 (121.67, 129.51) 110.86 (106.57, 113.63) 78.198 < 0.001

LDL (mmol/L) 118.11 (116.35, 119.87) 116.87 (115.36, 118.37) 174.297 < 0.001

Total (mmol/L) 192.39 (190.28, 194.49) 198.19 (196.21, 200.18) 222.507 < 0.001

ApoB 0.92 (0.91, 0.94) 0.89 (0.88, 0.91) 159.638 < 0.001

TC/HDL-Cc 4.16 (4.09, 4.22) 3.54 (3.49, 3.59) 160.006 < 0.001

a 95% confidence interval by geometric mean
bP value by t test
c Ratio of total cholesterol to high-density lipoprotein cholesterol

Table 3 Quantiles of TC/HDL-C by sex

Variable Quantiles

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

male

TC/HDL-C ratioa 2.633 3.024 3.37 3.693 3.991 4.298 4.67 5.149 5.832

female

TC/HDL-C ratioa 2.351 2.641 2.869 3.105 3.342 3.618 3.943 4.381 5.042

aA ratio of total cholesterol to high-density lipoprotein cholesterol ≥ 5 indicates high risk

Association Between Copper, Zinc, Iron, and Selenium Intakes and TC/HDL-C Ratio in US Adults



suggested that serum copper levels can be increased by in-
flammation, even in the presence ofmoderate copper deficien-
cy [44, 45]. In addition, other research using logistic regres-
sion showed that copper and zinc concentrations were not
associated with metabolic syndrome [46].We usedQRmodel,
which, unlike logistic regression analysis, can obtain the cor-
relation of all levels, not just 2 categories. In addition, we
found a negative correlation in males with abnormal levels,
which might have a therapeutic effect.

Iron is essential for the oxidative metabolism of lipids, as
demonstrate by clinical and animal experiments. A large pro-
spective cohort study demonstrated that anemia was an inde-
pendent risk factor for CVD [27]. In the present study, iron
was strongly negatively correlated with TC/HDL-C in males
at almost all normal levels, and the association was stronger
than that in females. The correlation disappeared when the
TC/HDL-C was abnormal. In previous studies, a negative
correlation between hemoglobin concentration and the risk
of CVD has been observed [47, 48]. In addition, a study found
that hemoglobin may be affected by factors other than iron

status [27].Therefore, iron might be used as a dietary supple-
ment to prevent CVD.

According to our results, the dietary intake of selenium
has a beneficial effect on improving the lipid level in fe-
males. Similar to our findings, several studies concluded
that low selenium concentration was associated with an
increased risk of CVD, but the relationship has not been
defined [31]. However, another study revealed that there
was no association between serum selenium levels and
CVD mortality but selenium may prevent CVD only at
intake levels below those in the United States [32]. In fact,
the antioxidant activity of selenium has been demonstrated
in epidemiological studies and animal experiments, and
this antioxidant activity might regulate lipid levels [31,
49–51]. Numerous studies have demonstrated that the
mechanism of protective function of selenium is that
selenoprotein reduces oxidative stress and prevents oxida-
tive damage by restoring the expression and enzymatic
activity of glutathione peroxidases [50, 52]. No significant
association was found in males, which is in agreement with

Table 4 Quantile regression coefficient (P value) of iron, zinc, copper, selenium, and TC/HDL in males (NHANES, 2007–2014) a

Minerals Quantiles b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Iron − 5.72
(0.05)

− 7.91
(0.024)

− 6.79
(0.045)

− 7.93
(0.017)

− 8.94
(0.004)

− 7.37
(0.017)

− 10.55
(0.001)

− 9.02
(0.13)

− 7.17
(0.25)

Zinc − 0.02
(0.99)

− 0.91
(0.66)

− 3.54
(0.14)

− 4.16
(0.18)

− 4.26
(0.21)

− 6.27
(0.021)

− 6.75
(0.049)

− 6.55
(0.09)

− 6.82
(0.09)

Copper − 0.01
(0.89)

− 0.04
(0.34)

− 0.07
(0.06)

− 0.11
(0.017)

− 0.13
(0.002)

− 0.14
(0.003)

− 0.15
(0.014)

− 0.12
(0.07)

− 0.18
(0.004)

Selenium − 0.01
(0.99)

− 0.12
(0.74)

− 0.21
(0.55)

− 0.32
(0.29)

− 0.41
(0.15)

− 0.52(0.11) − 0.62
(0.08)

− 0.71
(0.19)

− 0.95
(0.16)

a Adjusted for age, race, BMI, smoking, and physical activity
b Quantile regression coefficient and P value

Table 5 Quantile regression coefficient (P value) of iron, zinc, copper, selenium, and TC/HDL in females (NHANES, 2007–2014) a

Minerals Quantiles b

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Iron 0.68
(0.69)

− 0.64
(0.61)

− 1.37
(0.31)

− 2.61
(0.043)

− 4.26
(0.004)

− 5.29
(0.007)

− 7.03
(0.001)

− 8.41
(0.028)

− 4.08
(0.27)

Zinc − 0.70
(0.78)

− 1.51
(0.52)

− 0.23
(0.93)

− 1.50
(0.42)

− 3.20
(0.12)

− 5.83
(0.007)

− 7.74
(0.003)

− 13.40
(<0.001)

− 9.32
(0.07)

Copper − 0.10
(0.016)

− 0.11
(0.004)

− 0.11
(0.014)

− 0.14
(<0.001)

− 0.15
(0.006)

− 0.17
(0.001)

− 0.17
(0.002)

− 0.21
(0.005)

− 0.14
(0.13)

Selenium − 0.75
(0.07)

− 1.18
(0.003)

− 1.32
(0.001)

− 1.43
(0.002)

− 1.25
(0.019)

− 1.53
(0.005)

− 0.80
(0.16)

− 1.50
(0.027)

− 0.58
(0.66)

a Adjusted for age, race, BMI, smoking, and physical activity
b Quantile regression coefficient and P value
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the results of the study conducted in Europe [46]. Why
does selenium have sex diversity? The reasons may be that
the functions of sex hormones or the alcohol and smoking
behaviors may have different effects in males and females.
Importantly, it has been shown that the biosynthesis of
selenoenzymes and selenoproteins displays sex-specific
differences in a dose-dependent manner [53]. Moreover, a
previous study of NHANES 2011–2012 participants
showed that the association with HDL might be potentially
U-shaped [29]. We used QR analysis and found that the
relationship between selenium and TC/HDL-C was nonlin-
ear and that the correlation coefficient fluctuated,
exhibiting a U-shaped relationship. Therefore, selenium
supplementation may be associated with reducing CVD
risk in females but none with reducing CVD risk in males.

There are limitations to this study. First, the NHANES is a
cross-sectional survey; thus, we cannot examine cause–effect
or time–effect relationships between trace minerals and CVD.
Additionally, NHANES only examines total intake of min-
erals. Bioavailability is not addressed. In addition, the dietary
data were collected through a self-reported method, which
may result in retrospective bias, but the errors do not relate
to variations in lipid status discordance. Fortunately, this study
used a large nationally representative sample of adults in the
US. We adjusted for the variables that may affect the

associations between minerals and lipids. In addition, we used
quantile regression, which can reveal the correlations of vari-
ables at different levels.

Conclusions

Our findings suggest that among US adults, zinc, copper, iron,
and selenium intakes are inversely associated with CVD risk,
and the effect is enhanced as the quantiles of risk levels in-
crease, but the magnitudes differ by sex. Therefore, trace min-
erals may have the ability to prevent CVD.
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Fig. 2 Comparison of correlation coefficients of the relationships of iron (a), zinc (b), copper (c), and selenium (d) with TC/HDL-C ratio by sex
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