MINI CHEMISTRY

FORUM

PHYSICS

O LEVEL CHEMISTRY

CONTACT

Q

emistry >> Test For Oxidizing and Reducin...

r Oxidizing and Reducing Agents

 $\triangleright \times$

//Hide Sub-topics (O Level)

below shows the common and important **oxidizing agents**:

NG AGENT	HALF EQUATION	COLOUR CHANGE WHEN ADDED TO REDUCING AGENT	APPLICATION	
potassium nate (VII)	[Math Processing	Purple to pale pink (or colourless)	Used to test for reducing agent	
$\mathrm{InO_4}$	Error]			
potassium mate(VI)	[Math Processing	Orange to green	Oxidizes alcohol to acids; used to test for SO_2 gas	
$\mathrm{Cr}_2\mathrm{O}_7$	Error]			
orine	[Math		Oxidizes bromide to bromine and iodide to iodine	
\mathfrak{Il}_2	Processing Error]	Greenish yellow to colourless		

or presence of reducing agent:

an oxidising agent, e.g. Aqueous potassium manganate (VII) to the reducing agent e the mixture aqueous potassium manganate (VII) is decolourised

below shows the common and important **reducing agents**.

ING	HALF EQUATION	COLOUR CHANGE WHEN ADDED	APPLICATION	
JT		TO OXIDIZING AGENT		
ous				
ium	[Math			
le	Processing	Colourless to brown	Used to test for oxidizing agent	
	Error]			
ous				
III)	[Math			
ate	Processing	Green to brown	_	
)4	Error]			
on				
iide			Used to reduce iron oxides to	
,	_	-	iron in blast furnace	
gen	[Math	-	Reduces copper(II) oxide to	
	Processing		copper	

Error]

1s

Displacement of less reactive

; Na

metals

r presence of oxidising agent:

a reducing agent, e.g. Aqueous potassium iodide to the oxidising agent.

e the mixture.

wn solution of iodine is produced.

presence of iodine can be confirmed by adding starch solution.

'k blue coloration is obtained.

ous: Assigning & Calculating Oxidation States

Next: Reversible Reaction •

Го Chemical Reactions (O Level)

EARCHES		
Speed Test	11 Test Papers	
Reducing Agent Test	Physical Properties	

 $\triangleright \times$

er: Chemical Reactions, O Level

Physical & Chemical Properties of Alkalis

Physical Properties of Alkalis Alkalis have the following properties: Alkalis have bitter taste and a slippery soapy feel. Alkaline solutions have pH values greater than 7. (More about pH value in July 27, 2016

In "Acids Bases & Salts"

Redox Reaction

A redox reaction is a reaction where reduction and oxidation take place at the same time. Oxidation reaction involves: Gain of oxygen Loss of hydrogen Loss of electrons Increase in July 4, 2016
In "Chemical Reactions"

es & Salts"

About Mini

Administrator of Mini Chemistry. If you spot any errors or want to suggest improvements, please contact us. Looking for guest writers.

ers Are Saying:

Olivine Watt scribbled

December 10, 2017 at 5:57 am

s should also use ammonium sulphate and pottasium dicromate

to Olivine Watt

eply

il address will not be published. Required fields are marked *

8/27/2018	Test For Oxidizing and Reducing Agents Mini Chemistry - Learn Chemistry Online
MENT	
no of follow up comments	hv. amail
ne of follow-up comments	by eman.
ne of new posts by email.	
Search Mini Chemistry	

Spectrum Chemical

Largest Selection of Graded & Monograph Chemicals Anywhere.

spectrumchemical.com

RECENT POSTS

Reversible Reaction

Preparation of Soluble Salts & Insoluble Salts

Salts

Oxides

pH Scale & Indicators

Privacy Policy

Disclaimer

Register/Login

Copyright © 2014 - 2018 Mini Chemistry | All Rights Reserved | Privacy Policy