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Abstract. Sialoperoxidase and myeloperoxidase are the 
two main peroxidase enzymes found in the oral cavity. 
Sialoperoxidase is present in salivary secretions and in the 
biofilms that line the oral surfaces, while myeloperoxidase 
is abundant in the dento‑gingival sulcus area. In the pres‑
ence of hydrogen peroxide (H2O2), oral peroxidases catalyze 
the oxidation of the pseudohalide anion thiocyanate (SCN‑) 
to hypothiocyanite (OSCN‑), a strong oxidant that serves an 
antimicrobial role. Furthermore, oral peroxidases consume 
bacteria‑produced H2O2 and could help inactivate toxic 
carcinogenic and genotoxic substances. Numerous in vitro 
studies have reported the antibacterial, antimycotic and anti‑
viral role of peroxidases, suggesting possible applications 
in oral therapy. However, the use of oral hygiene products 
incorporating peroxidase systems has not yet been shown to 
be beneficial for the treatment or prevention of oral infections. 
This paradox reflects our incomplete knowledge of the physi‑
ological role of peroxidases in a complex environment, such 
as the oral region. While hygiene is crucial for restoring oral 
microbiota to a symbiotic state, there are no data to suggest that 
the addition of a peroxidase per se can create a dysbiotic state. 
Recent investigations have associated the presence of peroxi‑
dase activity with gram‑positive cocci microbial flora, and its 
insufficiency with dysbiosis has been linked to pathologies, 
such as caries, periodontitis or infections of the oral mucosa. 
Therefore, oxidants generated by oral peroxidases appear to 
be an essential ecological determinant for oral health through 
the selection of a symbiotic microbiota capable of resisting 
oxidative stress. The objective of the present review was to 
update the current knowledge of the physiological aspects and 
applications of oral peroxidases in clinical practice.
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1. Introduction

Oral peroxidases are part of the innate non‑immune defense 
mechanism of the saliva (1,2). In the oral medium in the 
presence of hydrogen peroxide (H2O2), these enzymes 
catalyze the oxidation of thiocyanate (SCN‑), a pseudohalide, 
into hypothiocyanite (OSCN‑), a powerful oxidant capable of 
inhibiting numerous bacterial species, mycoplasmas, fungi 
and viruses in vitro (Fig. 1). Sialoperoxidase and myeloper‑
oxidase are the two main peroxidases found in the oral cavity. 
Sialoperoxidase is present in salivary secretions and in the 
biofilms that line the oral surfaces, while myeloperoxidase is 
abundant in the dento‑gingival sulcus area (3,4). By regulating 
the commensal oral flora, as well as by consuming bacterial 
H2O2, which is toxic for the oral mucosa, oral peroxidases help 
protect the tissues bordering the oral cavity from microbial 
injuries. Although numerous studies have demonstrated an anti‑
microbial role in vitro, only a few studies have documented the 
use of oral hygiene products incorporating peroxidase systems 
for the treatment or prevention of oral infections. This paradox 
reflects our incomplete knowledge of the physiological role 
of these enzymes in a complex environment, such as the oral 
environment. The aim of this review was to update our current 
knowledge of the physiological aspects of oral peroxidases, as 
well as their potential applications in the oral clinic. The relevant 
articles published in English until August 2020 were retrieved 
from the literature indexed by PubMed (https://pubmed.ncbi.
nlm.nih.gov). The MeSH terms were ‘thiocyanate’, ‘hydrogen 
peroxide’ and ‘iodide’ with ‘oral peroxidases’ in different 
combinations without exclusion criteria, provided they are 
related to the interested topic area. The systematic attention 
to the bibliographic section of the papers so‑selected was a 
second source of references. The review data have been neither 
statically processed nor organized into flowcharts. The quality 
of evidence for clinical trials follows the recommendations of 

Oral peroxidases: From antimicrobial agents 
to ecological actors (Review)

PHILIPPE COURTOIS

Faculty of Medicine, Université Libre de Bruxelles, B‑1070 Brussels, Belgium

Received February 8, 2021;  Accepted April 7, 2021

DOI: 10.3892/mmr.2021.12139

Correspondence to: Dr Philippe Courtois, Faculty of Medicine, 
Université Libre de Bruxelles, Route de Lennik 808, B‑1070 Brussels, 
Belgium
E‑mail: philippe.courtois@ulb.be; courtois.stas@skynet.be

Key words: biofilm, hypoiodite, hypothiocyanite, myeloperoxidase, 
oral hygiene, oral microflora, salivary peroxidase



COURTOIS:  ORAL PEROXIDASES2

the Grading of Recommendations Assessment, Development 
and Evaluation system.

2. Oral peroxidases: Enzymes and substrates

Peroxidase activity in the saliva was first suspected due to 
the restoration of an anti‑lactobacillus effect following the 
addition of lactoperoxidase purified from bovine milk in 
heat‑treated saliva (5,6). Salivary peroxidase was then consid‑
ered to be similar, if not identical, to lactoperoxidase. Salivary 
peroxidase (or sialoperoxidase) was not considered to be an 
enzyme different from lactoperoxidase until later. Indeed, 
these two enzymes have the same amino acid composition (7) 
and exhibit immunological cross‑reactivity (8). However, they 
differ in their carbohydrate composition and certain kinetic 
characteristics (7). The whole saliva also contains a signifi‑
cant amount of myeloperoxidase from neutrophils, which 
enter the oral cavity through the dento‑gingival sulci (3). The 
coexistence of sialoperoxidase and myeloperoxidase in the 
oral environment may mask the activity of other peroxidases 
that may be present in much lower quantities (microbial 
peroxidases) or transiently (lactoperoxidase in dairy products).

Sialoperoxidase. The parotid and submaxillary salivary glands 
secrete human sialoperoxidase from birth at adult concentra‑
tions (9,10). Human sialoperoxidase occurs in different forms 
based on molecular weight and electrophoretic migration; 
sialoperoxidase may be free or linked to other salivary mole‑
cules, such as mucin (11‑13). When unbound and monomeric, 
its molecular weight is ~78,000 (7), and its isoelectric point is 
8‑10 (11,14). This enzyme adsorbs different oral surfaces, while 
retaining its enzymatic activity (15‑17), including enamel (15), 
dental plaque (18), salivary sediments (16) and bacteria such 
as streptococci (17). Other exocrine secretions, such as tears, 
sweat, airways or digestive secretions, also have a similar 
activity (usually referred to as lactoperoxidase and, at times, 
lacrimal peroxidase in tears). Salivary peroxidase, along with 
other proteins secreted by salivary glands (i.e. lysozyme and 
lactoferrin), participates in the antimicrobial protection of oral 
surfaces, such as mucosa and dental crowns.

Myeloperoxidase. Myeloperoxidase in saliva comes from 
the lysis of neutrophils entering the oral cavity by the 
dento‑gingival sulci from the first dental eruptions (19‑24). 
The leukocyte count in saliva decreases in edentulous 
patients and increases in oral inflammation processes (25). 
The number of neutrophils migrating into the oral cavity is 
~106 cells/min in healthy subjects, and higher in patients with 
periodontal disease (3,26,27). In the saliva, neutrophils undergo 
hypo‑osmotic shock and release myeloperoxidase along with 
other antimicrobial proteins, such as lysozyme and lactoferrin; 
in a similar manner, the salivary glands secrete the same two 
proteins, in addition to sialoperoxidase. Myeloperoxidase 
represents up to 20‑25% of the total peroxidase activity in 
total centrifuged resting saliva, while it predominates in the 
salivary sediment and in the liquid of the dento‑gingival sulci, 
where it participates in antimicrobial tissue protection (3,23). 
The primary substrate for myeloperoxidase is chloride (Cl‑) in 
the tissues [with the production of hypochlorite (OCl‑)] and 
SCN‑ in the saliva (with the production of OSCN‑).

Lactoperoxidase in dairy products. Lactoperoxidase, similarly 
to sialoperoxidase, catalyzes the oxidation of SCN‑ in vivo and 
iodide (I‑) in vitro, in the presence of H2O2. Easily purified 
from bovine milk, lactoperoxidase was first characterized and 
its enzymatic aspects were specifically documented by Aune 
and Thomas in 1977 and 1978 (28,29). Lactoperoxidase was 
commonly used to study the effects of a peroxidase‑H2O2‑SCN‑ 
system on cariogenic bacteria, such as oral streptococci (30) 
or Lactobacillus acidophilus (31), on periodontopathogenic 
bacteria (32). The lactoperoxidase‑SCN‑ combination is used as 
a preservative for vegetables and as a supplement in several oral 
hygiene products. The lactoperoxidase‑I‑ combination allows 
for the radioactive labelling of proteins. Lactoperoxidase has 
the property of adsorbing different surfaces, including that of 
biomaterials, such as titanium (33).

H2O2. Oral H2O2 comes from the salivary glands [DUOX 
family of oxidases, reviewed in (34)], neutrophils [NOX family 
of oxidases, reviewed in (35)] and particularly certain bacterial 
species present in the mouth through the action of pyruvate 
oxidase (36). H2O2 is one of the reactive oxygen species 
(ROS) synthesized by neutrophils during phagocytosis and 
secreted by the salivary glands as a trigger for sialoperoxidase 
activity. Determination of H2O2 in the saliva is challenging, 
given its rapid consumption by oral peroxidases and bacte‑
rial catalases. Most of the oral H2O2 comes from bacteria of 
the genus Streptococcus (37‑39) and, to a much lesser extent, 
from optional anaerobes (40,41). Based on the equilibrium 
constant of the SCN‑ peroxidation reaction (3.7x103 M‑1) in 
the oral medium, the mean salivary H2O2 concentration has 
been estimated at 10 µM (42), the maximum dose tolerable 
by mammalian cells (43,44). At low concentrations (1‑10 nM), 
H2O2 plays a role as a signaling molecule in bacteria‑bacteria 
interactions (45,46). For example, H2O2 can promote the forma‑
tion of Streptococcus parasanguinis biofilms co‑cultured with 
Actinobacillus actinomycetemcomitans in vitro (47).

SCN‑. SCN‑ is secreted by the parotid, submaxillary, sublin‑
gual and minor salivary glands (48,49) at a concentration 
that is dependent on exogenous intake, mainly brassica vege‑
tables (50), as well as the smoking habits of individuals (51), 
and on endogenous production coupled with the detoxification 
of food cyanide, such as cassava (52). The salivary concen‑
tration of SCN‑ is 0.5‑2 mM in non‑smokers and may be up 
to 10 mM in heavy smokers (12,51,53); its concentrations in 
the gingival crevicular fluid is ~40 µM, but may be higher 
in smokers (12). Of note, the optimal levels for peroxidase 
activity are in the order of mM. To the best of our knowl‑
edge, no study to date has documented the harmful effect of 
smoking on oral health through the inhibition of the natural 
peroxidase systems. SCN‑ has already been proposed as a 
vasodilator to combat hypertension or as an antimicrobial 
agent in combination with a peroxidase system. In this context, 
various studies [reviewed in (54)] have suggest the absence of 
SCN‑ toxicity up to concentrations sufficient to activate the 
enzymatic production of OSCN‑. A more significant increase 
in plasma SCN‑ concentration is linked to the inhibition of 
thyroid function, particularly in cases of iodine deficiency. 
Indeed, SCN‑ is a competitive inhibitor of the Na+/I‑ symport 
in thyroid follicular cells. This competition between a halogen 
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and SCN‑ for peroxidases explains the etymology of the word 
‘pseudohalogen’ to qualify for SCN‑.

I‑. The ability of the salivary glands to concentrate I‑ into the 
salivary compartment (20‑100 times higher than the plasma 
concentration) has long been known (55). This capacity for 
concentrating iodine in saliva before intestinal re‑absorption 
contributes to the preservation of the iodine pool for optimal 
thyroid function (56). Iodine deficiency, which is marked by 
lower urinary and salivary rates, has been correlated with 
an increase in the incidence of dental caries (57), but no 
association between iodine deficiency and oral peroxidases 
has been reported in these studies. Other studies have impli‑
cated iodine deficiency in immune dysfunctions (56). Excess 
iodine has been reported to induce alterations of the salivary 
glands, including lymphocytic infiltrations (58), in an animal 
model. In vitro, I‑ is another substrate for sialoperoxidase, 
myeloperoxidase or lactoperoxidase in antimicrobial systems. 
The salivary concentration of I‑ in humans is estimated to 
be insufficient for antimicrobial action in vivo. Indeed, the 
salivary levels reported in the literature are in the order of 
µM (1,59,60), while those of SCN‑ are in the mM range. The 
ability of SCN‑ to inhibit the uptake of I‑ by the parotid cells 
in parallel with thyroid cells has long been known (61). The 
presence of SCN‑ at higher concentrations in the saliva should 
limit the metabolism of I‑ (oxidation, iodination of tyrosine 
and iodination of proteins) (12,62,63). However, certain studies 
have suggested a synergy between the two substrates (64), 
whereas others have documented the in vitro formation of 
iodine‑SCN‑ complexes as a more active/stable antimicrobial 
component, as compared with OI‑ and OSCN‑ alone (65‑68).

3. Oxidant production by oral peroxidases

Both peroxidases that present in the oral cavity transform SCN‑ 
into OSCN‑. In vitro, sialoperoxidase turns I‑ into hypoiodite 
(OI‑). In tissues, myeloperoxidase forms OCl‑ from Cl‑ but not 
in saliva due to the presence of SCN‑. In vitro, myeloperoxidase 
can also produce OI‑. In the oral environment, the two peroxi‑
dases oxidize SCN‑ more abundantly than I‑. H2O2 is a factor 
limiting the activity of oral peroxidases. These non‑Michaelian 
enzymes are characterized by optimal concentrations, above 
which their substrates become their inhibitors (69).

It should be noted that the oral cavity is not a single 
homogeneous compartment, but rather a juxtaposition of sites, 
each characterized by its own ecosystem. The intraoral sites to 

be considered are indeed numerous and can be grouped into the 
saliva, biofilms and dento‑gingival sulci (70). The peroxidase 
activity varies across sites, depending on the concentrations of 
available substrates (H2O2 and SCN‑). The parotid production 
of H2O2 is already sufficient for generating OSCN‑ in the 
excretory Stenson's duct (71). The preferred method for 
determining salivary OSCN‑ is based on the oxidation of the 
5,5'‑dithiobis‑2‑nitrobenzoic acid (72). Other procedures are 
based on the oxidation of pyrogallol, guaiacol or ABTS (73). 
However, these methods, which are not specific to OSCN‑, do 
not make it possible to specifically analyze the products of 
the peroxidase activity in the presence of several substrates 
during the same test, in this case SCN‑ together with I‑. A 
colorimetric method in the presence of tetramethylbenzidine 
was recently developed to more specifically assess OI‑ (74). 
Fluorides have been described as inhibitors of lactoperoxidase 
and sialoperoxidase at acid pH regardless of the substrate, 
SCN‑ or I‑ (75).

OSCN‑. OSCN‑ is considered to be the major oxidant produced 
by oral peroxidases in the oral cavity. Concentrations of 
OSCN‑ up to 300 µM have been reported in the literature 
for the whole saliva (12). However, methodological problems 
when collecting samples may lead to default errors due to the 
instability of the molecule and the large number of oxidizable 
targets in saliva and oral biofilms. As SCN‑ is metabolized by 
both myeloperoxidase and sialoperoxidase, the production of 
OSCN‑ alone cannot be used to characterize the activity of 
one of these two enzymes (76). OSCN‑ at the doses required 
for an antibacterial effect does not appear to cause damage to 
the genetic material of the mucous membranes (77). However, 
selective oxidation of cell/tissue targets containing thiol 
groups could initiate significant cell damage, such as damage 
to gingival epithelial cells (78).

OI‑. In vitro, OI‑ decreases the survival rate of some micro‑
bial species at a lower concentration, as compared with that 
observed for OSCN‑, especially in Candida albicans (79). 
Some authors (80) have been able to demonstrate that 125I 
only binds to a limited number of membrane molecules of 
Candida albicans, which is particularly sensitive to OI‑. 
However, the hypohalous ion present in the oral cavity is 
OSCN‑ rather than OI‑, as the substrate SCN‑ at the origin of 
the former is 1,000 times more abundant, as compared with 
I‑ at the source of the latter. The salivary SCN‑ concentration 
reaches the mM level, while OI‑ barely reaches concentrations 
in the µM range. At equal (pseudo)halide concentrations, lacto‑
peroxidase has a higher affinity for SCN‑ than for I‑. However, 
experimentally, the substitution of SCN‑ by I‑ increases the 
innate antiviral defences of the respiratory mucosa against 
adenoviruses and the respiratory syncytial virus (81). Oral 
administration of KI vs. NaI increases iodemia, allowing for 
the accumulation of I‑ in the mucous secretions of the upper 
respiratory tract in humans (81) as well as animals (82,83). 
Although it has already been demonstrated that I‑ accumulates 
in submandibular glands in hamsters (84), no similar observa‑
tions have been reported in humans. It would be interesting to 
be able to specifically assess salivary OI‑ in excretory ducts, 
such as the Stenson's duct, where the oral biofilms do not 
extend, except in the case of infectious parotitis. Finally, the 

Figure 1. Peroxidase system in the oral cavity leading to the production 
of OSCN‑, which controls the oral microflora. SCN‑, thiocyanate; H2O2, 
hydrogen peroxide; OSCN‑, hypothiocyanite.
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success of topical formulations based on povidone‑iodine to 
reduce bacterial growth in the oral cavity in ventilated patients 
may be attributed to the increase in I‑ available for the patient's 
peroxidases (85).

Iodine‑thiocyanate complexes. The two substrates of peroxi‑
dase, SCN‑ and I‑, have been mostly tested independently in 
suspensions, and less frequently in combination (64). Moreover, 
few articles reporting that the activity of lactoperoxidase 
produces a mixture of OSCN/OI‑ in the presence of a mixture 
of SCN‑/I‑ substrates have effectively analyzed the products 
generated under their experimental conditions (1,64,86). 
Mixtures of the two substrates, SCN‑ and I‑, however, appear to 
lead to the formation of a more stable oxidative complex over 
time (65,66,87‑90). Under well‑defined in vitro experimental 
conditions (high ionic strength; KI:KSCN ratio, ~4.5; neutral 
or acidic buffer; presence of H2O2), lactoperoxidase produces 
stable iodine‑SCN‑ complexes, such as I2(SCN)‑, objectified by 
carbon‑13 (C13) nuclear magnetic resonance spectroscopy (66) 
with antimicrobial properties against Candida (67). Oxidant 
concentrations are then less toxic to epithelial cells in the 
mouth, as compared with chlorhexidine (67). The resistance of 
epithelial cells may be explained by the presence of bacteria 
covering their surface and forming a protective biofilm, 
and/or by the detoxification of enzymatic activities in certain 
commensal species present in the oral environment (91). The 
use of these complexes for rinsing dentures ex vivo further 
limits the possible effect on epithelial cells in vivo. The 
efficacy of the iodine‑SCN‑ complexes prepared without 
peroxidase activity has already been demonstrated in vitro on 
Pseudomonas aeruginosa and Staphylococcus aureus, both 
in suspension and in biofilms (92). Other studies will have to 
analyze the interference between this solution of iodine‑SCN‑ 
complexes and oral microbial ecology.

4. Biological roles of oral peroxidases

Over several decades, oral peroxidases have been recognized 
as being essential for oral health (93), despite the absence 
of clinical evidence. Indeed, no specific deficit in sialoper‑
oxidase or its association with a particular pathology have 
been described. Although the decrease in salivary flow leads 
to carries or mucosa infections (for example, candidiasis), 
the deficiency of no particular salivary molecule (in this 
case, sialoperoxidase) has been definitively proven to cause 
these infections. Similarly, neutropenia leads to gingivitis/
periodontitis, but it is not possible to definitively deduce that 
myeloperoxidase deficiency is individually responsible. The 
demonstration of the biological roles of peroxidases is based 
more on in vitro studies carried out under physiological 
conditions.

Antimicrobial effects. Oral peroxidases control the oral 
microbiota while detoxifying the environment of H2O2. By 
oxidizing thiol groups (29) and nicotinamide adenine dinucle‑
otide phosphate (NAD(P)H) (94), OSCN‑ exerts antimicrobial, 
antimycotic and antiviral effects (1,2). In particular, the bacte‑
rial hexokinase activity, which initiates the Emden‑Meyerhoff 
pathway, decreases in the presence of OSCN‑. Acid production 
by dental plaque is reduced in the presence of OSCN‑ (95). 

In vitro, OSCN‑ slows the growth of cariogenic bacteria 
belonging to the genera Streptococcus or Lactobacillus (1). 
Periodontopathogenic bacteria are also inhibited (32,96‑98), 
as are yeasts of the Candida genus, which are responsible 
for mucosal pathologies (99). Some viruses are sensitive 
to this oxidant, such as the herpes virus (100), HIV (101) or 
influenza virus (102,103). Antisepsis research suggests using 
peroxidase‑generated OSCN‑ as a putative prophylactic agent 
to prevent contamination with SARS‑CoV‑2 (104).

Some bacteria have developed various strategies to resist 
the ROS produced by neutrophils (105). Similarly, commensal 
oral surface bacteria, such as Streptococcus sanguis (one of 
the first colonizers of the dental plaque) have the biochemical 
equipment to protect themselves from OSCN‑. By contrast, 
Streptococcus mutans (a cariogenic bacterial species) does not 
have this detoxifying system (91). Thus, peroxidases operate 
more like ecological selectors by allowing commensal bacteria 
capable of reducing OSCN‑ to survive in the oral environment. 
Moreover, peroxidases coupled to a system detoxifying the 
environment of hypohalous compounds (of the thioredoxin 
type) participate in the protection of tissues against oxidants 
resulting from the metabolism of activated oxygen, such as 
the superoxide anions or H2O2 (106). There appears to be an 
interconnection between resistance to oxidative stress and 
the ability to form biofilms via quorum‑sensing molecules, 
such as farnesol (107). On the other hand, non‑active lacto‑
peroxidase, after the depletion of the substrate, can promote 
the in vitro growth of certain anaerobes (98). At the same 
time, a clinical study (108) suggested a rebound in peri‑
odontitis after a phase of clinical improvement, possibly due 
to an accumulation of lactoperoxidase without substrate. 
The association of a peroxidase system with another innate 
non‑immune defence factor further strengthens the inhibition 
of some bacteria in vitro. For example, lysozyme improves the 
inhibition of glucose metabolism by the peroxidase system in 
Streptococcus mutans (109).

Biofilm control. Sialoperoxidase, similar to lactoperoxidase 
in vitro, adsorbs enamel surfaces irreversibly (15) while 
retaining its activity. This property contributes to controlling 
the formation of dental plaque and regulating the bacterial 
microflora attached to the surfaces of the oral cavity. The 
activity of peroxidases present in dental plaque depends on the 
availability of its two substrates (SCN‑ and H2O2) in the thick‑
ness of oral biofilms. SCN‑ diffuses deeper into the biofilms 
from the salivary film that covers them. At the same time, 
H2O2 relies on the oxygen supply allowing certain bacteria to 
produce it in situ. Certain studies (12,106) have described a 
virtuous cycle summarizing the beneficial effect of sialoper‑
oxidase on oral microflora control. After a supply of food 
sugars, commensal bacteria of the genus Streptococcus grow 
and produce more H2O2, which activates the production of 
OSCN‑ in the presence of sialoperoxidase and SCN‑, thereby 
limiting bacterial growth or even killing microorganisms. 
Theoretically, these mechanisms work less effectively deeper 
inside thick biofilms, given the consumption of peroxidase 
substrates in the most superficial layers. Similarly, mouth 
rinsing with solutions containing an OSCN‑‑generating 
system is likely to further impact the more superficial layers 
of biofilms. These remarks suggested that a peroxidase system 
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may act both on the formation of biofilms and on already 
formed biofilms.

In addition to protecting the walls of the oral cavity, 
sialoperoxidase may also protect the excretory ducts of the 
salivary glands, which are rarely infected when they open 
into an oral cavity abundantly colonized by microbial germs; 
however, to the best of our knowledge, no scientific study has 
yet considered this physiological aspect.

Protection against oxidative stress. The uncontrolled produc‑
tion of activated oxygen species (ROS: Superoxides, H2O2, free 
radicals, hypohalous compounds) or reactive nitrogen species 
(RNS: Compounds derived from nitric oxide and superoxides, 
such as peroxynitrite, nitrogen dioxide and dinitrogen trioxide) 
is implicated in various oral pathologies (110). These oxidative 
derivatives damage cells and are considered to be mutagenic 
and carcinogenic. They are controlled in the salivary environ‑
ment by scavengers (mainly uric acid) and antioxidant enzymes 
(bacterial catalase and oral peroxidases). Lactoperoxidase 
transforms cytotoxic H2O2 into a less toxic product, as 
suggested by in vitro experiments on fibroblast cultures (44). 
The coupling of peroxidases to a bacterial thioredoxin system 
helps protect tissues from oxidants produced from peroxidase 
activities. In tissues (including gingival), catalase and 
glutathione peroxidase help remove H2O2.

Certain studies [reviewed in (12)] considered that the enzy‑
matic peroxidation of mutagenic and carcinogenic molecules 
bound to diet as another function of oral peroxidases. However, 
the related data are currently insufficient to assess its actual 
significance in the detoxification of toxic molecules introduced 
into the oral cavity, through food or other means.

5. Mimicking biological systems

Manufacturers have attempted to mimic the peroxidase 
activity of saliva by incorporating lactoperoxidase into oral 
hygiene products [reviewed in (111)]. A ‘peroxidase system’ 
is a galenic formulation associating a peroxidase with one 
of its substrates of the (pseudo)halide type plus H2O2 or an 
H2O2 donor. The formulation of such a system requires a 
methodical step‑by‑step approach to optimize the volume 
and rinsing time, the concentration of H2O2 and SCN‑, as well 
as the pH, in order to achieve the production of an adequate 
antimicrobial level in the oral cavity (112). Even before the 
launch of oral hygiene products with a peroxidase system, 
Food and Agriculture Organization (FAO)/World Health 
Organization (WHO) recommended its use for the safe pres‑
ervation of raw milk or vegetables (113). Articles on proteins 
derived from milk list the oral benefits of lactoperoxidase, 
sometimes associated with other proteins, such as lactoferrin 
or lysozyme (114). Numerous preclinical in vitro tests (through 
saliva sample collection, solid or liquid cultures, biofilm 
models) have evaluated peroxidase systems for pharmacoki‑
netics (115), antimicrobial effects on the oral microflora (116), 
as well as toxicity on epithelial cells (117). Some ex vivo 
studies have reported the decontamination of materials that 
have remained in an oral environment, while others describe 
the advantage of their use in vivo. The SCN‑/lactoperoxidase 
system is the most extensively investigated, but there have been 
few clinical studies on the I‑/lactoperoxidase system (118). 

Unfortunately, these investigations often test a peroxidase 
system coupled with other milk antimicrobial proteins also 
found in the saliva (119). Such systems have been introduced 
into oral hygiene products with a curative intent (periodontitis, 
halitosis) or with a preventive perspective (dry mouth, caries). 
However, the efficacy of these products has not been suffi‑
ciently documented (117), and there are only a limited number 
of small‑scale phase I/II clinical trials. Investigators face the 
difficulty of finding adequate biological markers to demon‑
strate the effects of a peroxidase system on the regulation of 
oral microflora in the oral environment. Another dilemma 
could be to choose between quantitative (bacterial count) 
or qualitative (metabolic markers) markers. For example, a 
mouth‑rinse/tooth‑wash with an in vivo peroxidase system 
increases the concentration of OSCN‑ in the saliva (120) but 
does not change the total number of salivary bacteria, while 
it could reduce bacterial ATP (an indicator of their metabolic 
potential). Several studies have thoroughly evaluated peroxi‑
dase systems by following clinical indices (gingival index, 
plaque index, etc.) and some others, as dry mouth, settle for 
satisfaction surveys. The determination of an appropriate 
control is challenging. Moreover, the short half‑life of the 
oxidants produced and the bacterial resistance constitute 
other limitations to their use. Recently, the SCN‑/I‑ combina‑
tion has made it possible to obtain more stable products. 
Molecular techniques (16SrRNA gene sequencing analysis) 
demonstrated that the use of lactoperoxidase coupled with 
lactoferrin promotes supragingival and lingual biofilms with 
more gram‑positive and fewer gram‑negative bacteria (119).

Tables I and II list the clinical studies evaluating a peroxidase 
system used alone (108,121‑130) or in combination (131‑140) 
with other exocrine proteins.

Curative vs. preventive. The use of peroxidase systems may be 
considered as topical administration to protect oral surfaces 
in vivo as a prophylactic measure. Recommending these galenic 
preparations may not be of value as a curative approach, as the 
infection itself indicates that a deregulated oral flora has over‑
taken physiological systems, including peroxidase. Reserving 
or even developing these galenic preparations as prophylactic 
treatment would avoid the appearance of strains resistant to 
antimicrobials used continuously to prevent the occurrence 
of certain infections (for example, oral candidiasis in patients 
with AIDS).

In vitro vs. in vivo. Peroxidase systems present a paradox: 
Although they have been shown to be active in vitro for a 
long time, the definitive evidence of their effects in vivo is 
still lacking. A possible explanation is the actual availability 
of H2O2 in the oral environment, which is rich in bacterial 
catalase. In this case, the increased availability of H2O2 can 
compensate for its consumption by other enzymatic activi‑
ties (141,142), thus allowing the exogenous lactoperoxidase to 
be active. Another explanation would be to consider a transient 
metabolic suppression demonstrated, for example, by assaying 
ATP, but not observed on culture media.

In vivo vs. ex vivo. Peroxidases adsorb different biomaterials 
used in dentistry: Titanium and resin are two examples. 
Ex vivo use may be employed to disinfect removable prostheses 
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by short‑circuiting in vivo use; the intra‑oral administration 
is indeed considered by some to be dangerous, due to 
cytotoxicity and potential immunogenicity. The toxicity of 
peroxidase systems on the oral mucosa appears to be limited 
by the oral biofilms covering them. However, the accumula‑
tion of inactive lactoperoxidase in biofilms may favor certain 
anaerobic bacteria, such as Porphyromonas gingivalis (98). 
On the other hand, the accumulation of I‑ during regular use 
would not be advised for some patients. With regards to health 
and safety, it should be noted that the FAO recommends the 
SCN‑/lactoperoxidase system for the decontamination of milk 
and vegetables for food sales (113).

Toxicity. Few reports have analyzed the oral toxicity of 
peroxidase systems when recommended in oral care prod‑
ucts. Indirectly, these products may be beneficial for patients 
who have aphthous ulcers secondary to the toxicity of lauryl 
sulfate, often used as a detergent in toothpaste (143). Indeed, 
the incorporation of such enzymes in oral hygiene products 
implies the no‑use of detergent foaming agents, which have the 
ability to denature proteins, and therefore enzymes.

Perspective in oral hygiene. Numerous investigations have 
analyzed the effects of peroxidase systems on the various 
pathogens present in the oral cavity, including viruses. In vivo, 
oral peroxidases defend the gingival sulcus against microbial 
invasion (myeloperoxidase) and help regulate the microflora 
adhering to the surfaces of the oral cavity (sialoperoxidase). 
Incorporating lactoperoxidase with other salivary antimicrobial 
proteins in salivary substitutes may mimic the antimicrobial 
effect of the salivary exocrine fluid (144). The beneficial effect 
of oral sprays with such peroxidase preparations in combating 
dryness of the oral mucosa in patients on respirator treatment 
has already been proposed. However, their benefit in daily 
oral hygiene has not yet been quantified or even demonstrated 
by clinical studies. Certain studies have suggested consid‑
ering peroxidases as ecological selectors directing the oral 
microflora towards a Gram‑positive cocci microflora poor in 
cariogenic or periodontopathogenic germs, thereby preserving 
the mucosa and protecting it from yeast overgrowth, among 
others. Thus, the administration of an efficient lactoperoxidase 
system in a toothpaste also containing lactoferrin and lyso‑
zyme may prevent oral dysbiosis (145). A few studies have 
demonstrated an inverse association between the activity of 
sialoperoxidase and the depth of the periodontal pockets (146). 
On the other hand, the administration of inactive peroxi‑
dase without substrate seems to disturb in vitro the balance 
between commensals and periodontopathogens to the latter's 
advantage (98,147). The peroxidase systems' clinical benefit 
in oral hygiene must still be demonstrated on a large scale 
through evidence‑based practice.

6. Conclusion

Oral peroxidases are involved in the control of the oral 
microflora as ecological selectors favoring a commensal 
f lora, which can develop or survive in the presence of 
OSCN‑ (148,149). The use of peroxidase systems may be 
beneficial for preventing topical administration to protect the 
oral surfaces in vivo. By contrast, they may be used ex vivo to 

disinfect removable prostheses. The efficacy of formulations 
with peroxidase activity is not yet sufficiently documented, 
and there are no large‑scale clinical trials to date. The short 
half‑life of the produced oxidants and bacterial resistance 
constitute limiting factors for their use. However, the SCN‑/I‑ 
combination has recently made it possible to obtain more 
stable products.
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