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Simple Summary: In this manuscript we review the recent literature supporting a biological link
between circadian clock disruption and thyroid cancer development and progression. After a brief
description of the involvement of the circadian clock machinery in the cell cycle, stemness and cancer,
we discuss the scientific evidence supporting the contribution of circadian clockwork dysfunction in
thyroid tumorigenesis and the possible molecular mechanisms underlying this relationship. We also
point out the potential clinical implications of this link highlighting its impact on thyroid cancer
prevention, diagnosis and therapy.

Abstract: Thyroid cancer (TC) represents the most common malignancy of the endocrine system,
with an increased incidence across continents attributable to both improvement of diagnostic
procedures and environmental factors. Among the modifiable risk factors, insulin resistance might
influence the development of TC. A relationship between circadian clock machinery disfunction and TC
has recently been proposed. The circadian clock machinery comprises a set of rhythmically expressed
genes responsible for circadian rhythms. Perturbation of this system contributes to the development
of pathological states such as cancer. Several clock genes have been found deregulated upon thyroid
nodule malignant transformation. The molecular mechanisms linking circadian clock disruption and
TC are still unknown but could include insulin resistance. Circadian misalignment occurring during
shift work, jet lag, high fat food intake, is associated with increased insulin resistance. This metabolic
alteration, in turn, is associated with a well-known risk factor for TC i.e., hyperthyrotropinemia,
which could also be induced by sleep disturbances. In this review, we describe the mechanisms
controlling the circadian clock function and its involvement in the cell cycle, stemness and cancer.
Moreover, we discuss the evidence supporting the link between circadian clockwork disruption and
TC development/progression, highlighting its potential implications for TC prevention, diagnosis
and therapy.
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1. Introduction

Thyroid cancer (TC) represents the most common endocrine malignancy, which has shown a
strikingly increasing incidence over the past few decades [1,2]. Well-differentiated TC histotypes,
comprising papillary TCs (PTCs, 85%) and follicular TCs (FTCs, 15%) account for the majority of
TCs and are considered to be low risk tumors [3]. Poorly differentiated TCs (PDTCs) and anaplastic
TCs (ATCs) are less common but more aggressive histotypes, often unresponsive to conventional
treatments [3].

Epidemiological studies have suggested that environmental factors and lifestyle modifications
can be responsible for the increased incidence of TC worldwide. Among the potential modifiable
risk factors of TC, particular attention has been paid to insulin resistance and hyperinsulinemia [4].
These metabolic alterations have also been rapidly increasing worldwide due to lifestyle modifications,
which may also include circadian clock disruption. At present, it is not completely clear how insulin
resistance and related metabolic disorders may affect well-known molecular pathways involved
in the pathogenesis of TC such as MAPK, PI3K/PTEN/AKT, TSH-R, and mTOR/p70S6K. To date,
many etiopathogenetic features of TC still remain unknown.

Recently a relationship between the circadian clock machinery function and TC has been
proposed [5-10]. During evolution, organisms have developed biological clocks to better adapt
to various rhythmic events such as daily and seasonal fluctuations. Circadian rhythms are generated
by a central clock located in the brain’s suprachiasmatic nuclei and by multiple peripheral cellular
clocks [11]. A 24 h cell-autonomous circadian clock, virtually present in all cells of the body, regulates
several physiological functions, including endocrine rhythms [12].

Disruption of the circadian timing system caused by circadian misalignment such as shift work,
chronic jet lag, high fat intake, inappropriate eating times, and abnormal sleep patterns could be
responsible of insulin resistance, diabetes mellitus type 2, obesity, metabolic syndrome, cardiovascular
diseases and several types of cancers, including TC [13-15]. Conversely, proper coordination of
circadian behavior and sleep homeostasis may improve several conditions including insulin resistance
and overall metabolic fitness [16,17]. The molecular mechanisms linking circadian clock disruption
and TC are still unknown but could be, at least in part, insulin resistance. Indeed, this metabolic
alteration is associated with a well-known risk factor for TC i.e., hyperthyrotropinemia [18-20] which,
in turn, has also been associated to sleep disturbances [21]. Alterations in the rhythmicity of thyroid
stimulating hormone (TSH) secretion and hypothalamic-pituitary-thyroid (HPT) axis function as
well as modifications in genes controlling the cell cycle, apoptosis, DNA damage, inflammation,
and immune response are the main mechanisms proposed to mediate circadian-related thyroid
disorders [22,23]. Furthermore, variants of various clock genes (PER2-3, CRYs, BMAL1, REV-ERBs and
RORs) and strong changes in their expression profile have been found on thyroid nodule malignant
transformation and have been proposed as potential biomarkers for thyroid nodule pre-operative
diagnostics [5,7,8]. Although at present fine-needle aspiration biopsy (FNA) represents the gold
standard for the preoperative diagnosis of TC, 20-30% of lesions are indeterminate based on cytological
features [3,24]. However, FNA is unable to distinguish between follicular adenoma and follicular
carcinoma [25-29]. Molecular testing of FNA samples is a new strategy that can help to rule in or rule
out the diagnosis of TC, to reduce the use of diagnostic surgery and to better define the prognosis.
Genomic studies of differentiated TC have demonstrated that the most recurrently altered genes are
BRAFV®E RAS and RET/PTC [30]. Over the last several years new molecular alterations (such as gene
fusions, copy number variations, driver mutations, indels, abnormal gene expression, miRNAs) either
entirely novel in this cancer or novel alterations of known drivers have been identified [30-32]. Some of
these molecular markers sometimes coexist with BRAF or RAS mutation influencing fundamental
aspects of TC phenotype and its biological behavior. For example, the combination of TERT mutation
and a BRAF or RAS mutation within the same tumor is associated with low degree of differentiation,
aggressive behavior and high risk of recurrence and mortality [33]. Yet, it has been demonstrated that
BRAFV%E PCTs represent a spectrum of tumors consisting of at least four distinct molecular subtypes
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with different genomic, epigenomic and proteomic profiles, suggesting the presence of molecular
diversity among PTCs [30,32]. At present, the available molecular tests of FNA samples (ThyroSeq
version 3, Afirma Genomic Sequencing Classifier, ThyGeNEXT/ThyraMIR and ThyroPrint) allow
one to detect a broad spectrum of molecular alterations [34,35]. Despite the efforts that have been
made over the last decade, the diagnostic and prognostic performance of these molecular approaches
and their applicability in the routine diagnostic laboratory for thyroid nodules, especially those with
indeterminate cytology, are poor and require further validation [36]. Expanding the existing tests
by incorporating further reliable preoperative markers predictive of malignancy for suspicious or
indeterminate thyroid nodules and/or of disease progression, in combination with the already known
molecular alterations and clinical examination, would enhance the diagnostic performance of molecular
testing and could have great clinical importance.

In this review, we explore the relationship between disrupted circadian clock machinery and TC.
We first describe the mechanisms controlling the circadian clock functions and its involvement in the
cell cycle, stemness and cancer. The molecular mechanisms underlying thyroid tumorigenesis will
then be summarized. Finally, the scientific evidence supporting the possible biological link between
the disruption of circadian clockwork and TC development/progression and its potential role for the
TC prevention and treatment will be discussed.

2. Circadian Clock

2.1. Regulation

All living organisms have developed an internal circadian system oscillating within a period of
roughly 24 h in order to adapt to environmental cues. This system is composed of two components:
a central master clock and peripheral clocks, all of which are developmentally regulated [11]. The central
clock is located in the anterior hypothalamic suprachiasmatic nucleus (SCN), as suggested by the
observation that SCN lesions disrupt circadian rhythm, while SCN transplantation restores it [37,38].
The SCN is composed of thousands of neurons, which contain a cell-autonomous circadian clock with
a specific thythm [39,40]. The SCN entrains to environmental light-dark cycles sending signals to the
peripheral clocks of each tissue and of almost all of the cells in the body [41] to control rhythms in
physiology, metabolism, behavior, immune, hormonal and neural functions [12].

At the molecular level, the core pacemaker of each clock is regulated by a set of genes named “clock
genes”, which control the cycling of mRNAs and proteins, called “clock-controlled genes (CCGs)”,
through positive or negative transcriptional/post-transcriptional feedback loops [42]. Many CCGs
are involved in important physiological and pathophysiological networks and signaling pathways
regulating tissue and organ functions. Therefore, the disruption of the circadian clocks in the body
could contribute to develop different pathological conditions. Indeed, shift workers who live in a
chronic state of circadian misalignment, show an increased prevalence of many diseases including
insulin resistance, cardiovascular disorders, gastrointestinal disturbances, depression, neurological
alterations, and cancer [11,43] (Figure 1).

In mammals, the circadian clock molecular machinery includes several genes, among which
are the following: CLOCK, BMAL1, NPAS2, Per1-2-3, CRY1-2, DEC1-2, REV-ERBa, RORa, CKle,
CK16 and TIM [40,41,44]. The central elements are represented by BMALI1, CLOCK and NPAS2.
They form the positive control loop of the circadian clock. In the nucleus, BMAL1/CLOCK and
BMAL1/NPAS2 heteromize and activate the transcription of other clock genes such as CRY, PER
and DEC, which translocate to the cytoplasm. In turn, phosphorylated PERs/CRYs cytoplasmic
heterodimers are transported back into the nucleus. PER and CRY proteins, present in the nucleus,
inactivate BMAL1/CLOCK and BMAL1/NPAS2 complexes repressing their own transcription as well
as the transcription of DEC1-2 and REV-ERBa-RORa, thereby closing a negative feedback loop [45-47].
DEC1 and DEC2, by binding to the regulatory DNA core enhancer sequences “CANNTG” of their
promoter, directly inhibit their own transcription [48]. RORa and REV-ERBa constitute a supplementary
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loop, which acts through RORE elements present in the BMALI promoter to activate or inactivate
BMALI transcription, respectively. A further modulation of the nucleocytoplasmic shuttling of all these
core clock components is represented by the protein kinases CK1e and CK16, which phosphorylate
elements belonging to both positive and negative loops [49,50]. Post-translational and transcriptional
modifications such as acetylation, methylation, SUMOylation and ubiquitination contribute to regulate
the oscillating of the clockwork circuitry [51,52].
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Figure 1. Effect of circadian rhythm disruption on body health. Circadian alignment is associated

with wellness and body health. Circadian clock malfunctioning induced by genetic factors (clock
gene mutations) and/or environmental factors (inappropriate light exposure, sleep restriction, jetlag,
shift work, irregular food intake) can lead to the development of several disorders including cancer,
diabetes, cardiovascular disorders, endocrine diseases, inflammation, mental disorders, immune system
alterations and reproductive disorders.

2.2. Circadian Clock and Cell Cycle

Recent evidence has highlighted a connection between the circadian clock and cell cycle machinery
in healthy and pathological states. The physiological circadian-dependent regulation of cell cycle phases
is suggested by the observation that cell cycle progression occurs at specific times of the day/night
rhythm [53]. Furthermore, several proteins controlling G1/S and G2/M phases as well as checkpoints
involved in DNA repair after damage are rhythmically expressed and regulated by CCGs [54,55].
For instance, P21 WAF1/CIP1, a negative regulator of G1/S phase progression, is alternatively activated
or repressed by RORo and REV-ERBg, respectively [56]. These two proteins bind the same RORE
element in the P21 promoter leading to the activation or inhibition of the CDK2/Cyclin E complex
and, consequently, G1/S progression. The expression of another component of cell cycle machinery,
CyclinD1, is indirectly regulated by PER1 and PER2 genes by inhibiting the transcription of c-MYC.
In fact, PER1-2 ablation abolishes c-MYC repression, resulting in elevated cyclin D1 expression, G1/S
progression and, therefore, cell proliferation [57]. In contrast, overexpression of PER2 induces cell cycle
arrest [58]. PER2 is also involved in the regulation of p53 stability [59,60]. PER2 directly associates
with p53 and with its negative regulator MDM-2. The formation of this trimeric complex in the
nucleus impairs MDM2-mediated ubiquitination and degradation of p53, resulting in p53 stabilization.
On the other hand, p53, acting as a direct competitor of the BMAL1/CLOCK binding to PER2 promoter,
represses PER2 gene expression [61]. However, high levels of BMAL1/CLOCK or BMAL1/NPAS2
activate the expression of the tyrosine kinase WEE1, which inhibits CDK1/Cyclin B complex and
represses G2/M transition. Conversely, CRYs repress WEE1, favoring cell proliferation [55]. PER1
and TIM, by acting as co-factors or adaptor proteins, lead to the activation of Ataxia Telangiectasia
Mutated (ATM) or Ataxia Telangiectasia and Rad3-related protein (ATR) [18,54,62], which in turn
activate Checkpoint kinase 1 (CHK1) and Checkpoint kinase 2 (CHK2). Phosphorylated CHK1 and
CHK?2 are responsible for cell cycle arrest and apoptosis by the inactivation of CDKs [63,64]. All these
molecular interactions may represent a regulatory link between the cell cycle, p53-mediated cellular
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damage response and the circadian clock-regulated cellular pathways. The disruption of cell cycle
regulation as a consequence of circadian clock rhythm perturbation could lead to uncontrolled cell
division and, consequently, to the development of cancer.

2.3. Tumor Suppressor or Oncogene: The Janus Face of the Circadian Clock Machinery

Circadian clock function and cancer are interlinked. The synchronized circadian clock is
an important tumor suppressor, while disruption of clock genes affects tumor development and
cancer susceptibility [65-68]. Although several in vitro and in vivo studies support this observation,
the molecular connections and the relationship between clockwork and cancer are still not well
understood and remain controversial [69]. For instance, PER1 and PER2 behave as tumor suppressors
in vivo [57]. Mice bearing the PER2 mutation and lacking circadian rhythm show increased incidence of
malignant lymphomas and an increased rate of mortality after ionizing radiation relative to wild-type
controls. This tumor promoting effect is likely due to decreased BMAL1 expression and consequent
increased c-MYC expression [57,70]. However, other findings have shown that deficiency in PER genes
(PER1 or PER?2) has no effect on the rate of spontaneous and radiation-induced carcinogenesis [71].

Conversely, PER2 overexpression causes growth inhibition, apoptosis and cell cycle arrest in
different cancer cell models [72-74]. Altered expression of PER1, PER2 and/or PER3 have been reported
in colorectal, pancreatic, gastric, oral, breast, prostate, bladder, renal, and non-small cell lung cancers,
as well as in glioma, hepatocellular carcinoma, head and neck squamous cell carcinoma and myeloid
leukemia [75-87].

With respect to the other components of the core clock, CRY mutant mice lacking circadian
rhythm [88] have a faster rate of implanted tumor growth, more susceptibility to ionizing
radiation-induced cancer, and increased morbidity and mortality, likely due to defective cell cycle
checkpoints and DNA repair ability [89,90]. However, the increased predisposition of arrhythmic
CRY—/- mice to spontaneous and DNA damage-induced cancers has not been confirmed by other
studies. Gauger et al. have showed that CRY double knockout (DKO) mice behave similarly to
wild-type controls with respect to spontaneous and radiation-induced morbidity, mortality and
cancer [70]. Similarly, fibroblasts derived from the CRY mutant mice have the same sensitivity to
ionizing and UV radiations and the same cellular response to DNA damage, compared to wild-type
control fibroblasts [70]. On the other hand, later studies demonstrated that CRY1—/—; CRY2—/—
deficient mice in a p53—/— background showed an increased survival and protection from tumor
development [91]. However, CRY mutation makes RAS-transformed p53 null cells, but not p53 wild
type cells, more susceptible to apoptosis [92,93].

Unlike CRY DKO mice, loss of CRY2 alone induces increased tumor burden and enhanced
susceptibility to transformation [94], supporting an unexpected function of CRY?2 in contributing to
circadian protection from tumor formation.

Furthermore, recently it has been demonstrated that CRYI1 and CRY2 exert opposite roles
in modulating transcription of several factors, such as c-MYC, in response to DNA damage [95].
The discrepancies observed among various studies may be attributable to several reasons: the real
divergent roles of CRY1 and CRY2; the different genetic backgrounds of mice; the severity of the
circadian clock disruption caused by CRY knockout; the establishment of homeostatic mechanisms;
the cooperation between CRY2 deficiency and multiple oncogenes in the control of proliferation
and transformation.

The other central component of clock machinery, BMALI, has notoriously been considered a tumor
suppressor gene. However, as seen for other circadian clock genes, there are different findings from
different laboratories showing both pro- and anti-cancer effects of BMALI KO mutation. Some studies
have demonstrated that downregulation of BMALI gene expression promotes cancer cell proliferation,
invasion, and tumor growth and decreases apoptosis induced by DNA damage [96-98]. Conversely,
BMALLI overexpression has been seen to inhibit cell proliferation, invasiveness and to increase sensitivity
to anticancer drugs [99-101]. In support of the anticancer effect of this clock gene, whole-body or
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organ specific KO of BMALI in mice has been associated with increased lung cancer and hepatocellular
carcinoma [102,103]. In contrast to these data, BMALI KO has been found to suppress proliferation and
anchorage-dependent and independent clonal growth of malignant pleural mesothelioma cells [104].
Similarly, BMAL1 KO decreases apoptosis of murine colon cancer cells and fibroblast cells in response
to chemotherapeutic drugs [98]. However, a study by Puram et al. has shown that genetic deletion
of BMALI results in suppression of leukemia formation [105]. The opposite and divergent effects
of BMAL1 on carcinogenetic mechanisms have recently been confirmed in untransformed MCF10A
and in invasive MDA-MB231 breast epithelial cell lines. In these cellular models, BMALI deletion by
CRISPR technology induced apoptosis in response to genotoxic agents but at the same time increased
the invasive potential of MDA-MB231 cells. Altogether these results suggest that BMJALI may exert
both protective and pro-tumor effects based on the different cellular contexts and on the activation of
circadian dependent or independent functions of the BMALI gene in different organs [106].

Similar to BMALI, studies on the role of the CLOCK gene in carcinogenesis have often been
contradictory. A study by Lee et al. [89] found that CLOCK A19/ A19 mice had enhanced tumorigenesis
under basal and irradiated conditions in contrast to other studies showing that CLOCK gene deletion
in mice did not increase the incidence of cancer [54,71]. In support of the pro-tumor role of the CLOCK
gene, other evidence found that CLOCK knocking-down decreased cancer proliferation, progression
and invasion as well as expression of several cancer-associated genes [107,108]. These pro-tumor
effects of the CLOCK gene are likely due to its transcriptional functions as well as to its intrinsic histone
acetyltransferase (HAT) activity [109]. Through this HAT activity, CLOCK may play a pivotal role in
chromatin remodeling and in modulating the activity and the transcription of proteins involved in cell
cycle control and DNA damage response, thereby influencing cancer development [110]. For example,
in breast cancer, CLOCK may modulate estrogen receptor-« mediated gene expression using its HAT
activity [110].

Epidemiological evidence supports the possibility that disruption of the circadian clock periodicity
may be implicated in increased cancer risk and in the progression of the disease [111,112]. As suggested
by different independent studies and meta-analyses, night workers, shift workers or people often
subjected to jet lag or to prolonged light exposure during the night, present an increased incidence
of breast [113-128], prostate [129-139], colon [40,140,141] and endometrial epithelial cancers [142],
as well as non-Hodgkin’s lymphoma [143]. Furthermore, cancer patients with altered circadian rhythm
have poorer survival compared to those with normal circadian clock periodicity [144]. All these
epidemiological studies strongly suggest that the lack of circadian rhythm homeostasis contributes
to cancer risk, cancer development and progression. In light of these results and based on sufficient
evidence from experimental animal models, the Agency for Research on Cancer has classified “shift
work with circadian clock desynchrony” as a potential carcinogenic to humans (group 2A) [145,146].

Several plausible hypotheses have been proposed to explain the link between circadian clock
disruption and cancer, among them: the suppression of nocturnal peak of melatonin after exposure to
light at night; immune system alterations as a consequence of sleep deprivation; shift in the ratio between
anti-tumor and pro-tumor cytokines, induction of inflammation response, modifications in the levels of
appetite-regulating hormones, internal desynchronization and disturbances in the regulation of several
clock genes controlling the cell cycle, apoptosis, DNA damage repair and cell proliferation. However,
further studies are needed to better investigate the different day/night alternation systems, sleep
patterns, chronotypes, measurement of biomarkers, presence of polymorphisms or other abnormalities
in clock genes in order to discover new potential prognostic markers and novel therapeutic targets for
specific cancers [66,139,147,148].

2.4. Circadian Clock and Stemness

A large body of evidence has shown that the circadian clock influences stem cell biology, lineage
commitment, tissue regeneration and aging [149]. The core of the clock machinery, including CLOCK
and BMALI genes, is common to different organs and tissues, while the resulting rhythmic and
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phased transcription of peripheral output clock genes controlled by the central core circuitry is highly
tissue-specific. The functional integrity of both central and peripheral clocks and the tissue-specific
gene expression programs meet the physiological needs of every organ, thereby ensuring tissue
homeostasis and adaptation to the circadian rhythm of the environment. Perturbation of physiological
circadian clock equilibrium has been implicated in several processes of tumorigenesis, even at early
stages of its development [149-152].

In vitro and in vivo studies have demonstrated that regulation of circadian clock programs is
different in pluripotent stem cells, adult stem cells and differentiating cells. Pluripotent embryonic
stem cells (ES), although expressing most of the clock genes at low levels, lack a rhythmic clock
system [150,153,154]. The diurnal oscillatory network starts to be gradually activated during the
differentiation process [149,150]. Conversely, reversing differentiation through reprogramming
processes decreases rhythmicity of the expression of clock-related genes [154]. It is still unknown
whether clock factors expressed in ES exert a role in stem cell maintenance. BMALI, CLOCK, and PER2
KO mice are not embryonically lethal [11,155,156] but they show premature aging and age-related
diseases [155]. As suggested by Dierickx et al., it is plausible that the different level of clock factor
expression at embryonic stages compared to differentiated cells might exert an unrelated clock
function during embryonic development, which becomes important and prevalent at later stages in
life [149]. Adult stem cells, unlike ES, possess a functional circadian clock [152], which guarantees
stem cell proliferation and self-renewal, thereby facilitating tissue homeostasis, regeneration and a
stress-associated response [157].

In fact, disruption of the clock components PERs, CLOCK and BMAL1 has been shown to affect
regulation of hair follicle bulge stem cell cycling [158], cell-intrinsic keratinocyte differentiation or
proliferation responses [159-162], epidermal wound repair [163], myocardial response to infarction [164],
lung response to pro-inflammatory cues [165], hematopoietic system replenishment [166,167], intestinal
stem cell renewal and intestinal epithelial regeneration especially after damage from gastrointestinal
disease [168-171].

Dysregulation of the circadian network has also been implicated in cancer stem cell biology.

Targeting BMAL1/CLOCK machinery using small molecule agonists of CRY and REV-ERB,
induced a synergistic anti-proliferative effect in glioma stem cells (GSCs) [172]. The oncogenic role for
circadian clock activity in the cancer stem cell compartment has been confirmed by other observations.
For instance, PER2 mRNA and protein expression was down-regulated in glioma stem cells (GSCs)
compared to non-stem glioma cells, while PER2 overexpression induced GSC cell cycle arrest at the
G0/G1 phase and suppression of proliferation, a stem cell-like phenotype and invasion capability by
targeting the Wnt/f3-catenin signaling pathway [173]. However, PER1/2 expression correlates with
WHO grading of glioma, being downregulated in glioma tissue compared to normal brain tissue [85].
All these findings suggest that the PER2 gene exerts a potential role in regulating stemness, self-renewal,
cell growth, cell cycle distribution, migration and invasion of GCS in glioma and are consistent with
similar results obtained in colon cancer stem-like cells (CCSCs). In this cell subtype, PER overexpression
inhibits self-renewal properties and chemo-resistance via downregulation of 3-catenin and NOTCH
signaling pathways [174]. Involvement of the core circadian clock genes in stemness has also been
demonstrated in other CSC contexts such as myeloid leukemia stem cells [105], breast cancer stem
cells [175] and in the initial steps of hepatocarcinogenesis [102]. Despite this evidence, some aspects
and control mechanisms of stem/progenitor cell biology by clock machinery still remain unknown
also because they may be influenced by the cellular context, tumor development and differentiation
stages. However, on the basis of the data present in the literature to date, targeting one or more
components of the circadian machinery could represent a new opportunity for the development of
novel anti-cancer therapies.
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3. Thyroid Tumorigenesis

Based on the cell of origin, TC can be divided into two main categories: follicular epithelial
cell-derived carcinomas (>95%) and medullary TC (3-5%) arising from C cells. Tumor arising from
follicular epithelial cells include papillary TC (PTC), follicular TC (FTC), Hurthle cell carcinoma (HCC),
poorly differentiated TC (PDTC) and anaplastic TC (ATC). The last two tumor subtypes are very rare
but more aggressive follicular-derived TCs compared to differentiated TCs [1]. Recently, integrated
genomic, transcriptomic, proteomic and miRNA analysis has been developed to better examine the
molecular mechanisms responsible of the different structural features and behaviors between the
different TC subtypes. Thyroid tumorigenesis classically occurs through a multistep dedifferentiation
process, which starts from well-differentiated TCs and proceeds through poorly differentiated to
anaplastic carcinoma. According to this model of tumorigenesis, constitutional activation of the MAPK
signaling pathway via RAS, BRAF mutations and/or RET/PTC rearrangements and Paired-box gene
8/Peroxisome Proliferator-Activated Receptor gamma (PAX8/PPARy ) fusion transmit growth signals to
normal thyrocytes, thereby playing a driver role in their malignant transformation. The most common
molecular alteration includes the mutation in the BRAF gene, which appears activated in 35-60% of
PTCs [176]. Rearrangements of RET gene (RET/PTC) (especially RET/PTC1 and RET/PTC3) are specific
molecular alterations present in 5% to 30% of PTCs [176]. The follicular variant of PTCs usually
harbor RAS mutations or PAX-8/PPAR-y translocations [177-179]. However, several other molecular
alterations including abnormal gene expression, point mutations, copy number changes, gene fusions
in components of other survival-signaling cascades, such as TSH-R, PI3-K/Akt, mTOR, and the IGF
pathways have been identified as potential contributors to TC development and progression [180-185].
For instance, roughly 40% of well differentiated TCs and more than 50% of highly aggressive TCs
carry PTEN downregulation or gene silencing [186]. Point mutations or copy number alterations
of PIK3CA and Protein Kinase B (PKB also known as AKT) are present in ~23% of ATCs sometimes
coexisting with either RAS or BRAF mutations [185]. A proportion of TCs, showing an aggressive
behavior, often overexpress components of the IGF system such as insulin receptor isoform A (IR-A),
insulin-like growth factor-2 (IGF-2) and insulin-like growth factor-1 receptor (IGF-1R) [187]. Indeed,
overexpression of IR-A and the activation of IR-A/IGF-2 loop is a feature of PDTCs, ATCs or stem-like
TC cells [188,189] and it is associated to resistance to some targeted therapies [190,191]. The functional
interactions between the IGF system and other molecules, such as the non-integrin collagen receptor
discoidin domain receptor 1 (DDR1) and the receptor for the hepatocyte growth factor (HGF) MET,
may amplify the biological response to insulin, insulin-like growth factors (IGFs), and HGF contributing
to favor TC initiation, progression, de-differentiation and metastatic features [192-200]. Much evidence
has suggested that overactivation of the IR/insulin axis, present in different metabolic disorders
characterized by insulin resistance and hyperinsulinemia, plays a putative role in TC tumorigenesis
being associated with TC increased risk and worse prognosis [4,201]. In addition, mutations in p53
family members, TERT promoter, ATM, RB1, MEN1, NF1, NF2, SWI/SNF, mismatch repair genes,
and histone methyltransferase have been associated with tumor de-differentiation process and tumor
progression [202-210].

According to the classical multistep carcinogenesis model, accumulating multiple alterations
of some of the above-mentioned molecular components are responsible for TC heterogeneity and
the transition from well differentiated normal thyrocytes to well differentiated TC subtypes and
finally, to most undifferentiated ATCs. Recently, an alternative model named “fetal/stem cell
carcinogenesis hypothesis” has been proposed [211]. According to this new model, mutations
or epigenetic alterations of normal thyroid adult stem cells or their committed progenitors present
within the thyroid gland, induce their malignant transformation toward specific TC stem cells (TCSC),
which, in turn, become the potential origin of distinct TC histotypes and the cells responsible for
tumor progression, therapeutic resistance and recurrence [212]. Therefore, this last model regards
the thyroid carcinogenesis process as an abnormal development of fetal-like thyroid cells, instead
of de-differentiation of normal thyrocytes [213]. Preclinical data have shown that several pathways
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regulating self-renewal, proliferation and differentiation abilities are deregulated in TCSC. Alterations in
the insulin/IGF system components, including increased expression of IR-A, IGF-1R, and IGF-2, and as
a consequence, over-activation of the IR-A/IGF-2 autocrine loop have been found in TC stem/progenitor
cells derived from PDTCs [214]. These results suggest that the IGF system may also be involved
in follicular thyroid precursor regulation and biology. Other well-studied molecular alterations
present in TCSCs include RET/PTC and Pax8/PPAR-y rearrangements as well as deregulation in the
MAPK pathway or Wnt/B-catenin, NOTCH, Hedgehog, JAK/STAT3 and NFkB pathways [214-217].
Furthermore, TCSCs obtained from undifferentiated thyroid carcinoma show constitutive activation
of AKT, MET, and (-catenin and loss of E-cadherin, TWIST and SNAIL. MET or AKT targeting
repressed the migration and metastatic behavior of thyroid stem cells as well as the expression
of TWIST and SNAIL. These data suggest a role for AKT, MET, (3-catenin and the IGF system in
mediating an aggressive metastatic phenotype of cancer stem cells that is consistent with that shown
by PDTCs [214,218].

Recent evidence suggests that also non-coding RNAs, both microRNAs (miRNAs) and long-non
coding RNAs (IncRNAs), may play a role in thyroid carcinogenesis due to their ability to modulate
target genes involved in several pathological pathways and biological processes such as differentiation,
proliferation, apoptosis, and stemness [219-221]. Sheng et al. have identified miRNA-148a and its
target INOSO0 as crucial regulators of the proliferative and tumor-forming capacity of ATC-CSCs [222].
In another study, the antisense-mediated downregulation of miR-21 has been seen to enhance
differentiation and apoptosis and to reduce cancer stemness features and cell cycle progression of ATC
cells [223]. However, IncRNA-H19 was found highly expressed in cancer stem cells from PTCs where its
depletion significantly reversed E2-induced sphere formation capability and stem-like properties [224].
Similarly, LIN00311 was found upregulated in PTC tissues and cells, where it promoted cancer stem-like
properties by targeting miR-330-5p/TLR4 pathway [225].

Although many aspects of thyroid cancer initiation and progression still remain unclear,
the discovery of TCSCs and signals regulating their biology may provide new insight into the
pathologic mechanism of thyroid tumorigenesis and may open new perspectives in terms of prevention,
diagnosis and therapy. Indeed, targeting TCSCs and/or the signaling pathways and/or the factors
involved in their self-renewal, proliferation and differentiation abilities may contribute to overcome
the resistance to anti-cancer therapies and achieve long-lasting remission.

4. Circadian Clock and Thyroid Tumorigenesis

A large body of evidence has suggested that different components and functions of the endocrine
system, including the hypothalamic-pituitary-thyroid axis, the rhythmicity of TSH and of thyroid
hormones secretion, are driven not only by behavior-associated factors, but also by an intrinsic
timekeeping machinery, including the central hypothalamic clock as well as peripheral clocks [226,227].
The connection between circadian clock and thyroid function is reciprocal. The circadian and ultradian
TSH rhythm, the daily rhythmicity of circulating thyroid hormones T4, Free T4 and T3 are influenced
by sleep-wake homeostasis [21,23,228-230].

In turn, thyroid hormone deficiency or excess may affect the expression of core clock genes and
metabolic clock-controlled genes in several peripheral tissues [231-234]. Similarly to most cells of the
body, a rhythm-generating circuitry composed of a number of clock genes and several autoregulatory
feedback loops has also been revealed in cultured human primary thyrocytes derived from healthy
thyroid tissue [8]. In support of the existence of a thyroid clock, circadian oscillations for core clock
genes have been demonstrated in rats as well as in in vitro synchronized human primary thyrocytes,
which present a circadian period length of about 27 h [8,228]. Different studies, although sometimes
with conflicting results, have demonstrated a possible relationship between circadian clockwork and
thyroid tumorigenesis [5-10].

Insulin resistance could represent a plausible biological link for this association. Indeed, insulin
resistance has been implicated in TC development and progression and it is often increased upon
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circadian clock disruption. Furthermore, this metabolic alteration is associated with an elevation
of serum TSH level, which is, in turn, a well-known risk factor for TC [19,20] and is also increased
upon sleep-wake cycle disturbances [21,235,236]. However, to our knowledge, clinical studies
conducted to better understand this relationship are not available to date. Furthermore, the studies
regarding the association between sleep disorders and risk of TC do not help, because they have
often been contradictory. Indeed, two cohort studies conducted in flight attendants and flight crews
did not support this association [237,238]. Conversely, a large prospective study has indicated that
postmenopausal women affected by sleep disorders showed a significantly increased risk of TC
(HR = 1.44), which was surprisingly limited to non-obese subjects (HR = 1.71) and was not seen in
obese women (HR = 0.94) [239]. These contradictory results suggest that additional clinical studies
with sufficient sample size and strong statistical power are urgently needed to apply and validate these
findings on a larger population. Several in vitro studies have tried to answer some questions in order
to confirm the connection between circadian clocks and TC transformation and to better characterize
the possible biological mechanisms underlying this association.

SNPs or deregulation of several clock genes including PER1-2-3, CRYs, REV-ERBa—f and
RORa—B—y have recently been found associated with a higher risk of TC [14,240]. Increased expression
levels of the circadian clock factor Differentially Expressed in Chondrocyte 1 (DEC1), has been
implicated in TC promotion by the induction of several cell-cycle-related genes [241]. Up-regulation
of BMAL1 and downregulation of CRY2 have been observed in tissue samples from FTC and PTC
nodule tissues compared to benign tissues, which show functional circadian oscillators. Endogenous
transcript analysis of primary thyrocytes established from PDTCs revealed a robust disruption of
circadian gene expression [8]. In particular, PER1 transcripts showed ablated circadian amplitude,
whereas BMAL1, PER2/3 and REV-ERB« displayed a strong phase shift compared to thyrocytes
established from benign nodules. Similar results were obtained using a long-term continuous circadian
bioluminescence oscillation monitoring by transducing BMALI1-luciferase lentivectors into healthy,
benign nodules and PDTC-PTC-derived thyrocytes. These last types of cells showed a robust shifted
or even anti-phasic pattern of BMAL1-luc reporter oscillatory expression compared to healthy and
benign tissue counterparts [8]. These results suggest that the circadian clock machinery is altered
upon thyroid malignant transformation. Similar findings were recently confirmed by a Nanostring
approach in PTC, FTC, and PDTC tissue samples, which showed significant alterations in core clock
genes (BMAL1 and CRY?2) and in other genes related to the cell-cycle and apoptosis [5,7]. In particular,
PER?2 core clock transcript level was found downregulated in oncocytic FTCs and in PDTCs; CRY2 was
significantly downregulated in PTCs and PDTCs, while BMALI was upregulated in PTCs compared to
normal thyroid and benign nodules [5,7]. Based on these alterations in gene expression, a correlation
coefficient for the diagnosis of FTCs has been proposed [7]. Furthermore, distinct molecular profiles
of key components of clock machinery, cell cycle, apoptosis and Wnt signaling were observed for
oncocytic and non-oncocytic FTCs and PDTCs. The more aggressive oncocytic subgroups showed
higher numbers of altered genes compared to their non-oncocytic counterparts, revealing that alteration
levels of several transcripts might correlate to tumor progression [7]. In line with these data, another
study reported an altered expression of REV-ERBoand ROR« genes in PTCs especially in those positive
for BRAF-mutation [242].

Overall these results suggest that circadian clock characteristics are altered upon thyroid nodule
malignant transformation/progression and that changes in clock gene expression profiles may be
potentially employed in clinics as potential biomarkers for FTCs and disease progression (Figure 2).
Despite the fact that this attempt might represent a great potential for the preoperative diagnosis of TC,
further preclinical and epidemiological studies are needed for a rigorous confirmation.

The name and functions of the main genes and corresponding proteins involved in circadian clock
machinery regulation and thyroid tumorigenesis are listed in Table 1.
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Table 1. List describing in alphabetic order name, major putative functions/signaling pathways
of genes and corresponding products involved in circadian clock machinery regulation and

thyroid tumorigenesis.

Gene Name

Protein Name

Function/Signaling Pathway

AKT or PKB (Protein kinase B)

Protein kinase B (PKB)

Survival, proliferation, apoptosis resistance.
PI3K/AKT signaling pathway

DNA damage response, cell cycle, apoptosis,

ATM (ataxia telangiectasia) ATM mitochondrial homeostasis
ATR (ataxia telangiectasia and Rad-3 related protein) ATR DNA damage response, cell cycle. PISK/AKT
signaling pathway
Circadian clock, exercise-induced circadian

BMALI (aryl hydrocarbon receptor nuclear translocator like) BMALI1 regulation, melafconm metabf)hsm and gffects,

bone metabolism, energetic metabolism,

cell stress
. . . Oncogene. Proliferation, differentiation.
BRAF (B-Raf proto-oncogene, serine/threonine kinase) BRAF MAPK/ERK signaling pathway
-MYC C-MYC Proto-oncogene, transcription factor. Cell growth,

apoptosis, differentiation, stem cell self-renewal.

CK1 (casein kinase 1)

CKla-p-y-8-¢ casein kinase 1a-B-y-8-¢)

Tumor suppressor. Circadian clock, metabolism,
DNA damage, cellular stress, cell cycle,
cytoskeleton associated functions.
Developmental pathways

Circadian clock, exercise-induced circadian

CLOCK (clock circadian regulator) CLOCK regulation, melatonin metabolism and effects.
CRYs (cryptochrome circadian regulators) CRY1-2 Tumor suppressor. Circadian clock.
DEC1-2 (differentially expressed in chondrocytes 1-2) DEC1-2 Tumor suppressor. Circadian clock.

INOSO

Chormatin-remodeling ATPase INO80

Cell cycle, cell division, DNA damage, DNA
recombination, DNA repair, mitosis,
chromatin remodeling.

MEN1

Menin

Transcriptional regulator. Telomerase repressor.
Cell proliferation, DNA repair. TGFB1 and
NFkB signaling

MET

Proto-oncogene c-Met

Proliferation, scattering, morphogenesis, survival,
differentiation, angiogenesis. RAS/ERK,
PI3K/AKT, PLC-y/PKC signaling

NF1 (neurofibromatosis Type 1 Protein)

Neurofibromin 1

Tumor suppressor. Cell growth and division.
Ras inhibition. Circadian clock.

Tumor suppressor. DNA damage response.
Negative regulator of cell death. Circadian clock.

NPAS2 (neuronal PAS domain protein 2) NPAS2
Central nervous system
development. Metabolism.
Tumor suppressor. Response to DNA damage.
P53 P53 Cell cycle arrest. Apoptosis. Aging.

Gene expression

PI3KCA (phosphatidylinositol-4,5-bisphosphate 3-kinase
110 kDa catalytic subunit alpha)

Phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha isoform

Catalytic activity (performs the action of PI3K).
Proliferation, survival, migration.
PIBK/AKT/mTOR signaling pathway.

PER1-2-3 (Period circadian regulator 1-2-3)

PER1-2-3

Tumor suppressor. Circadian clock.
Exercise-induced circadian regulation. Melatonin
metabolism and effects. Chromatin DNA binding

PTEN (phosphatase and tensin homolog)

PTEN

Tumor suppressor. AKT/PKB signaling pathway

RAS

RAS

Oncogene. Cell growth, differentiation, survival,
Cell adhesion, apoptosis, migration. MAPK/ERK
and PI3BK/AKT/mTOR pathway

RB1 (RB transcriptional corepressor 1)

Retinoblastoma associated protein RB1

Tumor suppressor. Cell cycle. Chromatin
remodeling. Cell differentiation, cell growth

REV-ERB or NR1D1

Tumor suppressor. Circadian clock.

(nuclenr receptor subfamily 1 group D meniber 1) NR1D1 Mitochondrial bloger}em& Nuclear Receptor
transcription pathway
RET (RET proto-oncogene) RET Proto-oncogene. Protein tyrosine kinase activity.

MAPK signaling.

RORa (RAR related orphan receptor A)

Nuclear receptor ROR-alpha

Tumor suppressor. Circadian clock. Metabolism.
Transcription factor activity.

SWI/SNF (SMARCC1)

SWI/SNF complex subunit SMARCC1

Chromatin remodeling. Transcription regulator

TERT (telomerase reverse transcriptase)

Telomerase reverse transcriptase

Chromosome replication. Telomerase activity.
Transcription regulator

TIM (timeless circadian regulator)

Protein timeless homolog, hTIM

Tumor suppressor. Circadian clock. DNA
replication, replication fork stability

WEE1

WEEI-like protein kinase

Cell division, cell cycle, microtubule
cytoskeleton organization




Cancers 2020, 12, 3109 12 of 26

5
T;»_* x—?:\
<

Thyroid nodule malignant \\\ \ 0‘
transformation and > X A
i / A 04
progression / 4

BV PERs
eI | (.

RORs
REV-ERBs
DECI-2

s iy BMALI
QALY OG> | ccos | Circadian

CRYs

Altered
gene expression profile

f Core loop \ f \
Leasdlorrsd
1

Normal misalignment

S > PERs
) Accessory loop 4 REV-ERBs
: 2 3 RORa
A BMALI < DECI

CLOCK

RORE ) [ | Eavpe CCGs
T CCGs |
\  coomm \  loolevim) \J

Figure 2. Molecular alterations in circadian clock gene machinery during thyroid nodule malignant

transformation and progression. The circadian transcriptional/translation machinery physiologically
acts through a core loop in which CLOCK/BMAL1 activate transcription by binding E-boxes in
the promoters of target genes (PERs, CRYs, REV-ERBs, RORs, DECs, WEE1, c-MYC and other
clock-controlled genes (CCGs)). In the same loop, the negative PERs and CRYs proteins multimerize
and inhibit CLOCK/BMAL1 activity. Clock machinery is also regulated by an accessory loop,
consisting of antagonizing transcription factors such as REV-ERBs (x—f3) and RORs (x—[3—y), which
regulate CLOCK/BMALI gene expression and CLOCK/BMALI-mediated CCGs transcription through
ROR-elements (RORE). During thyroid tumorigenesis, circadian misalignment is associated with an
altered expression of several clock genes and other CCGs controlling cellular and metabolic functions.
These molecular alterations may contribute to thyroid nodule malignant transformation and progression.

5. Conclusions

The connection between circadian clock machinery dysfunction and TC has different clinical
implications in terms of TC prevention, diagnosis and therapy:.

Firstly, circadian misalignment could represent a putative risk factor suspected to play a potential
role in the changing epidemiology of TC. The increased incidence of TC is largely dependent on
modifiable risk factors, such as environmental carcinogens, diet habits, insulin resistance, therapies
and lifestyle modifications [243], which may include circadian misalignment. Sleep disturbances and
disruption in circadian synchronization are spreading worldwide as a consequence of occupational
and personal pressure [11,239].

Chronic disruption of the clockwork has long-term consequences on health becoming a risk factor
for insulin resistance, type 2 diabetes mellitus, obesity, atherosclerosis, cardiovascular diseases and
cancers including endocrine-dependent tumors [11,67,68,147,244,245].

A reciprocal connection between circadian clock and thyroid disorders has been described in
both in vitro and in vivo studies. Chronic sleep deprivation has been associated with disruption of
rhythmic TSH secretion, which, in turn, is linked to an increased incidence of human TC [19,20].
Furthermore, disruption of circadian rhythm has been linked to alterations in gene-related apoptosis,
DNA damage, cell cycle, and stemness, and thereby to carcinogenesis [11,55,67,68,149,246]. However,
some oncogenes such as RAS, which is implicated in thyroid tumorigenesis, induce dysregulation of
circadian clocks in human cancer cell lines [6,247]. In light of this evidence, it is biologically plausible
that circadian clock alterations could represent a potential risk factor of developing TC. However,
so far, no epidemiologic study has been directly addressed in this relationship.

Another concept to be highlighted is that clock gene expression profile could be helpful to improve
the pre-operative diagnostics of thyroid nodules, especially those cytologically indeterminate or with a
follicular pattern. Alterations in the expression profiles of clock genes (i.e. BMALI, CRYs, REV-ERBa
and PERs) and of cell cycle key components have recently been observed in both PTCs and FTCs when
compared to benign nodules or healthy tissue [5,7,8]. Based on these distinct molecular expression
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profiles a predictive score correlation coefficient with high sensitivity and specificity has been proposed
to distinguish between FTCs and benign follicular lesions [7]. The potential use of clock gene expression
profiling as predictive markers of TC provides new insights into the molecular mechanisms underlying
the pathophysiology of malignant thyroid nodules giving important perspectives in scientific and
clinical fields. However, there is an urgent need to launch large prospective studies to confirm this
preclinical evidence.

Last but not least, the synchronization of circadian rhythm and/or targeting clock gene alterations
starting from TC progenitor cells may represent new adjunct therapeutic strategies to improve the
clinical management of TCs especially those developed in insulin resistant patients with circadian
clock disruption. Hyperinsulinemia, present in insulin resistant conditions, may worsen the prognosis
of TC likely by potentiating IR-A/IGF2-dependent mitogenic functions. Dysfunction of circadian
timing leads to an increased risk of insulin resistance-related metabolic disorders [11,245,248-250].
Conversely, pharmacological treatments enhancing circadian rhythm or chrono-pharmacology exert
beneficial effects on metabolic fitness [16,17]. Based on these observations, it is reasonable to expect
that improving insulin resistance through synchronization of circadian rhythm or chronotherapy in
conjunction with a healthy diet, physical activity and conventional anti-cancer therapies, could exert
beneficial effects on prevention and treatment of TCs developed in insulin resistant patients with
disrupted circadian rhythms. However, to date, studies aimed at evaluating the efficacy of all these
therapeutic options as an add-on therapy for patients with TCs in the context of insulin resistance and
circadian misalignment are lacking.
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Abbreviations

ATC Anaplastic Thyroid Cancer

ATM Ataxia Telangiectasia Mutated

ATR Ataxia Telangiectasia and Rad3-related protein
CCGs Clock-Controlled Genes

CCsC Colon Cancer Stem-like Cells

DBP D-box-binding protein

DDR1 Discoidin Domain Receptor 1

DEC1 Differentially Expressed in Chondrocyte 1
DKO Double knockout

ES Embryonic stem cells

FNA Fine-Needle Aspiration

FTC Follicular Thyroid Cancer

GSC Glioma Stem Cells

HAT Histone acetyltransferase

HCC Hurthle Cell Carcinoma

HGF Hepatocyte Growth Factor

HPT Hypothalamic-Pituitary-Thyroid
IGF-1R Insulin-like growth factor-1 receptor
IGF-2 Insulin-like growth factor-2

IGF Insulin-like growth factor

KO Knockout

IncRNAs Long-non coding RNAs
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miRNAs MicroRNAs

PAX8/PPAR Paired-box gene 8/Peroxisome Proliferator-Activated Receptor gamma
PDTC Poorly Differentiated Thyroid Cancer

PKB Protein Kinase B

PTC Papillary Thyroid Cancer

SCN Suprachiasmatic Nucleus

TC Thyroid Cancer

TCSC Thyroid Cancer Stem Cell

TSH Thyroid-Stimulating Hormone
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