Radiotherapy and Oncology, 13 (1989) 203-209 Elsevier

RTO 00508

Relative concentration of astatine-211 and iodine-125 by human fetal thyroid and carcinoma of the thyroid in nude mice

L. M. Cobb¹, A. Harrison¹, N. E. Dudley², T. E. F. Carr¹ and J. A. Humphreys¹

¹Division of Experimental Pathology and Therapeutics, Medical Research Council Radiobiology Unit, Harwell, Didcot, Oxon OX11 ORD, U.K. and ²Division of Surgery, John Radcliffe Hospital, Headington, Oxford OX3 9DU, U.K.

(Received 23 April 1987, revision received 11 March 1988, accepted 10 May 1988)

Key words: Astatine-211; Iodine-125; Thyroid cancer; Fetal thyroid

Summary

The concentrations of ²¹¹At and ¹²⁵I were measured in various tissues in nude mice bearing xenografts of human thyroid tissue (fetal and malignant). The relative concentration of the two halogens was obtained at 4 and 24 h after injection. Samples were taken of the host blood, muscle and thyroid gland and the grafted tissues. The mouse thyroid concentrated ¹²⁵I more efficiently than ²¹¹At but the human grafts concentrated both halogens about equally.

Introduction

Follicular and papillary carcinoma of the thyroid can be treated successfully in many patients with β -radiation from ¹³¹I given orally; but there is unfortunately a percentage of patients in whom insufficient ¹³¹I is accumulated in the tumour to give a useful absorbed dose. Brown et al. [2], reporting on 42 patients treated with ¹³¹I, gave a 35% 5-year survival measured from the commencement of 131 I therapy.

The possibility that one of the α -emitting isotopes of the halogen astatine, ²¹¹At ($t_{1/2} = 7.2$ h), might be of value in the treatment of thyroid cancer is being investigated by us. Biological studies carried out shortly after the discovery of astatine [3] showed that the thyroid gland of subhuman primates and rats selectively accumulated ²¹¹At. Tracer amounts of ²¹¹At were at that time given to eight patients with various thyroid disorders immediately before thyroid surgery [7]. The excised thyroid tissues (normal, hyperthyroid and malignant) showed

Address for correspondence: L.M. Cobb, Division of Experimental Pathology and Therapeutics, Medical Research Council Radiobiology Unit, Harwell, Didcot, Oxon OX11 0RD, U.K.

accumulation of astatine only marginally below that predicted for radioactive iodine. In the study reported here the uptake of ²¹¹At is compared with that of ¹²⁵I in xenografted human thyroid tumour and the likely therapeutic effect of ²¹¹At in man assessed. In addition, the uptake of the two halogens is compared in xenografts of human fetal thyroid – as an example of rapidly proliferating non-malignant thyroid tissue.

Materials and methods

Radionuclides

Astatine-211 (Fig. 1) was prepared by the ²⁰⁹Bi(α , 2n)²¹¹At reaction in the U.K.A.E.A. Variable Energy Cyclotron at Harwell and was supplied in a solution containing NaOH and Na₂SO₃ [11]. Carrier free ¹²⁵I ($t_{V_4} = 60$ d) in a solution of NaOH was supplied by Amersham International P.L.C., Amersham, Bucks., U.K. Aliquots of the ²¹¹At and ¹²⁵I solutions were mixed and diluted with phosphate buffered saline so that the ratio of activities ²¹¹At: ¹²⁵I was 10:1 at the time of intraperitoneal (i.p.) injection.

Tissues for implantation

The thyroid gland was dissected from surgically aborted 18 or 20 week fetuses and either implanted within 6 h of abortion or stored at -196° C in a

Fig. 1. Simplified decay scheme for astatine-211. For an elaboration of the scheme see Jardine [9].

solution of 10% dimethylsulphoxide, 20% fetal calf serum, 70% Ham's F-12 until required. Two moderately differentiated follicular carcinomas (A 208 and A 210) and an anaplastic thyroid carcinoma (A 213) were either implanted within 4 h of surgical excision or stored at -196°C until required for implantation.

Animals and implantation

The animals receiving the xenografts were adult male congenitally athymic MF1/nu/nu/Ola mice. They were fed a diet containing $\sim 1 \mu g/g$ iodine and housed in air-filtered isolators to maintain pathogen-free status. The transplantation was carried out in a sterile environment. Pieces of tissue $\sim 2 \text{ mm}^3$, were implanted subcutaneously in the left flank of each mouse under Penthrane* anaesthesia.

Experimental procedures

Accumulation of ²¹¹At and ¹²⁵I. The term accumulation as used here can be expected to be the net result of uptake, concentration, and release of the two elements by the thyroid and other tissues. The 37 mice (Table I) were injected i.p. with 370 or 740 kBq²¹¹At together with 37 or 74 kBq¹²⁵I and were killed by i.p. sodium pentobarbitone 4 or 24 h later. The grafts, host thyroid and a part of the quadriceps muscle were immediately dissected, weighed and put into phosphate-buffered formalin. Approximately 1 ml of blood was withdrawn from the heart and weighed. All samples were assayed for ²¹¹At and ¹²⁵I in an LKB Compugamma** which measured the 80 keV X-rays emitted during the electron capture decay of ²¹¹At to ²¹¹Po [9] and the X-and γ -rays from ¹²⁵I decay.

The viability of the grafts was assessed by histological examination of haematoxylin and eosin (H&E) stained sections of the formalin-fixed tissues. Only those grafts which were assessed to have more than 70% of their mass as viable fetal thyroid or tumour tissue are reported on in this study.

^{*} Methoxyfluorane B.P., Abbott Laboratories, Queenborough, Kent, U.K.

^{**} L.K.B. Wallac, Turku, Finland.

TABLE I

Concentration of ²¹¹At and ¹²⁵I in xenografts of human thyroid tissue (tumourous and fetal) and in mouse tissues at 4 and 24 h after injection.

Graft	Interval (h) injection to death	Mice (n)	% Injected activity/g tissue Mean ± (S.E.) ²¹¹ At					¹²⁵ I			
			Human tissue	Mouse			Human	Mouse			
				thyroid	blood	muscle	tissue	thyroid	blood	muscle	
Fetal thyroid	4	5	14.9 (4.0)	575 (185)	1.3 (0.2)	0.7 (0.1)	10.4 (8.3)	2330 (756)	0.81 (0.5)	0.21 (0.1)	
Fetal thyroid	24	2	9.3 (5.3)	285 (255)	0.28 (0.1)	0.18 (0.05)	3.9 (2.8)	2510 (1770)	0.05 (0.01)	0.02 (0.01)	
208	4	5†	3.0 (0.3)	408 (157)	1.5 (0.3)	1.8 (0.9)	3.8 (1.1)	2043 (512)	0.77 (0.2)	0.23 (0.09)	
208	24	4†	0.92 (0.30)	285 (51)	0.26 (0.1)	0.14 (0.06)	0.70 (0.4)	2400 (427)	0.02 (0.003)	0.01 (0.003)	
210	4	9	*	522 (162)	1.04 (0.1)	0.49 (0.05)	*	2331 (690)	0.36 (0.07)	0.17 (0.03)	
210	24	4	*	305 (97)	0.20 (0.06)	0.10 (0.03)	*	1035 (308)	0.03 (0.01)	0.01 (0.003)	
213	4	5	3.4 (0.2)	410 (47)	1.1 (0.07)	0.44 (0.04)	0.37 (0.07)	2435 (199)	0.57 (0.10)	0.10 (0.02)	
213	24	3	1.0 (0.5)	408 (159)	0.37 (0.1)	0.17 (0.1)	0.50 (0.36)	3026 (1412)	0.14 (0.10)	0.03 (0.01)	

[†] Two mice from each group given 2.2 MBq ¹³⁴I 17 weeks before the implant in an attempt to ablate the host thyroid.

* Data excluded. Graft contained <70% viable tumour.

Autoradiography. In order to assess the micro-distribution of ²¹¹At autoradiographs (ARG) were prepared of xenografts of A 208 (3 mice), A 210 (5 mice), A 213 (2 mice) and fetal thyroid (2 mice). The mice were killed by i.p. sodium pentobarbitone 4 h after an injection of 0.19 or 3.7 MBq of ²¹¹At. At the point of death the implant was quickly dissected out, snap frozen in liquid nitrogen and the processes of sectioning and exposure to photographic emulsion carried out at -20° C. Sections were cut with a Frigocut freezing microtome* and transferred directly to glass slides which were previously coated with dipping emulsion** or stripping film***. Exposure was made over 4 days. Finally the sections were fixed in 70% ethanol, developed and stained with H&E. The handling at -20° C was maintained until the development of the emulsion which was carried out at room temperature.

Results

Accumulation of ²¹¹At and ¹²⁵I

Histological observations. The grafts grew in most animals. The grafts of A 208 (mean weight $8.5 \pm 1.5 \text{ mg}$) and A 213 (mean weight $66.0 \pm 18.0 \text{ mg}$)

^{*} Reichert-Jung, Slough, Berks, U.K.

^{**} Emulsions K2 and K5 for ¹²⁵I and ²¹¹At respectively Ilford Ltd., Knutsford, Cheshire, U.K.

^{***} Kodak Ltd., Hemel Hempstead, Herts, U.K.

had a histological pattern similar to that of the patient tumour. The A 208 graft was moderately well differentiated, with numerous distinct follicles containing colloid. It also infiltrated subcutaneous fat. The A 213 graft, an anaplastic carcinoma, was sarcomatous with no clear follicular cells. In some mice bearing A 213, the abdominal wall muscle was infiltrated. By contrast, the A 210 xenografts (mean weight 6.5 ± 1.0 mg) used for the accumulation studies were accompanied by a major fibrous reaction to the extent that less than 70% of the graft was viable tumour and therefore the ²¹¹At and ¹²⁵I data for the host tissues are included but not those for the graft.

The fetal thyroid graft (mean weight 10.1 ± 1.6 mg) continued to develop as though still in utero, so that grafts from 18 week fetuses, where follicles at

TABLE II

Ratio of concentration ²¹¹At/¹²⁵I in tissue.

that stage are primitive, showed well developed follicles with colloid after growing in the mouse for 10 weeks. One reason for the wide variation in uptake of both ²¹¹At and ¹²⁵I by the fetal thyroids was because of the wide variation in thyroid differentiation at the time of radionuclide injection — due to the use of thyroid from different aged fetuses and the varying periods of residence under the skin (Table I).

²¹¹At and ¹²⁵I in grafts. The concentrations of ²¹¹At and ¹²⁵I in the human grafts and mouse tissues are expressed as a percentage of the injected activity per gram of tissue and the mean values (\pm S.E.) are listed in Table I. The difference between graft and blood levels of astatine showed an accumulation by the tumour and more so by the human fetal thyroid.

Graft	Interval (h) injection	Mice (n)	Ratio ²¹¹ At/ ¹²⁵ I % Injected activity/g tissue					
	to death		Human tissue	Mouse				
The second s				thyroid	blood	muscle		
Fetal thyroid	4	5	† 10.9 (9.3)	0.25 (0.02)	3.9 (1.8)	6.3 (2.3)		
Fetal thyroid	24	2	2.5 (0.5)	0.10 (0.03)	6.2 (2.4)	8.6 (1.0)		
208	4	5	1.1 (0.4)	0.20 (0.06)	2.5 (0.65)	12.5 (6.6)		
208	24	4	2,4 (0.8)	0.14 (0.05)	- 12.2 (4.8)	14.0 (4.2)		
210	4	9	*	0.28 (0.05)	3.6 (0.5)	3.8 (0.6)		
210	24	4	*	0.29 (0.04)	6.6 (2.1)	10.7 (7.0)		
213	4	5	12.5 (4.3)	0.18 (0.02)	2.5 (0.6)	5,3 (1.5)		
213	24	3	2.6 (1.1)	0.15 (0.06)	3.9 (2.3)	6.8 (2.0)		

 \dagger Ratio ²¹¹At/¹²⁵I for one graft = 44.

* Data excluded. Graft contained <70% viable tumour.

However, the host (mouse) thyroid showed by far the greatest ability to concentrate astatine. The ratio of the concentrations of ²¹¹At:¹²⁵I was calculated for individual tissues in each mouse and the means of these values are listed in Table II. For the follicular carcinoma A 208 the concentration of ²¹¹At was similar to that of ${}^{125}I \sim 3.0\%$ per g at 4 h and $\sim 0.9\%$ per g at 24 h. This result seemed to indicate that the cells of the follicular carcinoma were not distinguishing between ²¹¹At and ¹²⁵I atoms. This was not so with the anaplastic carcinoma (A 213) where at 4 h the uptake of ²¹¹At, 3.4% per g, was similar to the follicular carcinoma A 208 but the ¹²⁵I concentration was low, 0.37% per g, producing a ²¹¹At:¹²⁵I ratio of 12.5 (4.3). At 24 h the ratio was 2.6 (1.1).

²¹¹At and ¹²⁵I in normal mouse tissues. The mouse thyroid gland at 4 h, and to a greater extent at 24 h, discriminated positively in favour of ¹²⁵I. The ratios ²¹¹At:¹²⁵I were ~0.23 and 0.17 at 4 and 24 h respectively. The thyroid uptake of ²¹¹At and ¹²⁵I was significantly above muscle and blood, confirming the ability of this organ to concentrate both halogens. The greater concentration of ²¹¹At over ¹²⁵I in muscle and blood at 24 h indicated that ²¹¹At might be cleared from the body more slowly than ¹²⁵I.

Autoradiography

The ARG of the follicular carcinomas A 208 and A 210 contained large groups of tracks over the malignant follicles strongly suggestive of an accumulation of astatine in colloid (Fig. 2). An approximately adjacent H&E stained section, which did not have ARG emulsion, gave confirmation of the presence of colloid in the areas of clustered tracks.

The selective retention of ²¹¹At by fetal thyroid was illustrated by clustering of tracks over the developing follicles.

An estimate of the absorbed dose to a tumour xenograft can be obtained if the following assumptions are made, (a) the shape of the retention curve for ²¹¹At in the mouse thyroid [8] and in the graft are the same, which means that the accumulated activity is proportional to the ratio of the concentrations

Fig. 2. Autoradiograph of a xenograft of the follicular carcinoma A 210. The clusters of α -tracks indicate the accumulation of ²¹¹At in the tumour follicles 4 h after an i.p. injection of 3.7 MBq ²¹¹At. The bar represents 50 µm.

of ²¹¹At in the mouse thyroid and graft at the time of measurement, e.g. 4 h and (b) the distribution of ²¹¹At within the graft is homogeneous. The retention of ²¹¹At in the mouse thyroid at various times after injection has been measured previously [8] and the absorbed dose calculated to be 9.2×10^{-3} Gy per Bq ²¹¹At injected per g body mass. In respect of (b) the only xenografts showing uniform distribution of ²¹¹At were of the anaplastic thyroid A 213 and in the mice bearing these grafts the relative concentration of ²¹¹At in the mouse thyroid and A 213 at 4 h was 120:1 (410:3.4).

On this basis, the absorbed dose to grafts of the anaplastic carcinoma (A 213) from an injection of 1 Bq ²¹¹At/g body mass would be $\sim 7.7 \times 10^{-5}$ Gy. The absorbed dose required to sterilise the tumour cells with α -particles is not known but the maximum dose that could be achieved in grafts of A 213 would be ~ 4.7 Gy because much greater doses would require the administration of amounts of ²¹¹At that would kill the mouse in a few days. Attempts to arrest tumour growth by administering 61 kBq ²¹¹At/g body mass (the amount required to give an estimated dose of 4.7 Gy to the graft) have not yet been made.

Discussion

Early research into the uptake and retention of ²¹¹At indicated that in rodents it was retained at high levels, but less efficiently than ¹³¹I [6]. In man and subhuman primates however ²¹¹At and ¹³¹I were incorporated into the thyroid gland with equal efficiency [6,7]. The present work supports those findings. The normal mouse thyroid showed a relatively high incorporation of ¹²⁵I compared with ²¹¹At, while in the grafts of human fetal and malignant thyroid the uptake of ²¹¹At and ¹²⁵I are approximately the same.

The fetal thyroid was included in the study to provide information on the ratio of ²¹¹At to ¹²⁵I retained by proliferating, non-malignant human thyroid tissue. Although successful grafts of both human malignant and hyperthyroid tissue have previously been reported [5,12–14] xenografts of fetal thyroid have not. As might be expected the fetal tissue behaved like the human tumour tissues and did not differentiate significantly in uptake between ²¹¹At and ¹²⁵I.

In a review of the results of ¹³¹I therapy, Brown et al. [2] reported a 35% 5-year survival estimated from the time of the first ¹³¹I injection. The patients had been judged suitable for treatment on the basis of an adequate uptake of a test dose of radioactive iodine. Benefit from the use of ²¹¹At in thyroid carcinoma is likely to arise because α -particles have a high linear energy transfer (LET) (80-100 keV/ μ m tissue) and hence can be expected to sterilize tumour cells more efficiently than the low LET β -particles (~0.2 keV/ μ m tissue) produced by ¹³¹I decay. The relative effectiveness of the ²¹¹At α - over ¹³¹I β -particles for sterilizing thyroid tumour cells is not known but it can be expected to be at least 3 [1].

Other factors to be taken into account are the much shorter path length of α -particles, $\simeq 65 \ \mu m$ for ²¹¹ At (in this distance 95% of the energy is absorbed) compared with the longer range of the β -particles emitted by ¹³¹I (90% of the energy deposition occurs within a distance of ~820 μm from the source). This means that for ²¹¹At a more uniform distribution of the radionuclide would be required to obtain significant tumour control.

On the discount side is our relative ignorance of

the radiotoxicity of ²¹¹At. The chemical toxicity would be unimportant because of the high specific activity (74 GBq ²¹¹At/ μ g). Hamilton et al. [6] carried out acute radiotoxicity studies with ²¹¹At in rats and observed depression of lymphocytes as the first sign of toxicity. The long-term effect of a single injection of ²¹¹At was thyroid ablation which has been confirmed in this laboratory in mice.

In man, thyroid tumours, even if differentiated, are usually non-functional and take up little or no 131 I if a significant amount of normal thyroid is present [10]. When the functioning thyroid tissue has been ablated and an abnormally high thyroid-stimulating hormone level attained the optimum conditions exist for tumour uptake of 131 I [4]. In the mouse we were unable to obtain these optimum conditions because effective surgical or radiation ablation of the thyroid and subsequent balanced hormone replacement therapy are very difficult to achieve. Despite these deficiencies, implanted human thyroid tissue showed preferential uptake of both 125 I and 211 At relative to blood.

In conclusion, the present study points to ²¹¹At as a possible candidate for the treatment of those patients with carcinoma of the thyroid in whom other forms of therapy have proved or are likely to prove ineffective.

Acknowledgements

We wish to acknowledge the assistance of Miss S.A. Butler throughout this study, the generosity of the U.K.A.E.A. Harwell Laboratory in assisting with the purchase of the ²¹¹At and the constant advice of Drs. R. Bett and H.E. Sims of U.K.A.E.A.

References

- 1 Basson, J. K. and Shellabarger, C. J. Determination of the RBE of alpha particles from astatine-211 as compared to beta particles from iodine-132 in the rat thyroid. Radiat. Res. 5: 502-514, 1956.
- 2 Brown, A. P., Greening, W. P., McCready, V. R., Shaw, H. J. and Harmer, C. L. Radioiodine treatment of metastatic thyroid carcinoma: the Royal Marsden Hospital experience. Br. J. Radiol. 57: 323-327, 1984.

- 3 Corson, D. R., MacKenzie, K. R. and Segré, E. Artificially radioactive element 85. Phys. Rev. 58: 672–678, 1940.
- 4 Edmonds, C. J., Hayes, S., Kermode, J. C. and Thompson, E. D. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Br. J. Radiol. 50: 799–807, 1977.
- 5 Giovanella, B. C., Stehlin, J. S., Williams, L. J., Lee, S.-S. and Shepard, R. C. Heterotransplantation of human cancers into nude mice. Cancer 42: 2269–2281, 1978.
- 6 Hamilton, J. G., Asling, C. W., Garrison, W. M. and Scott, K. G. The accumulation, metabolism and biological effects of astatine in rats and monkeys. Univ. Calif. Publ. Pharm. 2: 283–343, 1953.
- 7 Hamilton, J. G., Durbin, P. W. and Parrott, M. W. Comparison of acute and chronic changes produced in rats by iodine-131 and astatine-211 at lethal levels. Preliminary clinical data on the uptake of astatine-211 in patients with thyroid disease. Proc. 2nd radioisotope conference, Oxford, England (July 19, 1954). Sponsored by AERE, Harwell. Vol. 1: Medical and Physiological Applications, 1954.
- 8 Harrison, A. and Royle, L. Determination of absorbed dose to blood kidneys, testes and thyroid in mice injected with ²¹¹At comparison of testes mass and sperm number in X-

irradiated and ²¹¹At treated mice. Health Phys. 46: 377–383, 1984.

- 9 Jardine, L. J. Decays of ²¹¹At, ²¹¹Po and ²⁰⁷Bi, Phys. Rev. C. 11: 1385–1391, 1975.
- 10 Maloof, F., Vickery, A. L. and Rapp, B. An evaluation of various factors influencing the treatment of metastatic thyroid carcinoma with I¹³¹, J. Clin. Endocrinol. Metab. 16: 1– 27, 1956.
- 11 Sims, H. E. ²¹¹At and ⁹⁰Y: two nuclides for potential use in tumour therapy-production at Harwell Laboratory. AERE R. 12209, 1986.
- 12 Smeds, S., Anderberg, B., Boeryd, B., Ericson, L. E., Gillquist, J. and Persliden, J. The nude mouse. A possible experimental model for investigation of human thyroid tissue, J. Endocrinol. Invest. 4: 11–15, 1981.
- 13 Vignand, J.-M., Duprez A., Bene, M.-C., Leelere, J., Faure, G., Danchin, N. and Burlet, C. Transplantation of human hyperthyroid tissue to the nude mouse, Am. J. Pathol. 117: 355-359, 1984.
- 14 Wenisch, H. J. C., Encke, A., Schumm, P.-M. and Usadel, K.-H. Establishment and passage of human malignant thyroid tumour xenografts in athymic nude mice. Naturwissenschaften 70: 96–97, 1983.