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Abstract

Background—The mammalian circadian clock and its associated clock genes are increasingly 

be recognized as critical components for a number of physiological and disease processes that 

extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence 

suggests that clinical behavior disruptions that involve prolonged shift work and even space travel 

may negatively impact circadian rhythm and lead to multi-system disease.

Methods—In light of the significant role circadian rhythm can hold over the body's normal 

physiology as well as disease processes, we examined and discussed the impact circadian rhythm 

and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis.

Results—In experimental models, lifespan is significantly reduced with the introduction of 

arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients 

with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a 

result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological 

treatment for these disorders that may lead to impairment of circadian rhythm function. 

Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an 

increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. 

Interestingly, the circadian clock system relies upon the regulation of the critical pathways of 

autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), 

and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as 

well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to 

foster cell survival during injury and block tumor cell growth.

Conclusions—Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that 

control mammalian circadian rhythm may hold the key for the development of novel and effective 

therapies against aging- related disorders, neurodegenerative disease, and tumorigenesis.
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Circadian Rhythm and Clock Genes

The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) that lies 

above the optic chiasm to receive light input from photosensitive ganglion cells in the retina. 

The SCN relies upon the pineal gland, hypothalamic nuclei, and vasoactive intestinal peptide 

to control multiple process such as the release of hormones cortisol and melatonin, oxidative 

stress responses (1), and the regulation of body temperature in the circadian cycle (2-4).

The circadian clock relies upon cellular signals and light input to align itself with solar time 

and oscillate over a twenty-four hour period. This clock receives daily cues from external 

environmental sources that consist of daylight and darkness to drive circadian rhythm. 

Ultimately, the circadian rhythm controls behavior, normal physiology, and cellular 

biochemical transmission in an organism.

Members of the basic helix-loop-helix -PAS (Period-Arnt-Single-minded) transcription 

factor family, such as CLOCK and BMAL1 (5), oversee the expression of the genes 

Cryptochrome (Cry1 and Cry2) and Period (Per1, Per2, and Per3). Negative feedback is 

provided by PER:CRY heterodimers that can translocate to the nucleus to block the 

transcription of CLOCK:BMAL1 complexes. Additional regulatory loops consist of the 

activation by CLOCK:BMAL1 heterodimers of retinoic acid-related orphan nuclear 

receptors REV-ERBα and RORα. These receptors bind retinoic acid-related orphan receptor 

response elements (ROREs) present in the BMAL1 promoter to control transcription with 

RORs activating transcription and REV-ERBs repressing transcription to lead to a circadian 

oscillation of BMAL1 (6, 7).

Circadian Rhythm in Degenerative Disease and Cancer

Neurodegenerative diseases and decreased lifespan have been linked to the function of the 

mammalian circadian clock. In studies with Drosophila melanogaster, lifespan was reduced 

in three arrhythmic mutants involving ClkAR, cyc0 and tim0. In particular, ClkAR mutants 

had significant faster age-related locomotor deficits. Restoring Clk function was able to 

rescue Drosophila from the locomotor deficits. An increase in oxidative stress was noted 

with the mutant phenotypes, but deficits appeared to correlate best with loss of dopaminergic 

neurons (8). In patients with Alzheimer's disease, rhythmic methylation of BMAL1 has been 

found to be changed in the brains of patients with Alzheimer's disease, suggesting that 

alterations in the DNA methylation of clock genes may contribute to cognitive loss and 

behavior changes in individuals with Alzheimer's disease (9). Animal models of Parkinson's 

disease with 6-hydroxydopamine (6-OHDA) also show decreased BMAL1 and RORα that 

persisted with levodopa treatment, indication that long-term levodopa treatment may impair 

circadian rhythm function (10).
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In regards to tumorigenesis and circadian rhythm involvement, TIMELESS, a mammalian 

homolog of a Drosophila circadian rhythm gene, has been found to be up-regulated in 

nasopharyngeal carcinoma and increased TIMELESS expression was associated with 

decreased overall survival. In addition, over-expression of TIMELESS led to resistance to 

cisplatin mediated apoptosis and activated the wingless pathway of Wnt/β-catenin pathway 

(11). Wnt proteins are cysteine-rich glycosylated proteins that oversee processes such as 

neuronal development, immunity, angiogenesis, fibrosis, stem cell proliferation, and 

tumorigenesis (12-14). Wnt and β-catenin signaling can block autophagy (15), apoptosis 

(16), affect sensory modalities (17), and lead to stem cell proliferation (18-20). However, 

these pathways can promote angiogenesis (21-23) and lead to tumor growth (24-29) that 

may align with the proliferative pathways of clock genes such as TIMELESS. On a clinical 

basis, disruption of circadian rhythms with shift work suggests that such duties also may 

increase the risk for developing cancer. Female nurses with long-term rotating night shift 

work had an increased risk for breast cancer (30). In addition, increased expression of the 

circadian gene hClock may contribute to tumorigenesis, such as the metastasis of colorectal 

cancer, through the enhanced expression of angiogenesis-related genes (31).

Circadian Rhythm and the Modulation of Autophagy

Autophagy is a process that recycles components of the cytoplasm in cells for tissue 

remodeling and eliminates non-functional organelles (32-36). The term macroautophagy 

refers to a classification of autophagy that recycles organelles and consists of the 

sequestration of cytoplasmic proteins and organelles into autophagosomes. These 

autophagosomes then combine with lysosomes for degradation and recycling (37, 38). 

Microautophagy describes the invagination of the lysosomal membranes for the 

sequestration and digestion of cytoplasmic components (39). Chaperone-mediated 

autophagy (40) uses cytosolic chaperones to transport cytoplasmic components across 

lysosomal membranes (41).

Autophagy can be involved in a number of degenerative disorders such as Alzheimer's 

disease (42-46), Parkinson's disease (41, 47, 48), Huntington's disease (49-51), and diabetes 

mellitus (12, 18, 33, 43, 52, 53). Importantly, autophagy also can impact cognitive decline 

(12, 54, 55) and aging processes (43, 56-60).

Interestingly, circadian rhythm dysfunction during cognitive loss and aging has been tied to 

the induction of autophagy (61). Studies with Drosophila show that the accumulation of 

neural aggregates observed with aging is associated with a reduction in the autophagy 

pathway. These neural aggregates lead to behavior impairments that can be resolved with the 

maintenance of autophagy pathways in neurons (62). In animal models of Alzheimer's 

disease, a basal circadian rhythm that controls macroautophagy may be necessary to limit 

cognitive decline and amyloid deposition (63). Even mild changes in the external 

environment that affect circadian rhythm may alter cognition. Chronic sleep fragmentation 

has been shown to affect autophagy proteins in the hippocampus (64) that may affect 

memory and cognition (44, 46, 55, 56, 65). In addition, autophagy in the hippocampus is 

depressed during the absence of the PER1 circadian clock protein that may worsen the 

pathology of cerebral ischemia (66).
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Circadian Rhythm, mTOR and SIRT1

The potential of the mammalian circadian rhythm to control cell survival not only relies 

upon autophagy activity, but also upon other cellular signaling pathways that include the 

mechanistic target of rapamycin (mTOR) and the silent mating type information regulation 2 

homolog 1 (Saccharomyces cerevisiae) (SIRT1). mTOR, also known as the mammalian 

target of rapamycin and the FK506-binding protein 12-rapamycin complex-associated 

protein 1 (44), is a 289-kDa serine/threonine protein involved in multiple cellular processes 

that include autophagy. mTOR is the principal component of the protein complexes mTOR 

Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) (42, 44, 67, 68). mTORC1 

contains the components Raptor, Deptor (DEP domain-containing mTOR interacting 

protein), the proline rich Akt substrate 40 kDa (PRAS40), and mammalian lethal with Sec13 

protein 8, termed mLST8 (mLST8/GβL) (27). mTORC2 contains Rictor, Deptor, mLST8, 

the mammalian stress-activated protein kinase interacting protein (mSIN1), and the protein 

observed with Rictor-1 (Protor-1) (17, 42).

mTOR can oversee multiple physiologic and disease processes such as cellular metabolism 

(69, 70), bone formation (71-73), diabetes (35, 43, 74-77), neurodegenerative disorders (37, 

78-83), dementia (12, 84-86), and cancer (25, 27, 87-91). In addition, mTOR has a 

significant role in the modulation of autophagy induction (92). Important in the signaling 

cascade of mTOR is AMP activated protein kinase (AMPK). AMPK can prevent mTORC1 

activity through the activation of the hamartin (tuberous sclerosis 1)/tuberin (tuberous 

sclerosis 2) (TSC1/TSC2) complex and can lead to the induction of autophagy (46, 58, 

93-95).

In light of the close association between autophagy and mTOR, it may come as no surprise 

that circadian pathways are intimately linked to mTOR pathways. Melatonin, a pineal 

hormone that controls circadian rhythm, also relies upon autophagy pathways and mTOR to 

control processes of aging and neurodegeneration (3). Loss of mTOR activation may be 

involved with altered circadian rhythm and cognitive decline during prolonged space flight 

(96). Cerebral ischemic infarction also may be influenced by alteration in circadian rhythm 

genes and fluctuations in mTOR activity (66, 97). In regards to cancer, some studies suggest 

that loss of mammalian circadian clock proteins such as period2 (Per2) can lead to enhanced 

mTOR activity and chemotherapy drug resistance (98).

Pathways of mTOR and AMPK are also linked to SIRT1 (12, 99, 100). SIRT1, a member of 

the sirtuin family, is a histone deacetylase (51, 55, 101-106). SIRT1 can transfer acetyl 

groups from ε-N-acetyl lysine amino acids on the histones of DNA to control transcription 

and is dependent upon nicotinamide adenine dinucleotide (NAD+) as a substrate (105, 

107-110). Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the conversion of 

nicotinamide to nicotinamide mononucleotide through the salvage pathway of NAD+ 

synthesis (70, 73, 108). Nicotinamide mononucleotide is subsequently converted to NAD+ 

by enzymes in the nicotinamide/nicotinic acid mononucleotide adenylyltransferase 

(NMNAT) family.
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SIRT1 is involved in multiple disease processes that include cancer (106, 111-113), vascular 

disease (39, 114-117), altered cellular metabolism (12, 102, 103, 118, 119), diabetes (18, 

120-123), and neurodegenerative disorders (106, 124, 125). Many of these processes require 

the modulation of autophagy by SIRT1 (12, 40, 126, 127). SIRT1 controls stem cell survival 

by modulating autophagic flux (128) and SIRT1 activity is increased in conjunction with 

AMPK to lead to autophagy and cellular protection (129). Importantly, SIRT1 can have an 

inverse relationship with mTOR in embryonic stem cells (58, 70) and block mTOR to 

promote autophagy and protect embryonic stem cells during oxidative stress (130).

In regards to the control of circadian rhythm, SIRT1 may be involved with altered circadian 

rhythm function that affects the development of disorders such as Alzheimer's disease (131). 

Increased SIRT1 activity with a disruption in circadian rhythm also may result in increased 

susceptibility to mammary carcinogenesis (132). Yet, SIRT1 may be beneficial under 

specific circumstances to regulate circadian rhythm gene expression that can foster 

hepatocellular proliferation and liver regeneration following liver resection (133).

Conclusions and Future Perspectives

Located in the SCN, the mammalian circadian clock is emerging as a critical component for 

several disease processes that include aging related disorders, neurodegenerative diseases, 

and cancer. Relying upon cellular signals and light input to align itself with solar time, the 

circadian clock rhythm controls behavior, normal physiology, and biochemical cellular 

signal transduction. Neurodegenerative disorders such as Alzheimer's disease and 

Parkinson's disease may progress in the setting of altered circadian rhythm dysfunction. In a 

similar manner, loss of a proper circadian rhythm may lead to increased risk for 

nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Clinical behavior 

disruptions that involve prolonged shift work and even space travel may negatively impact 

circadian rhythm. At the cellular level, regulation of the pathways of autophagy, mTOR, 

AMPK, and SIRT1 as well as proliferative mechanisms that involve Wnt may be vital for the 

normal physiologic regulation of the body's circadian rhythm. As our knowledge continues 

to expand in regards to the significant role circadian clock genes hold for disease states, 

future targeting of the underlying pathways that control mammalian circadian rhythm may 

hold the key for the development of novel therapies against aging-related disorders, 

neurodegenerative disease, and tumorigenesis.
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