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Abstract Thyroid function ultimately depends on appropriate iodine supply to the gland. There
is a complex series of checks and balances that the thyroid uses to control the orderly utilization of
iodine for hormone synthesis. The aim of our study is to evaluate the mechanism underlying the
effect of iodine excess on thyroid hormone metabolism. Based on the successful establishment of
animal models of normal-iodine (NI) and different degrees of high-iodine (HI) intake in Wistar
rats, the content of monoiodotyrosine (MIT), diiodotyrosine (DIT), T4, and T in thyroid tissues,
the activity of thyroidal type 1 deiodinase (D1) and its (Dio/) mRNA expression level were
measured. Results showed that, in the case of iodine excess, the biosynthesis of both MIT and
DIT, especially DIT, was increased. There was an obvious tendency of decreasing in MIT/DIT
ratio with increased doses of iodine intake. In addition, iodine excess greatly inhibited thyroidal
D1 activity and mRNA expression. T; was greatly lower in the HI group, while there was no
significant difference of T, compared with NI group. The Ts/T4 ratio was decreased in HI
groups, antiparalleled with increased doses of iodine intakes. In conclusion, the increased
biosyntheses of DIT relative to MIT and the inhibition of thyroidal Dio/ mRNA expression and
D1 activity may be taken as an effective way to protect an organism from impairment caused
by too much T;. These observations provide new insights into the cellular regulation
mechanism of thyroid hormones under physiological and pathological conditions.

Keywords Thyroid hormone - Type 1 deiodinase - Monoiodotyrosine - Diiodotyrosine -
Iodine intakes
Introduction

The thyroid’s only clearly established function is to make its hormones, T4 (3,5,3".5'-
tetraiodo-L-thyronine, thyroxine) and T; (3,5,3'-triiodo-L-thyronine). Orderly formation of
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thyroid hormone depends on the proper amount of iodine available. Both iodine deficiency
and iodine excess will lead to thyroid dysfunction. Up to now, significant progress has been
accomplished in understanding the relationship between iodine deficiency and thyroid
disorders [1, 2]. However, the mechanism underlying the effect of iodine excess on thyroid
function is poorly defined. Therefore, it is of great necessity to establish animal models and
make a thorough evaluation of the impact of excessive iodine intakes on thyroid function to
ascertain the nature and significance of this influence.

Recent studies have shown that there is a complex series of checks and balances that the
thyroid uses to control the orderly utilization of iodine for hormone synthesis [3].
Monoiodotyrosine (MIT) and diiodotyrosine (DIT), the precursors of thyroid hormones,
represent the most abundant iodoamino acids in thyroid gland. Therefore, effects of
different iodine intake levels will be reflected by a change in the relative amount of these
iodotyrosines, which will further lead to the fluctuations of thyroid hormones.

In addition, in order for thyroid hormones to exert their effects at the nuclear level, the
prohormone thyroxine (T4) must be transformed intracellularly into its most active form of
metabolites (T3) after deiodination of its outer (5') ring [4, 5]. The deiodinases function at a
prereceptor level in tissues to modulate the concentrations and, thus, the actions of thyroid
hormones [6]. In many different tissues, T4 is converted into T; catalyzed by one or both of
two isoenzymes called type 1 (D1) and type 2 (D2) deiodinases. D1 activity is found in
many tissues, including liver, kidney, and thyroid, etc., while D2 is mainly expressed in the
central nervous system and pituitary [4, 7]. Studies indicate that a great proportion of T, is
deiodinated in the thyroid, generating approximately 40-50% of circulating T; in rats [4, §].
Therefore, D1 plays a very important role in thyroid hormone metabolism [9].

In this study, based on the successful establishment of animal models of normal-iodine
(NI) and different degrees of excess-iodine intake in Wistar rats, the content of MIT, DIT,
T4, and Tj in thyroid tissues, the thyroid D1 activity and its mRNA expression level were
measured. The aim of the present study was to investigate the possible regulation
mechanism by which iodine exerts its effect on thyroid function.

Materials and Methods
Animals

Wistar rats, weaning 1 month and weighting 120-140 g, half males and half females, were
randomly divided into five groups according to body weight and sex (for each group, n=
60): (1) NI, (2) fivefold high iodine (SHI), (3) tenfold iodine (10HI), (4) 50-fold iodine
(50HI), and (5) 100-fold iodine (100HI). They were fed with normal feedstuff (average
iodine content is 300400 pg/kg). Rats in the NI group drank tap water (average iodine
content is 5 pg/L), whereas rats in HI groups drank tap water containing different
concentrations of potassium iodate, and the iodine content in water was 820, 1,845, 10,045,
and 20,295 ug/L, respectively. Then, 3, 6, and 12 months after administration, they were
killed and thyroid glands were excised.

Experimental Protocols

Experiment 1: Reverse-Phase High-Performance Liquid Chromatography of lodotyrosines Rat
thyroid tissue was firstly homogenized in phosphate-buffered saline at 1:20 [weight/volume
(W/V)] dilution and then digested with Pronase E (10% W/V) (type XIV, bacterial from
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Streptomyces griseus, Sigma, St. Louis, MO, USA) at 37°C for 24 h. The hydrolysate was
centrifuged at 12,000 rpm for 10 min. Extraction solution (methanol/aqua ammonium, 99/1
by volume) was added to the supernatant and then recentrifuged at 12,000 rpm for 10 min.
The supernatant was kept for high-performance liquid chromatography (HPLC) analysis.

The HPLC apparatus consisted of a Model LC-6A solvent metering pump (Shimadzu,
Kyeto, Japan), Model 7125 syringe loading sample injector with a 50 pl loop (Rheodyne,
Oak Harbor, WA, USA), a SPD-6AV analytical ultraviolet detector, and a Anastar recorder—
integrator was used to control the chromatographic system and collect data.

Stock 1-mg/ml solutions of MIT and DIT (Sigma) were prepared by dissolving these
iodotyrosines in distilled water. Standard working solutions for chromatography were
obtained by mixing MIT and DIT stock solutions and then further diluted to give
concentrations of 1, 2, 3, 4, 5, 6, 10, 20, and 40 pg/ml, respectively.

Standard working solutions and thyroid extractions were transferred onto the reversed-phase
Kromasil C;g column (5 um, 250%4.6 mm inner diameter, Bohus, Sweden) and successively
eluted with methanol/water (30/70 by volume, contained 0.05 M NaH,PO,, pH=2) solvent
system. Chromatography was continued isocratically for 30 min at room temperature. The
flow rate was 1.0 ml/min. Detection was monitored in a 1-cm flow-through cell at 225 nm.
All the chemicals and solvents used for HPLC analysis were of HPLC grade.

Experiment 2: Absolute Quantitative Real-Time Reverse Transcriptase-Polymerase Chain
Reaction for Diol Transcript Total RNA was extracted from thyroid tissue using the
chloroform—isopropyl-alcohol method with Trizol. The quality of RNA samples was
assessed by electrophoresis through denaturing agarose gels and staining with ethidium
bromide, and the 18S and 28S RNA bands were visualized under ultraviolet illumination.
The extraction yield was quantified spectrophotometrically. Three micrograms of total RNA
for each sample was reverse transcribed using Oligo (dT);g primer and M-MuLV reverse
transcriptase (Fermentas, Burlington, Canada).

The cDNAs were then subjected to polymerase chain reaction (PCR) using the following
thermal profile: 95°C for 10 min followed by 30 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C
for 1 min. All the PCR primers were designed to be intron spanning, using Primer Express
Software version 1.0 (Applied Biosystems, Foster City, CA, USA) and were purchased from
Invitrogen (Carlsbad, CA, USA). The sequence of the primers, spanning 101 bp for Dio/ and
107 bp for Gapdh, was Diol sense primer: 5'-TCGTAGATGACTTTGCCTCCAC-3', antisense
primer: 5-CCGGATGTCCACGTTGTTC-3"; Gapdh sense primer: 5-CATGGCCTT
CCGTGTTCCTA-3', antisense primer: 5'-ATGCCTGCTTCACCACCTTCT-3".

After purification, amplicones were inserted to the pGEM plasmid vector using pGEM®-T
Easy Vector System I (Promega, Madison, WI, USA) and cloned into chemically competent
Escherichia coli. Positive blue colonies were isolated by LB agar plates added with X-Gal
solution. The resulting recombinant plasmid was extracted and purified from transformed
E. coli cell cultures using QIAprep Spin Miniprep Kit (Qiagen, Valencia, CA, USA). Then,
plasmid DNA was linearized by Pwull (Toyobo, Tokyo, Japan) digestion and sequenced to test
the orientation of Dio/ and Gapdh amplicones. To generate the standard curve, plasmid DNA
was quantified by spectrophotometric absorbance readings at 260 nm (A260) and was serially
diluted in nuclease-free water to produce standard template ranging from 0 to 10'° copies/pl.
Plasmid preparations are advantageous because these preparations generate high-quality, pure,
and concentrated standards that can be independently quantified and converted to a number of
copies of target DNA [10].

Real-time quantitative PCR was achieved using SYBR® Premix Ex Taq™ kit (TaKaRa,
Tokyo, Japan) according to the manufacturer’s instructions and was developed on the ABI
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Prism 7500 Sequence Detection System (Perkin-Elmer Applied Biosystems) The reactions
were carried out in 25-pul. mixtures containing SYBR Premix Ex Taq™, 10-uM
concentration of each forward and reverse primer, and ROX™ as a passive reference
dye. Real-time reactions were processed through 40 cycles of two-step PCR, including 10 s
of denaturation at 95°C and 34 s of annealing—elongation at 60°C. At the end, a dissociation
stage was added. In each 96-well plate, the dilution series of the plasmid standard was run
along with the unknown samples. Each sample was assayed in triplicate, in the presence of
no template controls, and the intra-assay coefficient of variation was less than 1%. All
reactions were repeated at least three times independently to ensure the reproducibility of
the results.

The standard curve for the Diol gene was constructed by plotting the cycle threshold
(Ct) values, with 95% confidence intervals, against the logarithm of the initial copy
numbers. Target DNA copy number and Ct values are inversely related, i.e., a sample
containing a high number of copies of the target DNA will cross the threshold at an earlier
cycle than a sample with a lower number of copies of the same target [11, 12]. Therefore,
the absolute levels of Diol in the experimental samples were determined by extrapolating
the Ct values from the linear regression of that standard curve.

Reverse transcriptase-PCR (RT-PCR)-specific errors in the quantification of mRNA
transcripts are easily compounded by any variation in the amount of starting material
between samples [13, 14]. To normalize for differences in the amount of total RNA added
to the reaction, amplification of Gapdh RNA was performed as an endogenous control.

Experiment 3: Thyroid D1 Activity Assay This method was first reported by Hotz in 1996
[15], and we only made a few modifications. In brief, thyroid was homogenized in cold
homogenization solution [10 mM pH 7.0 N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic
acid buffer, 1 mM dithiothreitol (DTT), 320 mM sucrose] at 1:20 (W/V) dilution.
Homogenates were centrifuged at 4°C and 20 ul supernatant was added to 100 ul 37°C
preincubated 1251.rT5 incubation solution (0.005 pM '*ITs, 0.495 puM 5'-L-rTs, 2 mM
DTT, 100 mM pH 7.0 potassium phosphate buffer, | mM EDTA). Total reaction time was
11 min then stopped by adding 200 ul of cold T4/PTU stop solution (10 uM Tg4, 10 uM
PTU). Reactions for each sample began and stopped at 30-s intervals to make sure that the
reaction time for each sample is accurate. Centrifuge filter columns, packed with Dowex-
50w ion exchange resin (Nankai University, Tianjin, China) and fitted with receiver tubes,
were loaded with 256 ul of the reaction mixture and centrifuged (1,500 g) for 10 min.
Columns were eluted with 0.5 ml 10% (V/V) acetic acid, then recentrifuged and re-eluted
as above. The receiver tubes containing the total filtrate were removed and the released
251" was counted in a gamma counter. Protein content was determined by biuret reaction
method. D1 activity was expressed as picomole I released/milligram protein per minute.

Experiment 4: Determination of Total T4 and T3 Content of the Thyroid Gland The level of
thyroid tissue hormones (T3 and T4) was analyzed by the specific RIA kit (Northern
Biological Reagent Institute, Beijing, China). The entire procedure was carried out
following the fabricant recommendations.

Statistical Analysis

SPSS was used to analyze the collected data. Data were expressed as means £ SD.
Difference among groups were examined by one-way analysis of variance followed by a
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Fisher test. LSD or Dunnett’s T3 post hoc test was used when it was appropriate. A P value
less than 0.05 was considered statistically significant.

Results
Reverse-Phase HPLC of Todotyrosines

Separation of Standard Iodotyrosines Figure 1 shows the separation of standard MIT and
DIT within 25 min on isocratic elution with methanol/water (30/70 by volume, contained
0.05 M NaH,PO,4, pH=2). MIT and DIT were separated according to their degree of
iodination by reverse-phase HPLC. With a standard mixture, the retention time was 7.70+
0.13 min for MIT and 19.45+0.15 min for DIT.

Standard Curves Figure 2 depicts the calibration curves (peak areas plotted vs
concentration) for the quantitative detection of MIT and DIT. Each linear calibration curve
is composed of nine points, and each point represents the average of five determinations.
Both MIT and DIT gave good linear response, and very low quantities of these compounds
were detected. The regression coefficients (7%) were 0.9960 for MIT and 0.9936 for DIT.

The analytical sensitivity determined as the minimum detectable amount was 16 ng for
MIT and 40 ng for DIT with the recorder set at a full-scale deflection of 0.02 A. At
maximum sensitivity (0.005 A full-scale deflection), quantitation of the peaks was less
reliable because the baseline became more irregular.

Intra-assay variation from six experiments and interassay variations from one analysis
per day for 6 days were calculated for 2, 10, 40 pg/ml standard working solutions. The
intra- and interassay coefficients of variation ranged from 2.78% to 4.6% for MIT and
1.43% to 4.72% for DIT and from 2.36% to 3.61% for MIT and 3.56% to 5.40% for DIT,
respectively. These data were reproducible if careful adherence to constant HPLC chemicals
and elution conditions were maintained.

HPLC Separation of Rat Thyroid Tissue Extract Using the same conditions as for the
standard curve, we injected the rat thyroid tissue extract onto the column. As Fig. 3 shows,
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Fig. 1 Separation by HPLC of iodotyrosine standards. The column was injected with 50 pl standard
working solutions. The chromatographic conditions were described in the Materials and Methods
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Fig. 2 Standard curve for MIT
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Fig. 3 Separation by HPLC of rat thyroid tissue samples. Using the same conditions as for the standard
curve, MIT and DIT in rat thyroid extract were detected with retention time of 7.800 and 20.067 min.
Tyrosine and tryptophan were eluted at 5.392 and 8.808 min, respectively. Therefore, they did not interfere
with the iodotyrosine assay. The several peaks appeared between 1 and 4 min partly reflected the solvent
front
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MIT and DIT display regular and well-defined peaks. They were detected with retention
times similar to the standards (7.800 min for MIT and 20.067 min for DIT). Although
tyrosine and tryptophan were eluted along with MIT from the resin, these aromatic amino
acids did not interfere with the iodotyrosine assay.

There were also several unidentified peaks that migrated faster (between 1 and 4 min)
than tyrosine, which may partly reflect the solvent front. The thyroid extract obviously
contains some contaminants, but they all come off at the solvent and do not elute near the
iodotyrosines. These unknown peaks may have been the artifacts of the digestion procedure
or protein-resistant peptides and glycopeptides that contained tyrosyl and tryptophanyl
residues [16].

Retention time of MIT and DIT was reproducible and consistent with an array of
sequential experiments of biological samples carried out on the same or different days.
Differences between retention times were always lower than 10 s, permitting a precise
correlation between MIT or DIT peak and its retention. By using internal standards, the
percentage of recovery was determined from 90% to 101% for MIT and from 86% to 106%
for DIT. This demonstrates the reliability of this procedure.

Determination of lodotyrosines in Rat Thyroid Tissue The MIT and DIT content in
biological samples were calculated based on the standard linear calibration curves. As
Fig. 4 shows, compared with NI groups, the biosynthesis of both MIT and DIT was
increased in the case of iodine excess. The amount of MIT reached its maximum in SOHI at
3 months, 10HI at 6 months, and 5HI at 12 months. On the other hand, DIT formation was
relatively favored over MIT formation in HI groups, presented as the tendency of
decreasing in MIT/DIT ratio with increased does of iodine intakes.

Determination of Diol mRNA Level Using Real-Time RT-PCR

Figure 5 shows the real-time PCR standard curve for the Diol gene. A linear relationship
was observed between the input copy number of the template and the Ct values. The
regression coefficients (%) were 0.9997.

The specificities of the products amplified by SYBR Green PCR were monitored by
analyzing the amplification profiles and the corresponding dissociation curves of each
amplicon. Figure 6 provides examples of amplification profile and the corresponding
dissociation curve of the Diol gene product. As expected, a dissociation curve with a single
peak at the melting temperature of the amplicon was obtained.

As Fig. 7 shows, Diol mRNA expression was down-regulated in all HI groups
compared with NI groups. There was a tendency of decreasing in Diol mRNA expression
with increased doses of iodine intake. A significant difference was found in SOHI and
100HI at 3 months, 100HI at 6 months, and all HI groups at 12 months.

Thyroidal D1 Activity Assay

Compared with NI groups, thyroidal D1 activity was decreased in HI groups at three
different months. There was an obvious tendency of decreasing in DI activity with
increased doses of iodine intakes. When fed with excess iodine for 6 and 12 months, rats of
50HI and 100HI have markedly lower D1 activity levels. However, there was no significant
difference between HI groups and NI groups at 3 months (Fig. 8).
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Fig. 4 The content of MIT (a),
DIT (b), and MIT/DIT (¢) in rat
thyroid with different iodine
intakes. Data are shown as

mean + SD. n=>5 rats/group.

P value indicates difference be-
tween groups by analysis of
variance. *P<0.05, **P<0.01, vs
NI groups
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Determination of Total T4 and T3 Content of the Thyroid Gland

In all three different intervention time groups, T; was decreased in all HI groups compared
with the NI groups. Significant difference was found in 10HI, S0HI, and 100HI at 3 months;
SHI and 100HI at 6 months; and 50HI and 100HI at 12 months. However, there was no
difference of T, in thyroid tissue between HI groups and NI group, except for 100HI at 6 and
12 months. T5/T, ratio was significantly decreased at 3 and 6 months (Fig. 9).

Discussion

Iodine is an essential component for the synthesis of thyroid hormones. Thyroid function
ultimately depends on appropriate iodine supply to the gland. Thyroid concentrates iodide
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Fig. 5 Calibration curve for Diol mRNA using the SYBR green PCR analysis. Standard curve plotting the
log of the input amount vs the threshold cycle (Ct) was determined as described in the Materials and
Methods. The threshold cycle represents the PCR cycle at which an increase in reporter fluorescence above a
baseline signal was first detected

from the serum and oxidizes it at the apical membrane, attaching it to tyrosyl residues
within thyroglobulin (Tg) to make MIT and DIT. Then, two residues of DIT couple to make
T, or one DIT and one MIT to make T, all still within the Tg molecule [17]. Though MIT
and DIT are the inactive precursors of thyroid hormones, they contain about two-third of
Tg’s iodine. Under conditions of NI supply and thyroid activity, a Tg molecule contains
about 2.5 residues of T4, 0.7 residues of Ts, 4.5 residues of DIT, and five residues of MIT
[3]. Thus, MIT and DIT represent the most abundant iodoamino acids. Therefore, effects of
different iodine intake levels on the thyroid will be reflected by a change in the relative
amount of these iodotyrosines. A convenient and reliable method is thus required to
quantitate them in thyroid in order to further investigate the effects of iodine intake on
thyroid function and how it possibly works.

However, the quantitation of iodotyrosines, especially from biological samples, has been
a complicated study in the thyroid research field. In the last few years, iodotyrosines have
been analyzed by numerous chromatographic, spectrophotometric, and competitive radio-
assay procedures [18-20]. Among them, HPLC has been more frequently used and gives
better results than any other method due to its high efficiency and reproducibility. Under
various conditions, purified standards of iodotyrosines and iodothyronines have been
separated by HPLC [21-25]. Although these methods may have useful chemical and
biomedical applications, they suffer from a lack of sensitivity and require a relatively large
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Fig. 6 Amplification profiles (a) and dissociation curves (b) of Diol gene. For every SYBR green PCR
amplification described in this paper, samples were routinely analyzed by their amplification profile and the
dissociation curve to ensure the specificity of the intended product

amount of substrate for reliable detection. The more sensitive methods require a previous
treatment, such as derivatization and transformation of the samples [26]. This is time-
consuming and makes it impossible to recover active iodotyrosines for future studies of
biological samples in clinical assays. Therefore, these reported methods were found to be
inappropriate for our needs.
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Fig. 7 The expression of Diol 0.08
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different iodine intakes. The ini- 0.06

tial copy numbers of Dio/ with £ 005

that of Gapdh was compared to g

determine the expression levels of e 0.04

Diol mRNA. Data are shown as 8 0.03

mean + SD. n=6 rats/group. P 0.02

value indicates difference be- 0.01

tween groups by analysis of 0

variance. *P<0.05, **P<0.01 vs NI SHiI 10HI S0HI 100HI
NI groups [3 3 months B 6 months 0 12 months|

The procedure we describe here seems particularly convenient because of its high
sensitivity, reproducibility, and rapidity. Moreover, it needs a very small amount of thyroid
tissue (5 pg) and avoids the use of radio-labeled iodine. To our knowledge, it is the first
time that the tissue concentrations of MIT and DIT were directly measured in rat thyroid. In
this way, this method greatly expands the thyroid researchers’ potential for determining the
biosynthesis of thyroid hormones from iodinated precursors.

On the other hand, MIT and DIT are not the only factors that determine T, and T; levels
in the thyroid. Once T, and T; are removed from the Tg molecule by proteolysis, T4, the
main secretary product of the thyroid gland, is partly converted to its biologically active
metabolite, Tz, by thyroidal D1 before leaving the cell [4, 5]. In fact, the intrathyroid
conversion of T4 to T3 may account for much more of the T; released by thyroid rather than
its de novo synthesis [27-29]. Therefore, it can be ascertained that thyroidal D1 plays a
critical role in regulating the balance of different thyroid hormone species inside the thyroid
gland, although it is still doubtful whether the skeletal muscle D2 activity could be
responsible for a major part of the peripheral T4 to T; deiodination in the rats [6, 30, 31].

Recently, several methods have been used to detect tissue D1 activity [8, 32-36]. The
method described here has been proved to be reliable, reproducible, and sensitive. Sizes as
small as 20 pl of tissue homogenate were used for assay, making this procedure especially
useful for the analysis of small tissues such as thyroid [15].

Results showed in this study indicate that, in the case of iodine excess, the biosynthesis
of both MIT and DIT, especially DIT, was increased. There was an obvious tendency of
decreasing in MIT/DIT ratio with increased doses of iodine intake. In addition, iodine
excess greatly inhibited thyroidal D1 activity and Dio/ mRNA expression. Therefore, as
revealed by thyroid tissue hormone assay, T; was greatly lower in the HI group, while there
was no significant difference of T, compared with the NI group. The T3/T, ratio was
decreased in HI groups, antiparalleled with increased doses of iodine intake. As we know,

Fig. 8 Thyroidal D1 activity in 3.5
rat with different iodine intakes.
Data are shown as mean + SD.
n=6 rats/group. D1 activity was
determined using optimal assay
conditions (see Materials and
Methods). P value indicates dif-
ference between groups by anal-
ysis of variance. *P<0.05 vs NI
groups
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Fig. 9 Thyroid tissue hormone
(a Ts, b Ty, ¢ T5/T,) in rats with

different iodine intakes. Data are
shown as mean = SD. n=10 rats/ 4
group. P value indicates differ- 2
ence between groups by analysis 5,
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the classical effects of thyroid hormones are exerted by binging T; to its specific nuclear
receptors, thereby influencing the expression of target genes. Therefore, the increased
biosyntheses of DIT relative to MIT and the inhibition of thyroidal Dio/ mRNA expression
and D1 activity may be taken as an effective way to protect organisms from impairment
caused by too much T; [37, 38].

Physiologically, thyroid function is controlled by two pathways, i.e., the hypothalamic—
pituitary—thyroid axis regulation and thyroid autoregulation [39]. Our data show that the
fluctuation of iodine intake will first result in the activation of thyroid autoregulation. The
control of biosynthesis of thyroid hormone precursors and conversion of T4 to T is an
effective way to maintain normal thyroid function. Wistar rats exhibit strong tolerance to
iodine excess through adaptation mechanism [40].

In summary, different iodine intakes will impact on MIT and DIT biosynthesis, thyroidal
D1 activity, and Dio/ mRNA expression to different degrees. The experiment needs to be
extended, with a constant eye on how the results translate to the normal physiology of the
intact thyroid. The convergence of biochemical, molecular biological, and nutritional
studies on iodine and thyroid hormone metabolism has yielded considerable advancements
in our understanding of the thyroid function regulation mechanism. We hope our study can
provide new insights into the cellular regulation mechanism of thyroid hormones under
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physiological and pathological conditions, with implications ranging from the basic to
clinical research.
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