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FAM111B gene mutations are associated with a hereditary fibrosing poikiloderma known
to cause poikiloderma, tendon contracture, myopathy, and pulmonary fibrosis
(POIKTMP). In addition, the overexpression of FAM111B has been associated with
cancer progression and poor prognosis. This review inferred the molecular function of
this gene’s protein product and mutational dysfunction in fibrosis and cancer based on
recent findings from studies on this gene. In conclusion, FAM111B represents an
uncharacterized protease involved in DNA repair, cell cycle regulation, and apoptosis.
The dysregulation of this protein ultimately leads to fibrotic diseases like POIKTMP and
cancers via the disruption of these cellular processes by the mutation of the FAM111B
gene. Hence, it should be studied in the context of these diseases as a possible
therapeutic target.
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INTRODUCTION

Mutations of the human FAM111B gene are also associated with a rare multisystemic fibrosing
disease—poikiloderma, tendon contracture, myopathy, and pulmonary fibrosis (POIKTMP, which
is the adopted terminology for this disease) (1–4). FAM111B gene mutations are also implicated in
other clinical manifestations such as progressive osseous heteroplasia (POH) (5), autism spectrum
disorders (6), modification of genes associated with cognitive development (7), nevus of Ota with
choroidal melanoma (8), and mutations of unknown clinical significance/common genetic
polymorphism (9). Furthermore, FAM111B gene mutations correlate positively with increased
cancer predisposition (10–12). Moreover, the overexpression of this gene in cancer cells is associated
with increased cancer progression and poor clinical outcomes (13–16). Although there are about 19
reported FAM111B mutations (Supplementary Table 1) to date (3–5, 10, 12, 17–24), the
physiological function(s) of the FAM111B protein and its dysfunctional role in diseases like
fibrosis and cancers are not well established.
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This review highlighted the recent proposed cellular functions
of the FAM111B protein to provide insights into the molecular
basis of FAM111B protein dysregulation in POIKTMP
and cancers.
FAM111B AS A PROTEASE

Although the FAM111B gene products, specifically the protein,
are not well characterized, various bioinformatics studies have
predicted the presence of a putative trypsin/cysteine protease-
like domain at the C-terminus of the FAM111B protein (2, 14,
25). The functional importance of this trypsin-like protease
domain was demonstrated by Kawasaki et al. (14). A
FAM111B protease domain-deletion construct failed to reduce
cell proliferation in a FAM111B gene knockout cell line.

FAM111B is a paralog of FAM111A, the first member of this
family of proteins, which also has this trypsin/cysteine-like
protease domain (25, 26). FAM111A is a reported DNA-
binding protein and plays an essential role in mitigating
protein obstacles on replication forks by cleaving DNA-protein
crosslinks (DPCs) (26, 27). The interaction of FAM111B with
calpains (calcium-dependent cysteine proteases), specifically
calpain small subunit 1 (CAPNS1) and calpain 1 (CAPN1),
may also suggest the proteolytic function of FAM111B (12).
FAM111B also shares about 45% sequence homology with
FAM111A protein. However, both proteins’ three-dimensional
(3D) structures are unavailable. Structural homology modeling
using the E. coli DegS protease as a template has indicated shared
structural homology most strikingly at the predicted catalytic
domain (25), implying further the function of FAM111B as
a protease.
FAM111B IN THE CELL CYCLE

One of the first published data supporting FAM111 B’s
involvement in the cell cycle was from a multi-omics gene
study, which showed the steady increase in FAM111B
transcript levels during the G1 phase leading to detectable
protein accumulation by the S phase (28). These results were
further supported in a FAM111B-deleted lung adenocarcinoma
(LUAD) cell line. A significant reduction occurred at the S and
G2/M phases, with more cells remaining in the G0/G1 phases
(14). This study suggested further that FAM111B degrades p16
(CDKN2A), a tumor-suppressor protein of the two classic cell
cycle kinases: cyclin-dependent kinases 4 and 6 (CDK4 and
CDK6) (29). These kinases form a cyclin D1-CDK4/6 complex
which phosphorylates the retinoblastoma protein (pRb1) (14,
30). The phosphorylated pRb1 dissociates from E2F, enabling
cell cycle progression from the G1 to S phase (31). Furthermore,
a marked increase of p16 and phosphorylated pRb1 and E2F
expression levels was reported in a FAM111B knockout cell line,
leading to these cells’ lack of progression to S and G2/M and cell
cycle arrest at the G0/G1 phase (14). Insights into the role of
FAM111B protein during the S phase of the cell cycle were also
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provided by discovering the interaction between FAM111B and
DNA-binding proteins like RFC1 (replication factor C subunit 1)
and PCNA (proliferating cell nuclear antigen) (25). The RFC is a
five-subunit protein that assists with loading PCNA into DNA, a
crucial step in DNA replication (32). The disruption of these
replication forks complex proteins: PCDNA and RFC were
reported in FAM111B-dysregulated (overexpressed) and
patient-derived mutant-expressing cells (25). Another study
reported a strong association of FAM111B with G2/M phase
proteins, precisely cyclin B1 (CCNB1), and the dual-specificity
protein phosphatase CDC25C (13). For a successful G2/M
transition, cyclin B must form a complex with CDK1 (a.k.a.
CDC2 or p34). This complex is kept inactive by phosphorylation
of CDK1 and activated by dephosphorylation CDC25C (33, 34).
CDC25C also plays a crucial role in the cell cycle as a checkpoint
protein, especially in DNA damage, thus ensuring accurate
genomic information to daughter cells (35). Hence, a positive
correlation of FAM111B with CCNB1 and CDC25C suggests
that FAM111B promotes cell cycle progression into the mitotic
phase. Moreover, mutations in the FAM111B gene were also
shown to cause replication and transcriptional shutdown,
disruption of microtubule network integrity at the M phase,
and increased apoptosis (25). Hence, the proposed functions of
FAM111B in cell cycle and division are hereby summarized
in Figure 1A.
FAM111B IN DNA REPAIR AND
APOPTOSIS

Mutations in the FAM111B gene are associated with the loss of
genome stability and integrity, suggesting its role in DNA repair
and genome integrity (12, 36). The exact details of how FAM111B
corrects the DNA are yet to be determined. However, given the
possible functional overlap between FAM111A and FAM111B, we
can hypothesize the possible mechanism of repair based on the
known functions of FAM111A. The FAM111A, as a DNA-protein
crosslink (DPC) protease, plays a role in the removal of DPCs that
stall DNA replication (26, 36). DPCs occur when proteins within
the cell become covalently trapped on a DNA strand due to
exposure to endogenous/exogenous (e.g., formaldehyde) and
chemotherapeutic agents. These DPCs interfere with DNA
replication, repair, and transcription, eventually leading to
genomic instability in the form of DNA double-strand breaks
(36). FAM111A, among other DPCs, proteases, and possibly
FAM111B are involved in the proteolytic cleavage of DPCs,
hence forestalling DNA damage, genome instability, and DNA-
damage-mediated apoptosis (25, 26, 36). Following the repair of
DPCs, FAM111B and FAM111A should possibly undergo
autocleavage like the essential mammalian DPC protease, SprT-
like N-terminal domain (SPRTN) (37, 38). Although not well
characterized, this regulatory process is thought to ensure the non-
specific degradation or disruption of protein complexes crucial for
maintaining genome integrity, such as the chromatin-associated
RNA polymerase II (RPB1), PCDNA, or other histone proteins
(25, 36, 39). Its interaction with CAPNS1 further suggests the role
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of FAM111B in DNA repair-CAPN1 [calpain small subunit 1
(Calpain 1)], USP1 (ubiquitin-specific protease 1), and FANCD2
(Fanconi anemia group D2 protein) (12). FAM111B interacts with
CAPNS1, which forms a complex with CAPN1 (i.e., CAPNS1-
CAP1) that stabilizes USP1 deubiquitinase, which, in turn,
modifies FANCD2, an essential protein involved in various
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DNA damage response pathways (12, 40). Furthermore, the
downregulation of antiapoptotic genes such as BCL-2 (B-cell
lymphoma 2) and BAG3 (Bcl-2-associated athanogene 3) has
been reported in FAM111B knockout cells (13, 25). Since there
is evidence suggesting that FAM111B is involved in the DNA
repair pathway and apoptosis (13, 25, 36), this finding begs the
A

B

FIGURE 1 | Proposed role of FAM111B in cell cycle regulation, DNA repair, and apoptosis. (A) G0/G1 phase: active p16 causes cell cycle arrest by inhibiting cyclin
B1 and CDK. When FAM111B is activated, the protease degrades p16, allowing for cell cycle progression. S phase: mutations in FAM111B result in dissociation of
RFC1, PCNA, and RPB1, which are involved in the synthesis of DNA. G2/M phase: FAM111B regulates cyclin B and CDC25C, allowing cell cycle progression to the
M phase. M phase (prophase)- FAM111B mutations disrupt microtubule network integrity. (B) p53 is activated in response to DNA damage induced by DPCs
formation. p53, in turn, directly or indirectly activates downstream signaling proteins, which eventually results in the activation of FAM111B. The active FAM111B,
together with other DNA repair proteins such as FAM111A, responds by degrading the DPCs. FAM1111B will restart the cell cycle through p16 downregulation and
autocleavage upon successful DNA repair. If the repair is not successful, FAM111B will induce apoptosis by downregulating the anti-apoptotic genes/proteins, e.g.,
BCL-2 and BAG3 (B created with Biorender.com).
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possible involvement of other DNA-damage-induced stress
response pathways associated with FAM111B. The answer to the
question was hinted at by Sun et al. (2020) by linking FAM111B to
the p53 signaling pathway using KEGG enrichment analysis (13).
The phosphorylation and activation of the p53 pathway are known
to cause cell cycle arrest, cell senescence, or apoptosis in response
to intracellular stresses such as DNA damage (41, 42). The
FAM111B gene is reportedly enriched in the p53 signaling
pathway, and the knockout of FAM111B reportedly affected the
expression of p53-related genes such as BAG3, BCL-2, and CCNB1
(13). Thus, it is firmly possible that FAM111B is part of the p53
signaling pathway. Interestingly, previous studies have indicated
that the knockout of FAM111B does not affect the p53 gene or
protein expression (13, 14), suggesting that FAM111B operates
downstream of p53. Hence, we propose that FAM111 B’s function
in DNA repair and apoptosis is mediated by the direct or indirect
downstream stream activation of FAM111B by the
p53 (Figure 1B).
FAM111B IN FIBROSIS: HEREDITARY
FIBROSING POIKILODERMA (POIKTMP)

FAM111B gene mutations are associated with POIKTMP, a
hereditary multisystemic fibrosis disorder (2). This syndrome is
characterized by fibrosis in multiple organs such as the skin and
lungs (1, 2); however, the molecular basis of the FAM111B
mutations in this disease remains unclear. Fibrosis results from
excessive extracellular matrix component (ECM) deposition by
activated fibroblasts when trigged by multiple stimuli (43). One
such trigger is chronic from a sustained release of pro-
inflammatory cytokines such as TGFb and IL-13 (44).
FAM111B and FAM111A gene mutations are suggested to result
in the rapid cleavage of both proteins, possibly due to mutational
gain of function of their protease activity (10). This rapid self-
cleaving activity of these proteins, specifically FAM111B in
POIKTMP, could result in the ineffective removal of DPCs or
the disruption/degradation of PCNA-associated proteins like
RFC1 and chromatin-bound RPB1 (36, 39), thus leading to
failure in DNA repair and, ultimately, genome instability.

Furthermore, incomplete DNA repair and genome instability
could result in excessive cell cycle arrest (given the regulatory
role of FAM111B on p16) and ultimately apoptosis which may,
in turn, trigger chronic inflammation due to the incomplete
clearance of apoptotic cells (efferocytosis) by granulocytes (45),
hence the chronic inflammation seen in the various tissues
affected by POIKTMP. Furthermore, chronic inflammation is
known to cause several types of alopecia, such as primary
scarring alopecia (PSA) (12, 46), and may also explain the
alopecia seen in patients with POIKTMP. Interestingly,
mutations in DNA repair genes, genomic instability, and
chronic inflammation play a significant role in other hereditary
disorders like Hutchinson–Gilford Progeria Syndrome (36, 46,
47); Progeria causes clinical manifestations like POIKTMP as
alopecia and joint contractures (46). This information further
supports the view that genomic instability from FAM111B gene
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mutations causes POIKTMP (15, 36). However, the molecular
mechanisms behind how FAM111B gene mutations lead to these
diseases remain elusive.

Alternatively, fibrosis, a key clinical feature of POIKTMP, may
also result from the failure of ECM-producing fibroblasts to
undergo apoptosis after tissue remodeling. Resistance to
apoptosis in idiopathic pulmonary fibroblast, alveolar
macrophages, and impaired re-epithelization due to increased
apoptosis of epithelial cells have been documented as the leading
cause of collagen over deposition, further supporting this
hypothesis (47–50). Moreover, bioinformatics and experimental
studies imply high FAM111B mRNA and protein expressions in
epithelial cells/tissues of cancer and non-cancerous tissues (13, 14,
51). Thus, as described previously, it is conceivable that the low
expression or rapid degradation of FAM111B caused by the
FAM111B mutations could lead to increased epithelial apoptosis
and, consequently, the resistance to apoptosis of adjoining
fibroblasts of the tissues affected by POIKTMP.

Therefore, we proposed that the mutational dysfunction of
FAM111B protein causes POIKTMP by downregulating
FAM111B gene and protein expression that are resulting in
inadequate DNA repair, genome instability, chronic
inflammation, and aberrant apoptosis of the epithelial cells and
fibroblasts of the tissues/organs affected by this disease (Figure 2).
ROLE OF FAM111B IN CANCERS

The overexpression and mutations of the FAM111B gene are
associated with several types of cancers, including pancreatic
cancer, which happens to be one of the most life-threatening
types of cancer (11, 12, 15). In addition, the overexpression of
FAM111B in lung adenocarcinoma (LUAD) patients correlated
strongly with increased tumor progression and poor survival rate
(13, 14). There is, however, no evidence to support the degradation
or clearance of endogenous FAM111B in cancers. Furthermore,
multiple single-nucleotide polymorphisms (SNPs) associated with
prostate cancer localize on chromosome 11q12, which houses the
FAM111B and FAM111A genes (52). Given the possible
involvement of FAM111B in DNA repair (5, 10, 29), the
overexpression of the FAM111B gene can support cancer
progression. One possible explanation could be that the
overexpression of FAM111B results in the non-specific
proteolytic degradation of other DNA-associated proteins such
as histones and replication or transcription factors (e.g., RFC1 and
RPB1) and cell-cycle-dependent proteins (e.g., p16). FAM111 B’s
activity switches on in normal states upon detecting DPCs,
perhaps through p53 signaling. The activation of FAM111B will
then proteolytically cleave the DPCs to repair the DNA. However,
once the repair is complete FAM111B may undergo autocleavage
to prevent itself from cleaving other proteins involved in DNA
metabolism and the cell cycle (29). Therefore, the overexpression
of FAM111B and the non-specific degradation of DNA-associated
proteins may cause genomic instability and dysregulation of the
cell cycle, eventually contributing to cancer predisposition,
development, and progression (Figure 2).
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Furthermore, to salvage genome stability and the apoptotic fate
of cells, the error-prone translesion (TLS) DNA polymerases are
mobilized to replace conventional high-fidelity DNA polymerases,
which can overcome the DPC barrier to DNA replication (36, 53).
This DNA damage tolerance mechanism and the uncontrolled
degradation of tumor-suppressor proteins, p16, could explain why
cancer cells can evade apoptosis. Another possible explanation is
that FAM111B/FAM111A-repair machinery confers some
advantage to cancer cells at later stages of cancer, thus
supporting cancer progression. For instance, in cervical cancer
patients, FAM111B, among other genes, is only overexpressed in
later stages of cancer, and it is associated with distal cancer
progression and metastasis (26, 27, 36). Therefore, it is plausible
that FAM1111 B’s upregulation is an adaptation strategy by cancer
cells as most cancer drugs induce DNA damage by forming DPCs.
In other words, FAM111B overexpression is an attempt to
minimize genomic instability brought about by the formation of
DPCs and conferring resistance to therapy.
DISCUSSIONS AND CONCLUSIONS

Based on the published literature, one can conclude that the
molecular functions of FAM111B include the response to DNA
damage resulting from DPCs, which can stall DNA replication
and cause breaks in the DNA strands and genome instability.
The DPCs are possible triggers for p53 activation, activating the
Frontiers in Oncology | www.frontiersin.org 5
downstream signaling proteins, eventually starting FAM111B
and FAM111A. These two proteins may function individually or
by forming a complex with other DNA repair proteins
(CAPNS1-CAPN1, USP1, and FANCD2) to degrade DPCs to
facilitate DNA repair and resumption of DNA replication
(Figure 1) (25). Furthermore, FAM111B may function with
other DPC proteases, DNA repair, replication, and
transcription proteins to restore genome stability, cell cycling,
and turnover (25, 26, 36). If the repair is successful, FAM111B
will relieve the cell cycle arrest by degrading p16 so that cell
division can resume as normal. Also, FAM111B, as a possible
regulated protease, should undergo autocleavage to prevent non-
specific cleavage of chromatin-associated proteins such as
histones and transcription factors (37). If the repair is not
successful, FAM111B, among other proteins, triggers the
expression of BAG3 and BCL-2 genes to induce apoptosis of
the cell (Figure 2) (25).

In the case of the mutated form of this protein, which is
commonly a gain of function, the proteolytic activity of
FAM111B may be amplified, resulting in the non-specific
cleavage chromatin-associated proteins, among others crucial.
Additionally, other essential functions of FAM111B, such as
activating apoptosis, may be lost. Finally, since FAM111B is
critical for degrading p16 for cell cycle progression, the
mutations may result in abnormal degradation of p16 and thus
cause abnormal cell division (Figure 1B). As a result, FAM111B
mutations tend to cause diseases such as POIKTMP and cancer
FIGURE 2 | Proposed pathological processes involving FAM111B in cancer and POIKTMP. An increase in FAM111B expression possibly leads to an increase in
proteolysis of DPCs and non-specific degradation of chromatin-associated proteins, which leads to genomic instability. Genomic instability is a significant
characteristic of cancer. A decrease in FAM111B possibly leads to the reduction in apoptosis of fibroblasts, which causes an increase in fibrosis (Created with
Biorender.com).
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through these mechanisms (Figure 2). More importantly,
FAM111B seems more critical in some cell types than others.
For example, the knockdown of FAM111B in Hela cells did not
affect cell proliferation but did in lung adenocarcinoma cell lines.
Thus, FAM111B mutations can affect certain cell types but spare
the others (13, 14).

Although the pathological knowledge effects of the mutant
forms FAM111B are emerging, only a handful of studies have
investigated the physiological function of FAM111B (which
remains unclear) in healthy cells/tissues. Therefore, the proposed
functions may lack accuracy since most reported studies were
conducted using cancer cells. Therefore, future studies to establish
the molecular function of this protein should be conducted in both
healthy and disease-relevant models.

In conclusion, the human FAM111B protein is crucial to
specific cellular processes essential for cell viability or fitness.
Therefore, it is imperative to study the dysregulation of this
protein in the context of fibrosing diseases like POIKTMP
and cancers. Moreover, FAM111B represents a promising
therapeutic target for both disorders.
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