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Abstract 

Introduction: This review aims to raise the potential of the modern society’s impact on gut 

integrity often leading to increased intestinal permeability, as a cause or driver of Alopecia 

Areata (AA) in genetically susceptible people. With the increasing rate of T cell-driven 

autoimmunity, we hypothesize that there is a common root cause of these diseases that 

originates from chronic inflammation, and that the gut is the most commonly exposed area 

with our modern lifestyle. 

Areas covered: We will discuss the complexity in the induction of AA and its potential link to 

increased intestinal permeability. Our main focus will be on the gut microbiome and 

mechanisms involved in the interplay with the immune system that may lead to local and/or 

peripheral inflammation and finally, tissue destruction. 

Expert opinion: We have seen a link between AA and a dysfunctional gastrointestinal 

system which raised the hypothesis that an underlying intestinal inflammation drives the 

priming and dysregulation of immune cells that lead to hair follicle destruction. While it is still 

important to resolve local inflammation and restore the IP around the hair follicles, we believe 

that the root cause needs to be eradicated by long-term interventions to extinguish the fire 

driving the disease. 
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Article highlights 
• Chronic inflammation as an underlying driver of Alopecia areata (AA) has not 

previously been discussed. We have seen a link between disease manifestation and 

IBS-like symptoms, indicating that inflammation in the gut – causing a leaky 

epithelium and increased stress on the immune system – may be a driver of AA as 

well as in other autoimmune conditions where this is more commonly described. 

• The gut microbiota is important in the function of the immune system and also for oral 

tolerance, which is of importance particularly in genetically susceptible people. 

Having a balanced microbiome is thus essential for a tight epithelial barrier and a 

functional and regulatory immune system. 

• Modern society with its processed Western diet has greatly impacted on global health 

and dramatically increased allergies and autoimmune diseases. 

• A high intake of fibers affects the make up of the intestinal microbiota, primarily 

increasing short-chain fatty acid concentrations that have beneficial 

immunomodulatory effects (eg increasing Treg numbers and function).  

• Several concomitant triggers are needed to induce AA, however, an underlying 

chronic inflammation and its effect on the immune system may undermine its 

regulatory function which then permits the maintenance of the ongoing tissue 

destruction.  

• We believe that adressing the root cause and driver of disease is essential for a 

successful outcome. Thus, we recommend future therapies and interventions in AA to 

start with eradication of any ongoing inflammation – today commonly located in the 

gut – before also dealing with the local attack on the hair follicles.  
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1. Introduction 
The determinants of the development of an autoimmune disease have previously been 

allocated to genetics, environmental triggers and chance [[1],[2],[3]]. However, there is now 

growing evidence that an increased intestinal permeability plays a major role in the 

pathophysiology of autoimmune induction [[4],[5],[6],[7]] and that degradation of the intestinal 

epithelial barrier function induces inflammation that can lead to autoimmunity, either locally or 

remotely [[8],[9],[10]]. 

Autoimmunity is today considered a growing epidemic in industrialized countries [[11],[12]], 

although this might not be true for all autoimmune disorders (AIDs) such as e.g. rheumatoid 

arthritis (RA) [[13]]. Dietary and modern lifestyle changes are factors that affect the intestinal 

barrier and make it penetrable which initiates or perpetuates inflammatory responses [[14]]. 

Intestinal inflammation per se leads to increased epithelial permeability and hence increased 

exposure of foreign proteins to the immune system. This can eventually lead to a breakdown 

in immune competence, whereby the immune system mistakenly attacks self-tissues. 

Genetically susceptible people with a decreased ability to regulate immune responses and/or 

ability to handle an increased pressure on the immune system would thus be more prone to 

develop autoimmunity upon a trigger. 

The immune system is tightly coupled to the gut microbiome which develops from the flora 

inherited at birth, and matures through environmental exposures and in response to diet 

[[15],[16]]. An imbalance of the gut microbiome, as in e.g. small intestinal bacterial 

overgrowth (SIBO), can also cause inflammation and increased intestinal permeability 

[[17],[18]]. SIBO is increasingly common and tightly coupled to 50+ diseases, out of many 

regarded as autoimmune [[19],[20]]. Additionally, constant exposure to toxic agents, from 

ingestion or produced by bacteria or parasites, is known to cause increased epithelial barrier 

dysfunction and thereby impacts our immune system [[21]]. Psychological stress is also 

connected to the initiation and maintenance of autoimmunity [[22],[23]], directly impacting on 
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the epithelial barrier or via the gut-brain-axis. It has further been shown that corticotropin-

releasing factor from the hypothalamic-pituitary-adrenal (HPA) axis has a potent effect on the 

gut through modulation of inflammation, increased gut permeability, contribution to visceral 

hypersensitivity, increased perception of pain and modulation of gut motility [[14]]. Thus, 

modern lifestyle, gut homeostasis and autoimmunity are becoming increasingly connected 

and it is most likely that the now more common combination of these different “triggers” 

contributes to the increase in the development of AIDs. 

Alopecia areata (AA) is an autoimmune condition in which immune cells attack self-tissue. 

AA is common with a life-time risk of 1.7-2% and a prevalence of 0.2% (reviewed by Gilhar et 

al [24]) but these numbers have not been updated since 1989. There is to date no FDA-

approved therapeutics for AA, but a couple of interesting approaches are currently in clinical 

development (eg more selective JAK inhibitors and PDE4 inhibitors). Systemic 

corticosteroids (continuous or as pulse therapy), cyclosporine A, mycophenolate mofetil, 

methotrexate (monotherapy or with corticosteroids), and azathioprine are all used with off 

label prescription, but improved approaches for AA with better safety profiles are needed and 

nicely reviewed by Wang & Christiano [[25]] and Renert-Yuval & Guttman-Yassky [[26]] in 

2017. Hitting only one cytokine in this complex disease is likely not as efficacious as the 

more general immunosuppressants. IFNγ blockade was less efficacious in a clinical trial 

despite good efficacy in preclinical animal studies [[27]]. TNFα-blockers have been found to 

trigger AA [[28]], which is likely due to the shifted TNFα/IFNγ ratio, where IFNγ is the main 

driving cytokine of AA. Blockade of IL-13 (Tralokinumab) is also currently under investigation 

for AA/AD. 

Recently, Sobolewska-Wlodarczyk et al. [[29]] published an overview on comorbidities 

between AA and IBD (inflammatory bowel disease, such as ulcerative colitis, UC, and 

Crohn’s disease, CD) and the common pathways that might be drivers of the different 

manifestations. There is to date no scientific basis for the hypothesis of a leaky gut as a 

cause - or driver - of AA. Rather the opposite, as a significant association was found between 

IBD and inflammatory skin diseases but not specifically with vitiligo or AA in a Korean 

population [[30]]. As most AIDs, AA is a polygenic disease, which may explain the vast 

variability of severity ranging from patchy alopecia areata to complete hair loss as in alopecia 

universalis, as well as whether it establishes into a stable or relapsing/remitting status. 

Interestingly, the genetic clustering of AA with other T-cell driven autoimmune diseases 

(rheumatoid arthritis (RA), type-1 diabetes (T1D), celiac disease (CeD), systemic lupus 

erythematosus (SLE), multiple sclerosis (MS) and psoriasis (Ps) as in Petukhova et al. [[31]] 

is very similar to the clustering of diseases with an increased intestinal permeability such as 

T1D, CD, CeD, RA, irritable bowel syndrome (IBS), atopic dermatitis, ankylosing spondylitis 

and rosacea [[29]]. Collectively, our hypothesis is based on the idea that compromised 
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tolerance induction in the gut contributes to, or even drives, these diseases and that they 

might be treated locally where the disease is manifested rather than remotely where it is 

symptomatically observed. 

It has previously been stated that less than 10% of people with a genetic predisposition to 

develop AIDs actually do develop clinical disease [[4][, or the risk can be expressed as two- 

to five-fold increased versus people that do not have the predisposition (source: American 

Autoimmune Related Diseases Association). Countering this statement, it is now more than 

10% of the population (50 million in the US) that are diagnosed with an autoimmune disease, 

making it the third largest disease after cardiovascular diseases and cancer. Most 

importantly, the cost of treatments and research are greatest in autoimmunity and this is an 

important issue of modern times which requires understanding of the root cause/-s in order to 

be adequately and successfully addressed. 

 

2. Complexity in the induction of AA 
AA is completely unpredictable and there is today no diagnostic marker that can be used to 

predict an individual’s prognosis, except that early onset and increased severity of disease 

are associated with poor outcomes. The onset of AA is commonly associated with 

immunological responses to triggers such as viral infections, trauma, hormones and 

emotional/psychological stress [[24]]. We are now proposing that an increased pressure on 

the immune system is simultaneously required for disease manifestation and that this could 

originate from any chronic inflammation, but where intestinal inflammation is increasingly 

common. The stated triggers result in an increased release of cytokines and chemokines that 

cause the now well-established collapse of the immune privilege (IP) of the hair follicle (HF) 

that starts expressing MCH class I and II peptides and becomes vulnerable to attack by 

inflammatory cells [[32],[33],[34],[35],[36]]. To date it is not clear what is the chicken or the 

egg in the process of the undesirable immune cell attack [[36],[37]] but the fact that AA is a 

common disease might be just because the HF is a sensitive organ. It seems that people 

who carry a deficiency in resolving ongoing inflammation, and thus the ability to restore IP, 

are the ones that develop alopecia areata, totalis or universalis. It is also likely that the same 

individuals have an inability to regulate the generation or suppression of autoreactive T cells 

and NK cells by e.g. adequate function of Tregs [[31]] or tolerising dendritic cells (DCs). 

The seemingly serendipity-dependent specificity of tissue destruction in different autoimmune 

diseases could be driven by at least three specifics: the MHC I expressed epitope (mimicry), 

differences in tissue homing markers on DCs/antigen presenting cells (APCs), and/or the 

concentration gradient of different cytokines/chemokines in and around the HFs. The search 

for efficacious treatment options for AA has focused on the inhibition of cytokines and 
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chemokines to diminish their recruitment of inflammatory cells to the HF, and also direct 

inhibition of the inflammatory cells. The hypothesis that autoreactive T cells are primed either 

in the gut mucosa or in peripheral lymphoid tissues by gut-primed DCs/APCs has as yet not 

much evidence in the literature, but there are a couple of emerging examples. For example; 

α-gliadin, a gluten by-product, contains similar epitopes to trichohyalin (THH) [[38]], which is 

the most likely autoantigen in the HF [[39],[40]]. Gluten by-products have also been 

associated to the HF peptide peroxiredoxin 5 (PRDX5) [[41]] which is one of the genes in 

which polymorphisms have been associated with AA in genome-wide association studies 

[[31]]. Moreover, Nair et al. [[42]] demonstrated the necessity for Lactobacillus in the gut 

microbiome for the induction of AA. Understanding the origin of the priming of autoreactive T 

cells might open up new therapeutic angles, providing a more preventive way treat 

autoimmune diseases, or treatments to maintain patients in remission. 

Our hypothesis is that the priming of autoreactive T cells  (CD8+NKG2D+ cells in the case of 

AA) is likely initiated by DCs or other APCs close to the site of inflammation (skin draining 

lymph nodes) or in the gut mucosa where loss of tolerance along with the mechanism of 

molecular mimicry/identity initiates T cell-driven AIDs, and that a leaky gut significantly 

contributes to the initiation of the process [[43],[44],[45]]. We will next discuss the 

homeostatic mechanisms in the intestine that support maintenance of immune competence. 

 

3. Gut homeostasis and the immune system –importance in 
health and consequences in disease 

3.1 Gut Microbiota and diet 

Our gut microbiota is established early in life and the diversity and composition of the 

intestinal microbiome in a newborn child largely derives from its mother during birth [[9],[46]]. 

In infants and in early childhood, differences in the gut flora have a great influence on the 

development and priming of the immune system [[47],[48]]. In the same time frame, factors 

such as antibiotic intake, environmental factors, breast feeding and diet affect the gut 

microbiota development and composition. Besides the above-mentioned genetic aspects in 

developing AA and other AIDs, it is known that diet modulates and regulates the microbiota 

of the gut, and that the increasing prevalence of these diseases are considered to be an 

effect of the modern Western lifestyle [[11]]. Several studies, both in animals and humans, 

have shown a clear relationship between diet and the gut microbiota composition 

[[49],[50],[51],[52],[53],[54],[46],[55],[56]]. As such, alterations of the gut microbiome have 

been suggested in many studies to affect host physiology [[57]] and changes from the 

healthy gut microbiota have been observed in obesity [[58]] and in inflammatory disorders 

such as IBD, eczema and allergy [[59],[60],[48]]. 
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The gut microbiome outnumbers our own somatic and germ cells ten times and mainly 

populates the large intestine [[61],[62]]. Bengmark has described the dependence of the 

immune system on the gut microbiota [[63]] where lack of proper nutrition for bacteria is a 

major contributor not only to a dysfunctional microbiota and dysbiosis, but also to chronic 

inflammation with its production and leakage of endotoxins through various tissue barriers. In 

recent years, whole genome shotgun (WGS) and 16S rRNA gene sequencing have enabled 

us to explore the identity of “our other genome” and its inhabitants in health and disease (The 

human microbiome project consortium Nature 2012 [64]). Large scale sequencing studies 

have enabled researchers to explore the association between gut microbiota, diet and AID 

[[65],[66],[67],[68]] which will most likely lead to a better understanding of the connecting 

points between our diet and the development of AIDs and thus open up for better ways to 

treat and/or even prevent them. 

Bischoff and Volynets [[50]] demonstrated that the intestinal microbiota distinctly differed 

between wild and laboratory mice and noted the increased intake of sugars and the cleaner 

environment of the laboratory animals. It was suggested that diet may be an explanation for 

the differences [[50]]. Given that diet affects the microbiota, and that the intestinal microbiota 

seems to be involved in driving host physiology, the diet fed to research animals might have 

a great impact on the outcome of a study, especially if related to immunity. 

The growing interest in functional food, functional medicine and anti-inflammatory diets 

speak in favor of the benefits associated with reducing inflammatory triggers via the gut, and 

that it seems to work both with regards to restoring intestinal and general homeostasis but 

also by dampening inflammatory diseases, including autoimmunity [[67],[69],[70]]. Although 

our diet largely impacts the microbiome diversity and consequently our health, other factors 

such as hygiene also impact the microbiota and the development of our immune system. 

According to many studies, a high level of hygiene increases the risk for developing allergies, 

asthma and autoimmune diseases, including during pregnancy [[71],[72],[73]]. However, 

when comparing Japan to the USA, the number of asthma patients is clearly higher in the US 

and the hygiene level much higher in Japan [[55]]. This indicates that diet, and possibly other 

lifestyle factors, out rules the hygiene hypothesis in the significance of a well-regulated 

immune system. 

 

3.2 SIBO – a cause of increased intestinal permeability 

Small intestinal bacterial overgrowth (SIBO) is a bacterial infection of the small intestine 

caused by too much bacteria, or the wrong type of bacteria in the wrong place [[74],[18],[20]]. 

Most often, this occurs when the large intestinal microbiota has moved into, or resided in, the 

small intestine. Less commonly, SIBO results from an increase of the otherwise normal 

bacteria of the small intestine. SIBO causes excess gas production, abdominal pain, diarrhea 
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and/or constipation, but most importantly intestinal permeability [[17],[75]] and thereby an 

increased pressure on the immune system. SIBO is linked to 50+ diseases [[20]] whereby 

IBS, CD, celiac disease (CeD) and histamine intolerance are particularly associated 

[[18],[20]]. 

Normally, relatively few bacteria live in the small intestine (less than 10,000 bacteria per 

milliliter of fluid) as compared with the colon (at least 1,000,000,000 bacteria per milliliter of 

fluid) and the types of bacteria in the small intestine are not the same as those in the colon 

[[18]]. They play an important role in digesting food and absorbing nutrients but are also 

important regulators of the immune system with its impressive network of lymphoid cells in 

the intestinal submucosa. Moreover, the bacteria help maintain the normal muscular activity 

of the small bowel (Migrating Motor Complex, MMC). The MMC is responsible for moving the 

intestinal content through the gut, but most importantly, to clean the small intestine in 

between meals so that bacteria cannot overgrow. The MMC seems to be the most frequent 

dysfunction in people with SIBO [[74]] but also proper gastric acid secretion, biliary and 

pancreatic secretions, immunoglobulins in the intestinal fluid and the ileocecal valve (which 

allows the flow of bowel contents into the large intestine but prevents them from refluxing 

back into the small intestine) are important for an adequate small intestinal function [[76]]. 

The exact prevalence of SIBO is difficult to predict as this condition is often underdiagnosed 

due to unsatisfactory diagnostic tests as well as knowledge and experience of patients and 

health care providers. Different studies have estimated the prevalence of SIBO in clinically 

healthy individuals to 2.5-22.5% [[18]] and 5.9-15.6% [[74]], where the higher prevalence was 

found in older people. In comparison, the prevalence of SIBO in disease is going as high as 

90% (eg 30-40% in chronic pancreatitis, 56% in CF, 59% of acute diverticulitis, 30-85% in 

IBS, and 90% for small intestinal motility disorders). 

SIBO has been shown to negatively affect both the structure and function of the small 

intestine primarily by damaging the cells lining the mucosa. It thus significantly interferes with 

digestion of food and absorption of nutrients and allows large protein molecules to escape 

into the bloodstream. This is known to have a number of potential complications including 

immune reactions that cause food allergies or sensitivities, generalized inflammation and 

autoimmune diseases [[77]]. Collectively, AA is a common autoimmune disease and our 

observation that AA is often associated with a dysfunctional gastrointestinal system make us 

speculate that SIBO could be a prevalent underlying stressor of the immune system in 

genetically susceptible people which leads to a poorly regulated immune self-attack of the 

hair follicles. 

 

3.3 SCFAs – roles & functions 
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Gut bacteria can thus be seen as a link between what we eat and what happens 

physiologically via their metabolites. The modern “Western” diet is generally characterized by 

low fiber, less vegetables and high sugar and fat content, even though there are differences 

between countries and cultures which affect the metabolites produced and consumed in the 

gut. 

Our enteric microbiota has throughout history co-evolved with humans, making us able to 

access nutrients and to synthesize vitamins and essential amino acids. The most abundant 

microbial metabolites in the intestine are short chain fatty acids (SCFAs) resulting from 

bacterial fermentation of soluble fibers and oligosaccharides that have reached the colon 

[[78]]. SCFAs are free fatty acids with an aliphatic tail of 2-6 carbon atoms (making formic, 

acetic, propionic, butyric and valeric acids, respectively). They are water soluble and can 

easily be absorbed into the gut epithelial cells where they can be metabolized. 

SCFAs have various physiological effects in the gut and are important for the maintenance of 

intestinal function. They regulate ion absorption and gut motility, and favor the production of 

mucins and gastrointestinal peptides. Butyrate, in particular, is the primary energy source for 

colonocytes [[79]]. Thus, it is very likely that SCFAs have an effect in protecting our intestinal 

barrier. SCFAs, and mainly butyrate, have also been shown to regulate the number and 

function of colonic Tregs [[80], [81], [82]], thus are important regulators of the immune system 

and peripheral (oral) tolerance. 

Taking into account all these roles that SCFAs play in the colon and the fact that fibers is a 

main substrate for bacterial SCFA production, one would expect profound effects of our 

Western low-fiber diet on the immune system and our health. The maintenance of a 

functional intestinal barrier and immune regulation thus depends on what you feed the 

bacteria, and the expression “Feed your Tregs more fiber” might be worth keeping in mind 

[[83]]. The significant difference of the microbiota composition and an almost 3-fold increase 

in total fecal SCFA concentration in Burkina Faso children (where the main intake are natural 

fibers) as compared to Europeans, support this statement [[52]]. 

 

3.4 Receptors for SCFAs and their potential role in autoimmune diseases 

The SCFAs discussed above bind to different G protein-coupled receptors (GPCRs) on 

immune and gut epithelial cells [[65],[84],[85]]. The best characterized GPCRs that respond 

to SCFAs are GPR43 (also known as FFAR2), GPR41 (FFAR3) and GPR109 (NIACR1, 

HM74) [[70]]. Their physiological roles and actions are extremely complex and FFAR2 

signaling in leukocytes needs further dissection and analysis [[79]] but it has been shown that 

propionate triggers FFAR2-depedent release of the anti-inflammatory cytokine IL-10 in Tregs 

[[80]]. The potential for drug targeting of GPR43/41 in the treatment of immune disorders is 

still unclear, both with regards to if one aims to activates or inhibit of the receptors [[86]]. In 
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addition, the generation of agonists that are functional in vivo has been technically difficult 

[[79]]. There is, however, a useful tool for GRP43 inhibition that works in human systems 

(GLPG0634), but unfortunately not in mouse models. It seems most likely that SCFAs, via 

GPR43 interaction or in other ways, affect inflammatory responses in a positive matter 

[[79],[87]]. Trompette et al showed both a positive correlation of fiber content in the diet and 

circulating SCFA levels in mice as well as an effect of a fiber-rich diet in protection against 

allergic lung inflammation [[88]]. Moreover, exacerbated or unresolved inflammation has 

been observed in GPR43-deficient (Gpr43-/-) mouse models of colitis, arthritis and asthma 

[[89]], indicating the influence of this receptor in aggravating inflammatory disease. 

In order to investigate the potentials for SCFAs in Alopecia Areata, we used the C3H/HeJ 

model of AA where the disease was induced by transplantation of skin grafts from a diseased 

donor C3H/HeJ mouse to recipient mice from the same strain [[90]]. These mice have 

spontaneous genetic mutations that lead to several dysfunctions and spontaneous 

development of AA in approximately 20% of animals within 6-12 months of age [[91],[92]] 

and with grafting the prevalence becomes almost 100% within 6-8 weeks. It has been 

proposed that these mice have a compromised immune system by means of dysfunctional 

Tregs [[93],[39]] however, we demonstrated that C3H/HeJ Treg suppressive function on T-

effector cell proliferation in vitro is similar to Tregs from other strains, both in disease and 

health [[94]]. In vivo it may however be different. We hypothesized that propionate in the gut 

would through stimulation of GPR43 (GPR41 or GPR109) receptors induce more tolerogenic 

Tregs that could protect the hair follicles from immunological attack, as an increased 

abundance but unknown role for Tregs within the HF shafts had been recently demonstrated 

[[95],[96]]. In a pilot study, we observed regrowth of fur in 5 out of 5 mice after 11 weeks of 

propionate treatment (ad libitum access to 200 mM propionate via the drinking water) vs 

none in the vehicle-treated mice (n=3) and we assessed skin cell differentials after an 

additional four weeks on treatment (unpublished data). We observed a 2.3-fold increase of 

Treg count in the propionate-treated mice (no statistically significant difference, p=0.16) but 

importantly an increased Treg/CD4+ ratio (p=0.08) versus vehicle controls. We repeated the 

study (n=6 per group) but were unable to reproduce the positive effects on hair growth. 

Moreover, we failed to prevent disease manifestation by prophylactic treatment (starting 3-4 

days before grafting). In another study, we investigated the effect of probiotics (4 bacteria 

used in Synbiotic 2000) in order to generate all SCFAs, and in particular butyrate in vivo. 

Treatment over 16 weeks did not reverse chronic AA but slightly increased the Tregs/CD4+ 

ratio (15 vs 12%, p<0.01, n=6) in skin draining lymph nodes. Hence, both propionate and 

probiotics (4 selected strains) affect T-cell ratios, specifically with regards to Tregs, but does 

not seem to be a strong enough mechanism to reproducibly reverse or prevent disease. 
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Despite our inconclusive/negative results, we suggest that an adequate intake of fibers 

(complex plant polysaccharides) affects the makeup of the intestinal microbiota which in turn 

leads to a higher production of immunomodulatory products, in particular SCFAs that affect 

the function of the gut epithelium and the immune system. In the case of AA, this could 

enhance the regulation of the immune system (peripheral tolerance) to resolve local 

inflammation around the hair follicles –especially on the basis that Tregs have recently been 

found prominent in HF and important for hair growth [[95],[96]]. In support of this notion, 2 

cases of fecal microbiota transplants (FMT) in people with alopecia areata/universalis, 

demonstrated long term hair growth post FMT [[97]]. 

 

4. Potential for therapeutic interventions aiming at 
improving intestinal function in AA & autoimmunity in 
general  
We have described intriguing links between disease and intestinal dysbiosis in autoimmune 

diseases and hypothesize that restoring a healthy gut will boost the inherent capacity of the 

immune system to resolve autoimmune inflammation. Due to the vast inter-individual 

variability of gut microbiome, life styles and diet, it is not an easy task to scientifically prove 

clinical benefit by restoring a healthy microbiome in people with inflammatory disease, but it 

is clear that many diseases are linked to a less rich flora and increased intestinal 

permeability.  

The fastest therapeutic intervention to test this hypothesis would be to transplant a healthy 

microbiome (fecal transplant/FMT) to individuals with autoimmune diseases and keep them 

on a fiber-rich/low sugar diet for a few months up to years for follow up. Alopecia areata 

could be a good model system of T cell-driven AID to prove the concept, as hair growth is a 

simple readout. By only improving the diet and read out on efficacy (change of microbiome 

and resolution of inflammation) would not be optimal since it is harder to control these clinical 

studies and it may also not be possible to restore a functional microbiome if it has never 

been functional and diverse in a susceptible individual. Another shortcut could be to use 

biosynthetic gene therapy, i.e. replacing the ligands that should have been synthesized by 

the “good” commensal bacteria of the gut [[98], [99]] but it would be questionable whether it 

is possible to get these right in identity and concentration. 

Besides diet and microbiome interventions, future therapeutics could aim to tighten the 

epithelial barrier of the intestine [[100]], e.g. by means of Zonulin inhibitors [[77]], other tight 

junction regulators like PAR-2 [[101],[102]] or affecting the integral transmembrane proteins; 

claudins, occludin, tricelluin and junctional adhesion molecules, like β-catenin [[100]]. 

Moreover, zinc supplementation has demonstrated increased barrier function [[103],[104]] as 
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well as L-glutamine [[105]]. A more non-scientific postulation is that bone broth heals the gut 

barrier by its main ingredient gelatin which enhances gastric acid secretion, restores the 

mucosal lining and promotes adequate intestinal transit and bowel movements [[62]]. 

An immunological angle would be to pharmaceutically interact locally with the gut mucosal 

immune system, as the largest collection of intestinal lymphocytes reside in the gut-

associated lymphoid tissue (GALT). Induction of Treg function or increasing the tolerogenicity 

of dendritic or other antigen-presenting cells could be a way to increase the regulatory 

capacity of the immune system in susceptible people [[43]]. 

Most importantly, any ongoing chronic inflammation in the gut mucosa (eg SIBO, IBD) or 

elsewhere (e.g. periodontitis that drives systemic inflammation) is essential to eliminate as 

these may limit the effectiveness of any therapeutic intervention. 

 

5. Conclusion 
We have seen a compelling link between the induction and progression of AA and 

gastrointestinal disorders (IBS-like symptoms). With this review, we would like to raise the 

awareness that an increased intestinal permeability may be one of the major drivers and 

underlying causes of the increased prevalence of autoimmunity, including AA, in todays 

modern society. There is still not much scientific support for our hypothesis in AA, but there is 

indeed growing evidence between intestinal inflammation and a leaky GI epithelium in other 

autoimmune conditions. Chronic inflammation results in an increased burden on the immune 

system and suppresses its regulatory effect which makes susceptible people more prone to 

develop inflammatory and autoimmune conditions. Whether the stress on the immune 

system comes from increased intestinal permeability due to inflammation and/or dysbiosis, or 

from other chronic inflammations, high exposure to toxic agents or psychological stress, may 

be irrelevant – as long as the root cause is identified and eradicated. 

 

6. Expert Opinion  
Restoring the intestinal integrity (microbiome, epithelial barrier and immune tolerance) may 

not  completely eradicate autoimmune tissue damage per se, but the evidence listed in this 

paper clearly indicates that it is necessary to extinguish an underlying chronic inflammation 

before attempting to locally inhibit the cytotoxic cell destruction. Inevitably, directly targeting 

the cytotoxic activity of NK cells and CD8+NKG2D+ cells in diseases such as celiac, type-1 

diabetes or AA is important to interrupt tissue destruction and preserve organ function. But in 

our opinion, the root cause and driver of disease needs to be eliminated first in order to 

achieve longstanding and successful treatment of this type of autoimmune conditions, such 

as AA. 
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We would like to propose a new treatment regimen in newly diagnosed AA patients whereby 

the general dermatology practitioner should explore if the patient has an ongoing chronic 

inflammation and start adequate therapy to resolve it. Worth to highlight here, is that an 

increased intestinal permeability is not an easy and straight forward dysfunction to measure, 

and may take additional questions and tests that evaluates food intolerances, acid secretion, 

bowel movements and digestion capability disorders in order to be correctly diagnosed. 

It is known to be easier to reverse patchy AA versus complete AT/AU, and as with other AIDs 

it is better to prevent and treat early, to reduce the number of cytotoxic cells and/or 

antibodies to decrease the extent of tissue destruction. Luckily, AA and the HF function are 

reversible, which also highlights the potential role for this disease as a good model system in 

research whereby longterm studies can be performed with rather simple and cheap readouts. 

As the knowledge of the disease drivers in AA is increasing, clinical endpoints such as 

biomarkers of efficacy and disease signatures are becoming available. Here, also dosing 

regimens (eg induction versus maintenance therapies) can be evaluated as biomarkers can 

be studied in blood, lymph node biopsies and/or skin biopsies. The prevalence of AA is high 

with a vast unmet medical need and patients are more than willing to participate in clinical 

studies with the potential of future therapeutic options. 

Once autoimmune diseases can be viewed and treated as a whole integrated system, we will 

be able to find an effective treatment, or even a cure. With the hypothesis that an underlying 

inflammation of the gut is driving autoimmune disorders, including AA, we suggest to add the 

dimension of a healthy gut – either by medicine or by diet/lifestyle changes – to current and 

future therapeutic interventions. 
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