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A B S T R A C T

Androgenic alopecia, also known as pattern hair loss, is a chronic progressive condition that affects 80% of men
and 50% of women throughout a lifetime. But despite its prevalence and extensive study, a coherent pathology
model describing androgenic alopecia’s precursors, biological step-processes, and physiological responses does
not yet exist. While consensus is that androgenic alopecia is genetic and androgen-mediated by dihy-
drotestosterone, questions remain regarding dihydrotestosterone’s exact role in androgenic alopecia onset. What
causes dihydrotestosterone to increase in androgenic alopecia-prone tissues? By which mechanisms does dihy-
drotestosterone miniaturize androgenic alopecia-prone hair follicles? Why is dihydrotestosterone also associated
with hair growth in secondary body and facial hair? Why does castration (which decreases androgen production
by 95%) stop pattern hair loss, but not fully reverse it? Is there a relationship between dihydrotestosterone and
tissue remodeling observed alongside androgenic alopecia onset?

We review evidence supporting and challenging dihydrotestosterone’s causal relationship with androgenic
alopecia, then propose an evidence-based pathogenesis model that attempts to answer the above questions,
account for additionally-suspected androgenic alopecia mediators, identify rate-limiting recovery factors, and
elucidate better treatment targets. The hypothesis argues that: (1) chronic scalp tension transmitted from the
galea aponeurotica induces an inflammatory response in androgenic alopecia-prone tissues; (2) dihy-
drotestosterone increases in androgenic alopecia-prone tissues as part of this inflammatory response; and (3)
dihydrotestosterone does not directly miniaturize hair follicles. Rather, dihydrotestosterone is a co-mediator of
tissue dermal sheath thickening, perifollicular fibrosis, and calcification – three chronic, progressive conditions
concomitant with androgenic alopecia progression. These conditions remodel androgenic alopecia-prone tissues
– restricting follicle growth space, oxygen, and nutrient supply – leading to the slow, persistent hair follicle
miniaturization characterized in androgenic alopecia.

If true, this hypothetical model explains the mechanisms by which dihydrotestosterone miniaturizes andro-
genic alopecia-prone hair follicles, describes a rationale for androgenic alopecia progression and patterning,
makes sense of dihydrotestosterone’s paradoxical role in hair loss and hair growth, and identifies targets to
further improve androgenic alopecia recovery rates: fibrosis, calcification, and chronic scalp tension.

Introduction

Androgenic alopecia (AGA) is characterized as persistent, pro-
gressive, patterned hair thinning in scalp regions above the galea
aponeurotica (GA) – the dense fibrous membrane underlying AGA-
prone hair follicles. It is a common cosmetic complaint and perceived
by many sufferers as a “moderately stressful condition that diminishes
body image satisfaction” [1]. But despite its prevalence and emotional
impact, no viable cure for AGA exists.

While the pathogenesis of AGA is still debated, general consensus is
that AGA is androgen- and genetically-mediated, and that

dihydrotestosterone (DHT) – a metabolite of testosterone – plays a
causal role in its development [2,3]. In dermal papilla (DP) cells and
tissues surrounding AGA-prone hair follicles, DHT attaches to an an-
drogen receptor (AR) after its conversion from free testosterone via the
type II 5-alpha reductase enzyme (5-αR2) [4]. As DHT accumulates in
androgen-sensitive AGA tissues, AGA-prone hair follicles become sen-
sitive to DHT and start to miniaturize, resulting in hair thinning and
eventually AGA.

Pre-pubertal castrates experience a permanent 95% reduction in
endogenous androgen production versus non-castrates, and ob-
servationally, never develop AGA later in life [5]. AGA can be
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stimulated in castrates using a series of testosterone injections [6].
Balding scalp tissues also express higher DHT than non-balding hair-
bearing scalp tissues from the same male [7], and males born with a
genetic deficiency in 5-αR2 never develop AGA [8]. Accordingly, AGA
treatments often target to reduce DHT, specifically by inhibiting 5-αR2.

AGA treatment with 5-αR2 inhibitors: response rate and degree of hair
regrowth

A commonly prescribed FDA-approved drug for AGA management is
finasteride, which reduces systemic DHT levels by inhibiting 5-αR2.
Daily dosages of 0.2–5.0mg reduce serum DHT and scalp tissue DHT by
roughly 70% and 50–70%, respectively [9].

If response rate is defined as any improvement to hair thinning
(slowed progression, arrest, or reversal), clinical studies suggest a re-
sponse rate to finasteride of 80–90% [10]. However, efficacy appears
primarily limited to stopping AGA progression along with a 10% in-
crease in hair count and some hair thickening in thinning regions [11].
Castrate observations imply that even permanent androgen suppression
only prevents AGA or stops its progression, but does not regrow all lost
hair [5]. The absence of full AGA recoveries from androgen inhibition is
puzzling, and highlights the necessity to reevaluate AGA pathology
consensus.

Unanswered questions in AGA pathology

Current AGA pathogenesis models presume genetic influence as the
reason why DHT begins to accumulate in AGA-prone scalp tissues.
Genes are certainly a factor, as DHT accumulation and follicle sensi-
tivity appear partly genetically determined, with AR density and AR
coactivator activity in AGA-prone sites associated with genes shared
among AGA sufferers [2,12–14]. However, genetically identical twins
demonstrate that while AGA has a genetic predisposition [15], one
male twin can bald significantly faster than his counterpart [16], im-
plying genes do not explain all unanswered questions in AGA pa-
thology, and that at a minimum, epigenetics may also play a role.

If AGA-prone hair follicles are genetically programmed to sensitize
to and miniaturize in the presence of DHT, then why doesn’t complete
DHT attenuation lead to complete AGA recovery? If AGA incidence
increases with age, why is AGA more common in elderly persons with
relatively lower androgen production [7,17,18]? Paradoxically, why is
DHT associated with both AGA-prone hair follicle miniaturization and
secondary body and facial hair growth [19,20]? Why is AGA mostly
isolated to regions above and immediately surrounding the GA?

These questions imply a site-specific, rate-limiting factor to AGA
recovery unaddressed by androgen suppression. Some investigators
suggest miniaturized hair follicles may suffer from a defect that pre-
vents their conversion from stem cells to progenitor cells [21]. Others
imply a relationship between AGA progression and the deterioration of
the arrector pili muscle (APM), and that once an APM degenerates to
the point of detachment from a hair follicle unit, hair loss may be
permanent [22]. But while these findings suggest rate-limiting recovery
steps, they do not explain the pathogenesis or mechanisms governing
why follicle stem cell to progenitor cell conversion fails, or why an APM
detaches from a hair follicle unit.

Unaccounted pathobiological suspects

Since the discovery of DHT's involvement in AGA, several pro-in-
flammatory pathways, molecules, cytokines, signaling proteins, and
fatty acid derivatives are now suspected to play a role in AGA pathology
– observed alongside several chronic scalp symptoms and conditions
concurrent with AGA onset [23]. Current AGA pathology models do not
explain a relationship between androgens and these pathobiological
suspects, nor do they explore if these observed conditions are more
causative than associative to hair follicle miniaturization.

This suggests the need for an alternative, evidence-based model for
AGA pathogenesis. Such a model must (1) clarify DHT's role in AGA, (2)
offer a mechanism behind the rate-limiting effects of androgen sup-
pression in hair regrowth, and (3) explain the roles and relationships of
other biomarkers observed in balding scalp tissues.

Hypothesis

The hypothesis argues that AGA is the result of chronic scalp tension
mediated by pubertal and post-pubertal skull bone growth and/or the
overdevelopment and chronic contraction of muscles connected to the
GA. This leads to a site-specific, pro-inflammatory cascade in GA-fused
tissues – upregulating signaling proteins and androgens involved in fi-
brosis and calcification pathogenesis. This results in slow, persistent
tissue remodeling – which restricts follicle growth space and reduces
oxygen and nutrient supply to AGA tissues – leading to hair follicle
miniaturization and eventually pattern baldness.

Evaluation of hypothesis

We take an investigative approach to building the pathology model
– first cataloguing differences in balding versus non-balding AGA
scalps, then exploring association or causation between variables. We
start with the physiological responses that develop alongside AGA (i.e.,
fibrosis) and work backwards to compare their pathobiology against
AGA biomarkers (Table 1).

Is fibrosis associative or causative in AGA?

Collagen deposition in the form of dermal sheath thickening and
perifollicular fibrosis is involved in AGA pathology [23,24], but studies
have yet to demonstrate direct causality. To determine causality, we
must expand our scope to diseases related to collagen overproduction.

This is best documented in scleroderma, a disease characterized by
an overproduction of collagen (fibrosis) in cutaneous tissues [25] (i.e.,
hands, arms, legs, lungs, and scalp skin) [26]. Scleroderma onset in the
dermis and epidermis leads to hair loss due to tissue degradation – si-
milar to hair loss after scarring from an acute injury [27]. One case
study found that scleroderma in dermal and epidermal scalp tissues
leads to scalp hair loss [28].

This suggests dermal sheath thickening and perifollicular fibrosis
may be causative rather than associative to hair thinning, but by which
mechanisms? The earliest signs of fibrosis in scleroderma patients ap-
pear in the areas of severest vascular perturbation [29]. Liver fibrosis
pathogenesis models demonstrate that excessive extracellular matrix
synthesis and deposition lead to hepatic microvascular and nutritive
degradation [30] – potentiating that decreased oxygen and nutrient
supply are consequences of fibrosis progression.

Extrapolating to AGA, excessive extracellular matrix deposition may
also contribute to tissue vascularity changes in balding scalps. If true,
fibrosis onset in AGA offers an explanation as to why balding scalp sites
have 40% lower cutaneous oxygen levels vs. non-AGA controls [31],
and suggests that fibrosis contributes to follicle miniaturization by re-
ducing oxygen and nutrient supply to AGA tissues – degrading tissue
integrity. This is supported by AGA treatments that increase cutaneous
blood flow, and consequently improve hair growth [32,33].

Perifollicular fibrosis may also impose physical constrictions to the
maximum diametrical length in which a hair follicle can grow – forcing
the production of continuously thinner hairs. These fibrotic-driven ef-
fects – microvascular insufficiency and follicle spatial constriction –
may explain the mechanisms by which fibrosis contributes to AGA.

Re-examining calcification in AGA

Calcified arterial pathways also show decreased blood flow and
oxygen transport [34]. If there is truth to the anecdotes of calcification
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in capillary networks supporting AGA-affected hair follicles [35], then
calcification may be another source of AGA-related microvascular in-
sufficiency. Further investigation is needed, but for purposes of the
hypothesis, capillary calcification is included as a potential driver of
microvascular insufficiency and thereby contributor to AGA-related
hair thinning.

Androgen involvement in AGA

Fibrosis and calcification are commonly observed in the arteries of
heart disease patients [36] – a disease characterized by the build-up of
fats, calcium, and cholesterols in arterial pathways [37,38]. This plaque
build-up (atherosclerosis) can lead to arterial fibrosis and arterial cal-
cification [39].

Studies suggest a relationship between AGA and heart disease
[40,41], and that early onset AGA may be a predictor for heart disease
[42]. On average, cardiovascular disease develops ten years earlier in
males than females [43], leading to speculation that androgens may be
involved in cardiac disease pathology [44]. Men produce more andro-
gens than women, and on average, have two to threefold higher cal-
cium scores (an evaluation tool for calcification) in coronary arteries

[45]. Bodybuilders who inject exogenous androgens significantly in-
crease their risk of arterial calcification [46]. In mice, dose-dependent
DHT and testosterone injections increase arterial calcification lesions by
300–400% [47]. Rats treated with testosterone express increased fi-
brosis in heart tissues [48].

This implies that AGA-related fibrosis and calcification may be
partially androgen-mediated. Since increased 5-αR2, AR, and DHT are
all observed in AGA tissues, it’s likely this androgen activity precedes
fibrosis and calcification in AGA.

Interestingly, in vitro studies suggest androgens are uncorrelated or
even protective against calcification [48], implying that in vivo, an-
drogens interact with unidentified variables to mediate calcification
and fibrosis. One study showed that AR-knockout mice produced sig-
nificantly less arterial calcification after injection with exogenous an-
drogens [48], implying the presence of both androgens and AR as re-
quisites for the mediation of calcification.

Paradoxically, both AGA-affected scalp tissues and hair-bearing
body and facial tissues express increased DHT and AR [14,49]. Based on
the sustained growth of post-pubertal body and facial hair, these tissues
likely don't suffer from the same perifollicular fibrosis, dermal sheath
thickening, and calcification seen in AGA. This suggests that in addition

Table 1
Summary of observations concomitant with pattern hair loss in AGA tissues.

Domain Observation Biomarkers Evidence

Biological Androgens Androgen activity (5-αR2, AR, DHT) AGA tissues express more 5-αR2 activity, AR activation, and DHT than non-AGA hair-bearing
scalp tissues [7,97,98]. Observations of castrates and 5-αR2 deficient men suggest androgen
activity is involved in AGA development

Inflammation Substances and signaling proteins (ROS,
TGF-β1, IL-1α, IL-1β, TNF-α)

AGA tissues express higher activity of reactive oxygen species (ROS) [99]. ROS tends to
increase in the presence of transforming growth factor beta 1 (TGF-β1), an androgen-
mediated signaling protein expressed more highly in AGA-affected skin [59,100]. Elevated
cytokines such as interleukin 1 alpha (IL-1α), interleukin 1 beta (IL-1β), and tumor necrosis
factor alpha (TNF-α) may contribute to hair loss disorders such as alopecia areata [101,102],
are suspected to partially mediate hair cycling from anagen to catagen, and may also
contribute to AGA [103–105]

Prostaglandins (PGD2) Inflammatory prostaglandins are observed in AGA [23], particularly prostaglandin D2 (PGD2)
[106]. PGD2 is elevated in human AGA tissues and inhibits hair lengthening in mice.

Microorganisms and byproducts (P. acnes,
porphyrins)

One study observed porphyrins in 58% of pilosebaceous canals in those with AGA versus 12%
in non-AGA controls [107]. Porphyrins are a byproduct of Propionibacterium acnes (P. acnes), a
commensal microorganism found in the skin biome which colonize sebaceous ducts, ingests
sebum, and are implicated in acute inflammation and acne onset [108]

Physiological Tissue remodeling Fibrosis (perifollicular fibrosis, dermal
sheath thickening)

Fibrosis develops concurrently with AGA. Studies have found that 37% of AGA sufferers
showed significant inflammation and fibrosis surrounding thinning hair follicles
(perifollicular fibrosis) [109], increased collagen deposition below AGA miniaturizing
follicles [110], and a 2- to 2.5-fold enlargement of the follicle dermal sheath made up of dense
collagen bundles [111]. Balding vertex and temple regions have a near 4-fold increase in
collagen fibers, [112] and AGA-linked fibrosis may match AGA progression and patterning
[67]

Blood vessel calcification Autopsy anecdotes suggest that calcification of the capillary networks supporting AGA-
affected follicles may coincide with AGA progression. Frederick Hoelzel reported this when
removing the brains of cadavers, noting a relationship between capillary calcification and
baldness patterning [35]

Sebaceous gland size AGA sufferers have enlarged sebaceous glands and higher sebum production in affected hair
follicles [77,110,113]

Vascularity (oxygen) Transcutaneous oxygen in frontal scalp regions of AGA men is 60% of transcutaneous oxygen
in non-AGA counterparts [31], implying microvascular deficiency in AGA tissues

APM AGA progression coincides with APM degeneration and its replacement with fat below vellus
hair follicles [114]

Bone (skull shape) Researchers have noted an anecdotal relationship between skull shape and baldness
patterning, even in newborns – whose skull shapes often show similarities to AGA-affected
skulls and whose hair often grows in reverse order of AGA patterning as the cranium develops
during adolescence [68]

Structural Tension GA Scalp tension in the tissues above the GA appears to match the pattern and progression of AGA
where the highest tension points correspond to the first places of AGA onset [57]. This stress
may be (1) influenced by androgens, and (2) alter the inactive standby of AR co-activator Hic-
5/ARA55 and androgen-mediated TGFβ-1. A study on a device to relieve scalp tension
demonstrated visual hair loss improvements in 65% of patients within 3–12months [32],
implying that GA-related tension may contribute to AGA hair thinning

Muscular A pilot study on botulinum toxin injections into the muscles connected to the GA showed an
18% increase in hair count in AGA patients over 48 weeks [74], implying that their chronic
contraction may be part of AGA pathology
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to DHT and AR, there is still a missing variable encouraging the onset of
both fibrosis and calcification.

One well-studied mediator of calcification and fibrosis is trans-
forming growth factor beta-1 (TGF-β1) [50,51]. TGF-β1 increases aortic
calcification in sheep, potentially as a result of increased alkaline
phosphatase activity [52]. TGF-β1 is also suspected to contribute to
AGA [53]. Studies conclude that TGF-β1 is an androgen-induced
mediator of perifollicular fibrosis [54] and may regulate the hair
growth cycle as a negative growth factor [55]. Moreover, scalp DP cells
produce higher levels of TGF-β2 than beard DP cells [56].

Further investigation is required to clarify the differences in TGF-β
expression between secondary facial and body hair tissues versus AGA-
affected tissues. However, these findings suggest that (1) TGF-β ex-
pression is higher in AGA DP cells than secondary facial and body hair
DP cells, (2) TGF-β mediates calcification and fibrosis in non-AGA tis-
sues, (3) androgen-induced TGF-β1 may induce perifollicular fibrosis,
and (4) differences in TGF-β expression might explain why AGA-af-
fected hair follicles miniaturize while secondary body and facial hair
follicles sustain growth throughout adulthood. This implies that AR,
DHT, and TGF-β1 expression are all required for AGA-related tissue
remodeling.

Explaining TGF-β1 activation in AGA through mechanotransduction

If TGF-β1 is androgen-induced, why might TGF-β1 express more
highly in AGA tissues versus secondary body and facial hair tissues?
Evidence strongly implicates that this is due to mechanical tension.

One study found that mechanical tension from the GA matches the
pattern and progression of AGA, with peak tension points corre-
sponding to the first places of hair loss. AGA-prone hair follicles reside
within the dermis and subcutaneous fat layers of the scalp, and these
layers are fused with the GA as a singular unit. As such, tension from
the GA carries into these fused tissues, and thereby AGA-prone hair
follicles. The investigators concluded that TGF-β1 expression may result
from the tension-mediated induction of the AR coactivator Hic-5/
ARA55, and that a “stretch-induced and androgen-mediated mechan-
otransduction in DP cells could be the primary mechanism in AGA
pathogenesis” [57].

Interestingly, TGF-β1 is not only activated by androgenic activity
[54], but also by reactive oxygen species (ROS) [58]. ROS are found in
AGA-prone tissues, and androgen-induced TGF-β1 in hair follicle DP
cells is mediated by ROS [59]. Increased ROS activity may partly ex-
plain differences in TGF-β1 expression in body, facial, and AGA-prone
follicle tissues.

Mechanical tension can also mediate ROS activity in muscle cells –
specifically, muscle stretch [60]. Studies of mechanotransduction (i.e.,
the mechanisms by which mechanical forces are converted to biological
stimuli) demonstrate that mechanical tension in skin, muscle, and bone
tissues can alter pro-inflammatory pathways, cytokines, and signaling
protein expression [61]. Mechanical tension has also been shown in
periodontal tissues to induce cyclooxygenase-2 (COX-2) expression
[62], a pathway activated during prostaglandin D2 (PGD2) synthesis.
Cell-generated mechanical tension also upregulates TGF-β from stiff
extracellular matrix [63].

Collectively, these findings highlight the presence of GA-transmitted
mechanical tension in AGA onset alongside the induction of ROS,
PGD2, and TGF-β1 – all of which are pro-inflammatory substances and
overexpressed in balding scalps. This implies that the inflammation
observed in AGA is likely tension-mediated, and that GA-transmitted
tension may be the starting point of a chronic inflammatory cascade
that results in baldness.

Chronic inflammation may, in turn, increase androgen activity.
Studies show that DHT modulates the inflammatory response during
acute wound healing [64]. In prostate tissues, DHT is shown to exert
broad anti-inflammatory effects [65]. One study demonstrated that the
pro-inflammatory cytokine interleukin 1 (IL-1) increases androgen

metabolism in chronically inflamed gingivitis tissues and the period-
ontal ligament [66]. This verifies that androgen activity can be a re-
sponse to inflammation, and that tension-mediated inflammation may
increase DHT, AR, and TGF-β1 in AGA by inducing ROS and other pro-
inflammatory biomarkers.

Inducers of GA-transmitted scalp tension

When evaluating potential drivers of scalp tension, it is important to
consider that inflammation observed in AGA tissues is persistent and
inversely correlated with the onset of perifollicular fibrosis and dermal
sheath thickening [67]. This implies that any factor inducing AGA-re-
lated scalp tension (and thereby inflammation) must also be chronic.
We hypothesize two androgen-mediated contributors.

The first is pubertal and post-pubertal skull bone growth. One study
postulated a relationship between skull shape and baldness patterning
[68], proposing that androgen-mediated skull bone growth [69,70]
puts stress on capillary networks connected to AGA-prone hair follicles
– leading to reduced blood flow and hair follicle miniaturization. Given
that sagittal and coronal cranial sutures influence skull shape, underlie
the GA, and fuse during adulthood [71] – GA-transmitted mechanical
stress from bone growth may even occur after puberty.

The second possibility is the overdevelopment and/or involuntary
chronic contraction of muscles connected to the GA – namely, the
frontal, occipital, temporal, and external auricular scalp muscles.
Androgens influence muscle growth [72,73], and since most adult
males produce significantly more androgens than adult females, an-
drogen activity may encourage the overdevelopment (or chronic con-
traction) of GA-connected muscles – which pulls the fibrous membrane
tight and creates tension that transmits to the hair follicles. This notion
is supported by a pilot study which injected botulinum toxins into
muscles surrounding the GA – forcing their relaxation and leading to an
18% increase in hair count in AGA patients over 48 weeks [74].

Interestingly, in thyroid-associated orbitopathy, the Mueller muscle
is chronically contracted and also found to have increased fibrosis and
fat deposition [75] – similar to the tissue changes also observed in AGA-
related APM degradation [76]. This suggests tension-mediated in-
flammation may also result in APM destruction, potentially coinciding
with the onset of fibrosis, dermal sheath thickening, and calcification.
Additional research is needed to elucidate whether APM degeneration
is associative or causative in AGA.

Given androgenic and genetic involvement in sexual dimorphism
(i.e., bone and muscle development) and AGA onset, both factors likely
play a role in AGA-related scalp tension mediation. This concludes the
major step-processes of our pathogenesis model (Fig. 1).

Modeling an androgen-inflammation feedback loop

AGA sufferers often also present increased sebum, bacterial co-
lonies, and porphyrins in AGA-affected tissues. Studies on androgen
insensitive subjects imply that androgens regulate sebum production
[77]. Commensal bacteria like Propionibacterium acnes (P. acnes) feed
off of sebum [78] and can colonize sebaceous glands with excess sebum
production more readily due to an increased food supply. As P. acnes
metabolizes sebum, it produces porphyrins [79] and “proteins likely to
play a role in host-tissue degradation and inflammation” [80] via ROS
[81] and the activation of pro-inflammatory cytokines – namely, in-
terleukin 1 alpha (IL-1α) and tumor necrosis factor alpha (TNF-α) [82].
In cases of sebaceous gland over-colonization, P. acnes is pathogenic.

Our model suggests that androgen activity increases from tension-
mediated inflammation. In this case, the colonization of fungi like
dermatophytes [83] or bacteria like P. acnes – both of which colonize
sebum-rich environments – may create a feedback loop between an-
drogen activity, pathogenic microorganisms, and AGA-related in-
flammation (Fig. 2).

R.S. English Medical Hypotheses 111 (2018) 73–81

76



Explaining donor hair transplant survival rates

Hair transplants (HT) involve the surgical transfer of non-AGA-af-
fected scalp hair follicles from the sides and backs of the scalp to AGA-
affected tissues. HT hair count survival rates can exceed 90% one year
after surgery [84]. If calcification and fibrosis are the rate-limiting
factors to AGA recovery, then why do HT donor hairs not miniaturize?
This is answered with the model.

HT surgeries transplant more than just the hair follicle itself.
Follicular unit grafts (FUG) procedures transplant “1–4 terminal hair
follicles, one (or rarely two) vellus follicles, associated sebaceous lo-
bules, insertion of erector pili muscle, [and the] perifollicular neuro-
vascular network” [85]. Follicular unit extraction (FUE) procedures
target singular follicles more specifically, typically with a 1mm punch

[86]. In either case, tissues surrounding each donor hair follicle are also
transplanted.

HT donor tissue sites are not above the GA, and are therefore not
under the same chronic tension before their transplantation – implying
an absence of perifollicular fibrosis or dermal sheath thickening present
in AGA-affected tissues. AGA progression is a decades-long process. If
most transplanted donor hair follicles survive one year after hair
transplantation, it’s likely these HT follicles have not yet had enough
time under tension exposure for fibrosis or dermal sheath thickening
onset, and thereby hair follicle miniaturization.

One study comparing characteristics of transplanted hairs to and
from legs and balding scalps found that “the recipient site influences the
growth characteristics of transplanted hairs” [87], with “the thickness
of the epidermis, dermis, or subcutaneous tissue, blood supply, or other

Fig. 1. An illustration visualizing the relationship between AGA’s precursors, biological step-processes, and physiological tissue changes that result in hair follicle miniaturization.

Fig. 2. The Sebum Feedback Loop* from Fig. 1 – an illus-
tration visualizing a feedback loop between androgen ac-
tivity, sebum, microorganism colonization, and in-
flammatory biomarkers observed in AGA tissues.

R.S. English Medical Hypotheses 111 (2018) 73–81

77



factors play[ing] a role in survival and growth rate differences.” An-
other team showed that balding human vellus hair regenerates just as
well – and sometimes better – on immunodeficient mice versus terminal
human hair [88]. This implies that tissue environment surrounding hair
follicles impacts follicle functionality, and that a rate-limiting recovery
factor exists in AGA tissues. Therefore, HT success fits in-line with the
model, and decades-long studies are still needed to determine the true
fate of transplanted donor hairs.

Explaining hair regrowth in estrogen-injected castrates

While castration appears limited to stopping AGA, observational
studies suggest estrogen-injected castrates experience significant hair
recovery beyond what is observed from androgen inhibition alone [5].
Similar anecdotes are reported from transsexual male-to-female (MTF)
hormone replacement therapy (HRT) recipients, with an undetermined
percent experiencing significant hair recovery. From a treatment per-
spective, estrogen-injected castrates and MTF HRT patients are similar
in that both therapies (1) suppress androgen production, and (2) in-
crease estrogen exogenously. If fibrosis and calcification are the rate-
limiting recovery factors in AGA, and if DHT inhibition alone is limited
to stopping AGA, then why does androgen deprivation alongside es-
trogen therapy lead to better AGA outcomes than only DHT inhibition?
This is also explained by the model.

Androgens and estrogens play dimorphic roles in male and female
muscular development [89]. Androgen suppression is an effective
strategy to induce muscular atrophy [90]. In MTF HRT patients, exo-
genous estrogens alongside androgen suppression (drugs or castration)
appear to further decrease androgenic activity – and may lead to more
muscular atrophy – than androgen suppression alone [91,92]. If these
effects extend to the muscles surrounding the GA, then MTF HRT may
reduce scalp tension (and thereby AGA-related inflammation) better
than androgen suppression by itself, amplifying the effectiveness of
DHT-reducing drugs and leading to better AGA recovery in estrogen-
injected castrates and MTF HRT patients.

Implications of hypothesis

We can employ this model to visualize the limitations of current
AGA treatments. Finasteride reduces DHT to castrate levels, but its ef-
ficacy is typically limited to stopping AGA progression. Our model
suggests that DHT attenuation may help prevent fibrosis progression
[54], but likely will not reverse fibrosis already present in AGA-affected
tissues. FDA-approved minoxidil is purported to increase cutaneous
blood flow in AGA tissues [33]. Photo assessments of men applying 5%
minoxidil foam twice daily suggest some hair regrowth in 38.4% of
participants [93]. However, usage reports suggest that 95% of minox-
idil users voluntarily discontinued treatment by 12-months, with 66.5%
of withdrawers reporting “low effect” as their rationale [94]. This aligns
with our model, which implies that increasing blood flow becomes less
effective in treating AGA as fibrosis and calcification progress (Fig. 3).

Suggestions for further research

Testing the hypothesis

While the hypothesis attempts to create a more robust AGA pa-
thology model, more research is needed for validation versus the DHT-
genetic sensitivity consensus. One challenge is the chicken-egg di-
lemma. Which came first: the fibrosis and calcification, or the AGA?
Anecdotes of AGA-related blood vessel calcification require more in-
vestigation. Autopsy studies measuring patients’ pattern and degree of
AGA against the pattern and degree of blood vessel calcification sup-
porting AGA tissues and collagen deposition in AGA tissues would help
to verify the hypothesis. Long-term studies of subjects from adolescence
through adulthood measuring skull bone growth, mechanical tension in

the GA, AGA onset, and DP androgen activity would also serve to test
the model. Finally, investigations into signaling protein expression in
AGA-prone hair, non-AGA-prone scalp hair, AGA-affected hair, and
secondary body and facial hair DP cells may help clarify if interactions
beyond DHT and TGF-β1 contribute to the onset of fibrosis and calci-
fication in AGA tissues.

Identifying better AGA treatment targets

Fibrosis and calcification might be two of the hardest-to-reverse
conditions, but recent mechanotransduction studies demonstrate that
mechanical offloading may prevent or even partially reverse fibrosis in
cutaneous wounds [95,96]. Interestingly, AGA treatments that target
scalp tension through mechanical offloading – i.e., botulinum toxin
injections in GA-connected muscles or scalp tension relaxer devices –
can stop hair loss and result in visible hair regrowth [32,74]. This
warrants more investigation into scalp tension as a potential AGA
treatment target – and mechanotransduction as a tool to reverse one of
AGA’s rate-limiting recovery factors: fibrosis.

Conclusions

AGA is the result of chronic GA-transmitted scalp tension mediated
by pubertal and post-pubertal skull bone growth and/or the over-
development and chronic contraction of muscles connected to the GA.
This tension induces a pro-inflammatory cascade (increased ROS, COX-
2 signaling, IL-1, TNF-α, etc.) which induces TGF-β1 alongside in-
creased androgen activity (5-αR2, DHT, and AR), which furthers TGF-
β1 expression in already-inflamed AGA-prone tissues. The concomitant
presence of DHT and TGF-β1 mediates perifollicular fibrosis, dermal
sheath thickening, and calcification of the capillary networks sup-
porting AGA-prone hair follicles. These chronic, progressive conditions
are the rate-limiting factors in AGA recovery. They restrict follicle
growth space and decrease oxygen and nutrient supply to AGA-prone
tissues – leading to tissue degradation, hair follicle miniaturization, and
eventually pattern baldness.

This model allows for genetic influence during any step-process, but
refutes the belief that AGA-prone follicles are genetically programmed
to become sensitive to DHT. Rather, the model implies that AGA-prone
tissues are predisposed to respond to chronic tension-mediated in-
flammation by inducing DHT and androgen-mediated TGF-β1, which
restructure tissue – of which a symptom is hair loss. The model also
provides a rationale for unexplained phenomena in AGA pathology,
such as:

• Why DHT increases in AGA-prone scalp tissues (i.e., DHT is a re-
sponse to tension-mediated inflammation)

• The mechanisms by which DHT is involved in AGA progression (i.e.,
DHT is involved in the onset of fibrosis and calcification)

• The pattern of AGA (i.e., AGA progression matches that of where
GA-transmitted scalp tension is highest, and progresses as peak
tension points change during fibrosis onset)

• Why AGA is observed more often in elderly populations versus
young adults (i.e., calcification and fibrosis have had more time to
accumulate)

• Why DHT is associated with body and facial hair growth and also
AGA-related hair loss (i.e., tension-mediated inflammation induces
TGF-β1 and DHT, and remodels tissue in AGA sites – a phenomenon
not observed in body and facial hair growth sites)

• Why androgen suppression stops AGA, but does not regrow all hair
(i.e.; DHT inhibitors may reduce fibrosis progression in AGA, but do
not reverse fibrosis already present)

Future AGA research should focus on utilizing mechanotransduction
to potentially reverse AGA-related tissue remodeling. If the model holds
true, then reversing AGA tissue remodeling – rather than attenuating it
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– may pave the pathway to full AGA recoveries.
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