• Boric acid, $B(OH)_{3}$, is a weak acid ($pK_a = 9.24$) that is used as a mild antiseptic and eye wash. Unusually, the Lewis acidity of the compound accounts for its Brønsted acidity. By using an appropriate chemical equation, show how this compound acts as

a Brønsted acid in aqueous solution.

The boron atom in B(OH)₃ is electron deficient: it has 6 rather than 8 electrons **in its valence shell. It acts as a Lewis acid by readily accepting the lone pair** from the oxygen in a water molecule to go from sp^2 to sp^3 hybridisation.

$$
\begin{array}{ccccccc} & & H & \text{OH} & & & \\ & & \downarrow & & + & H_2O & \longrightarrow & \oplus_{O}^1 - B^1 & \text{OH} & \longrightarrow & B(OH)_4^\oplus & + & H_3O^\oplus \\ & H & & \downarrow & & \downarrow & & \oplus \\ & H & & \text{OH} & & & & \end{array}
$$

Solution A consists of a 0.40 M aqueous solution of boric acid at 25 °C. Calculate the pH of Solution A.

As boric is a weak acid, [H3O+] must be calculated using a reaction table (acid = $B(OH)_3$ and base = $B(OH)_2$ ⁻)

The equilibrium constant K_a is given by: K_a = H_3O^+][base] $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ x^2 $0.40 - x$

As $pK_a = -\log_{10} K_a$, $K_a = 10^{-9.24}$ and is very small, $0.40 - x \sim 0.40$ and hence:

 $x^2 = 0.40 \times 10^{-9.24}$ $x^2 = 0.40 \times 10^{-9.24}$ **or** $x = 1.52 \times 10^{-5}$ **M** = [H₃O⁺]

Hence, the pH is given by:

$$
pH = -log_{10}[H_3O^+] = -log_{10}(1.52 \times 10^{-5}) = 4.82
$$

pH = **4.82**

At 25 °C, 1.00 L of Solution B consists of 101.8 g of NaB(OH)4 dissolved in water. Calculate the pH of Solution B.

The molar mass of NaB(OH)3 is:

molar mass = [22.99 (Na) + 10.81 (B) + 4 (16.00 (O) + 1.008 (H))] g mol-1 $= 101.83$ g mol⁻¹

ANSWER CONTINUES ON THE PAGE

A mass of 101.8 g therefore corresponds to:

number of moles = mass / molar mass = 101.8 g / (101.83 g mol⁻¹) = 1.000 mol

A 1.00 L solution contains this amount has a concentration of 1.00 M.

As it is a weak base, [OH-] must be calculated by considering the equilibrium:

The equilibrium constant K_b is given by:

 $K_{\rm b}$ = acid $[OH^-]$ $\frac{241}{24}$ = y^2 $(1.00-y)$

For an acid and its conjugate base:

 $pK_a + pK_b = 14.00$

 $pK_b = 14.00 - 9.24 = 4.76$

As $pK_b = 4.76$, $K_b = 10^{-4.76}$. K_b is very small so $1.00 - y \sim 1.00$ and hence: $y^2 = 1.00 \times 10^{-4.76}$ or $y = 0.00417$ M = [OH⁻]

Hence, the pOH is given by:

 $pOH = -log_{10}[OH] = log_{10}[0.00417] = 2.38$

Finally, $pH + pOH = 14.00$ **so**

pH = 14.00 – 2.38 = 11.62

pH = **11.62**

Using both Solutions A and B, calculate the volumes (mL) required to prepare a 1.0 L solution with a $pH = 8.00$.

The ratio of acid to conjugate base needed can be calculated using the Henderson-Hasselbalch equation, pH = $pK_a + log \frac{[base]}{[acid]}}$:

 $8.00 = 9.24 + log \frac{[base]}{[acid]}$ so $\frac{[base]}{[acid]}$ $\frac{[\text{base}]}{[\text{acid}]}$ = 10^{-1.24} = 0.0575

ANSWER CONTINUES ON THE PAGE

A volume V_a of the acid and V_b of base are added together to give a solution with **a total volume of 1.0 L so:**

$$
V_{\rm a}+V_{\rm b}=1.0\,\rm L
$$

Using $c_1V_1 = c_2V_2$, this mixing reduces the concentration of both:

acid: $(0.40 \text{ M}) \times V_a = c_{\text{acid}} \times (1.0 \text{ L})$ so $V_a = 2.5 \times c_{\text{acid}}$ **base:** $(1.00 \text{ M}) \times V_{\text{b}} = c_{\text{base}} \times (1.0 \text{ L})$ so $V_{\text{b}} = 1.0 \times c_{\text{base}}$

Using the concentration ratio from the Henderson-Hasselbalch equation above, the ratio of the volumes needed is therefore:

$$
V_{\rm b}
$$
 / $V_{\rm a}$ = (1.0 / 2.5) × $c_{\rm base}$ / $c_{\rm acid}$ = (1.0 / 2.5) × 0.0575 = 0.023

or

 $V_{\rm b} = 0.023 \times V_{\rm a}$

From above, $V_a + V_b = 1.0$ L so:

 $V_{\rm a}$ + (0.023 \times $V_{\rm a}$) = 1.0 L **1.023** $V_a = 1.0$ L *V***^a = 0.980 L**

Hence, $V_b = 0.020$ L.