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1. Introduction
The worldwide prevalence and economic burden of gas-
trointestinal disorders (GID) are increasing rapidly [1]. 
One of the primary outcomes of the GID is the impair-
ment of intestinal nutrient absorption ability [2]. Nutri-
ent absorption is mediated by transporter proteins located 
on the intestinal epithelium’s brush border or basolateral 
membranes [3]. Carbohydrate absorption is mediated by 
the family of glucose transporters (GLUTs) and sodium-
glucose cotransporters (SGLTs). SGLT1 and GLUT5 are 
vital in absorbing sodium-dependent glucose cotransport-
ers and fructose for carbohydrate intake [4]. Basolaterally 
located, the monosaccharide transporter GLUT2 trans-
ports glucose, galactose, fructose, mannose, and glucos-
amine from the cell to the blood for carbohydrates [4]. Fat-
ty acid transport protein-1 (FATP1) and FATP4, located 

in the endoplasmic reticulum of cells, control long-chain 
fatty acid uptake and metabolism [5]. Fatty acid biosyn-
thesis is modulated by liver X receptor-α (LxRα) and its 
gene target, sterol regulatory element binding protein-1c 
(SREBP-1c) [6]. LxRα triggers the SREBP-1c expression, 
thus increasing the activity of genes involved in glycolysis 
and lipogenesis [7]. In addition, SREBP-1c is stimulated by 
the nuclear receptor heterodimer, which modulates genes 
such as acetyl-coenzyme (Co), A carboxylase (ACC), and 
fatty acid synthase (FAS) [8]. Moreover, the adipogenic 
transcription factor peroxisome proliferator-activated re-
ceptor gamma (PPARγ) is a direct target of SREBP-1c [9], 
and thus SREBP-1c has been revealed to have a vital role in 
adipocyte differentiation [10]. 

Impaired nutrient absorption leading to malabsorp-
tion and insufficient energy intake may result in dysfunc-
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tion of liver lipogenesis [11]. Therefore, many dietary 
supplements can use in animals and humans to regulate 
nutrient absorption and improve energy metabolism. Bo-
ron (B), an essential element for humans and animals, has 
positive effects on reproduction, development, bone me-
tabolism, hormonal activity, liver functions, brain activ-
ity, and different types of cancer [12]. Boron may promote 
the proliferation of intestinal epithelial cells and improve 
villi development, thus increasing nutrient absorption lev-
els [13,14] and boosting nutrient digestibility in animals 
[12]. Besides its positive effects on intestinal health, B may 
be essential in regulating energy and lipid metabolism by 
controlling insulin release and contributing to energy sub-
strate metabolism [15]. 

Boric acid [B(OH)3, BA] is widely used to investigate 
the mechanism of action of B in different biological sys-
tems [16,17]. However, the effect of sodium pentaborate 
pentahydrate (NaB5O8.5H2O, SPP) in biological systems is 
still unclear. SPP is generated from BA and sodium bo-
rate (borax), commonly used boron sources [18]. Previous 
studies have shown that SPP has osteogenic [19], wound 
healing [20], and antiobesity effects [21]. SPP administra-
tion may reduce white adipose tissue and liver weight and 
downregulate mouse adipogenic genes [21]. However, the 
role of boron, especially SPP form, in regulating intestinal 
nutrient transporters and hepatic lipid metabolism-related 
genes has not been studied. Based on the foregoing, the 
purpose of the present study was to clarify the effects of 
different B sources, especially SPP, on nutrient digestibility 
and expression of intestinal nutrient transporters, includ-
ing GLUT1, GLUT2, GLUT5, SGLT1, FATP1, and FATP4 
and liver lipid metabolism-related genes (LxRα, SREBP-
1c, FAS, and PPARγ) in rats. 

2. Materials and methods
2.1. Animals
In this study, twenty-one Wistar albino eight-week-old 
male rats (weighing 180 ± 20 g) were used. The total sam-
ple size was estimated by using G*power program (Ver-
sion 3.1.9.3, Heinrich-Heine-Universität Düsseldorf, Ger-
many) (N = 21, 1-β = 0.8, effect size = 0.75, α = 0.05). The 
rats were housed in plastic cages with free access to water 
and a rat chow diet (AIN-93M with minor modification, 
Table 1) under typical environmental conditions (12/12 
h light/dark cycle, 22 °C, and 55% ± 3% humidity). The 
study was authorized by the Bingöl University Animal Ex-
periments Local Ethics Committee (2019-06-03) accord-
ing to EU Directive 2010/63/EU for animal research and 
performed in the Experimental Research Center of Bingöl 
University (BUDAM).
2.2. Experimental design
After one week of acclimatization, the rats were randomly 
divided into three groups (n = 7) as follows: (i) Control, 

which consisted of rats fed a chow diet and treated with 1 
mL tap water as a vehicle via oral gavage (16-gauge nee-
dle, 76 mm); (ii) Sodium pentaborate pentahydrate (SPP), 
which consisted of rats fed a chow diet and supplemented 
with SPP; and (iii) Boric acid (BA), which consisted of rats 
fed a chow diet and supplemented with BA. Except for the 
amount of B received from the chow diet (AIN-93 diet 
contains 0.5 mg/kg B) [22], 8 mg elemental B/kg BW was 
administrated via oral gavage every other day for 12 weeks 
from SPP (45.2 mg/kg BW) and BA (43.7 mg/kg BW). SPP 
and BA contain 17.7% and 18.3% elemental boron (Na-
tional Boron Research Institute-BOREN, Ankara, Turkey). 
The B dose was selected based on a previous study by Ergul 
et al. [23].
2.3. Sample collection 
In the last five consecutive days of the experiment, fresh 
feces from individually caged rats were collected and 
pooled. The nutrient digestibility of rats in each group was 
measured using the indigestible indicator (chromium ox-
ide, Cr2O3, 0.20%) [24]. At the end of the study, all rats 
were decapitated by cervical dislocation under xylazine 
(10 mg/kg) and ketamine hydrochloride (50 mg/kg) an-
esthesia. Serum (at least 2.5 mL), whole liver, and jejunum 
(5 cm) samples were removed immediately and kept at –80 
°C for further analyses.
2.4. Nutrient digestibility
The collected fecal samples were dried in an oven at 60 °C 
for 72 h, while the feed samples were dried at 105 °C for 8 
h. All fecal and feed samples were analyzed using AOAC 
standard techniques to evaluate the dry matter (DM), or-
ganic matter (OM), ash, crude protein (CP), and ether ex-
tract (EE) [25]. The samples were dried at 105 °C overnight 
in a forced air oven to determine DM (# 934.01). Ash was 
determined using a muffle furnace at 550 °C (# 942.05). The 
CP and EE were analyzed according to Kjeldahl (# 954.01) 
and Soxhlet methods (# 920.39), respectively. Chemical 
analyses were repeated at least three times. Nutrient digest-
ibility was calculated using the following formula:

100 – [100 × (Cr in feed%/Cr in fecal samples%) × (nu-
trient in fecal samples%/nutrient in feed%)].
2.5. Mineral components analysis 
The feed/fecal Cr levels were measured by atomic absorp-
tion spectrometry equipped with a graphite furnace (AAS, 
PerkinElmer, Analyst 800, Norwalk, USA). For this pur-
pose, 0.3 g feed and feces samples were transferred into 
a Teflon digestion vessel and digested with 5 mL nitric 
acid (65%, Merck, Darmstadt, Germany) in the Berghoff 
microwave digestion system (Speedwave TM MWS-2, 
Eningen, Germany) with a three-step program. For calibra-
tion, six standard dilutions (0.5, 1.0, 2, 4, 8, and 10.0 μg/L) 
were prepared from Cr stock solution (Merck, Darmstadt, 
Germany). After digestion, the sample’s Cr levels were 
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measured at a wavelength of 357.9 nm. The precision of 
quantitative measurements of Cr was confirmed by si-
multaneous analysis of certified reference material (bo-
vine liver NIST® SRM® 1577c, New Jersey, USA), which 
was digested identically to the samples. For Cr, the mean 
sample recoveries were 98.7%.

The samples were digested using the Berghoff micro-
wave digestion equipment for serum B analysis. For diges-
tion, serum samples (0.5 mL) were heated to 250 °C in the 
microwave with 2 mL of concentrated HNO3 and 1 mL of 
30% (v/v) H2O2. The samples were then transferred to 50 
mL volumetric flasks and filled to the necessary volume with 
18.2 MΩ/cm deionized water after cooling to room temper-
ature. B levels were measured by flame atomic absorption 
spectrometry (FAAS, PerkinElmer, Analyst 800, Norwalk, 
USA) at a wavelength of 249.8 nm. Certified reference mate-
rial (NIST® SRM® 3107, Merck, Darmstadt, Germany) was 
used for B analysis. The recovery was 89.9% [26].
2.6. Biochemical analyses
The BUN levels, ALT, and AST activities in serum were 
determined using biochemical kits by the LABGEO vet-
erinary serum auto-analyzer (Samsung LABGEOPT10, 
Seoul, Korea).

2.7. Nutrient transporters and lipid-regulated 
transcription factors analyses
The real-time quantitative PCR method was used to de-
termine mRNA nutrient transporters and lipid-regulated 
transcription factors expressions. The jejunum and liver 
samples were homogenized according to commercial 
RNeasy Mini kits (Qiagen, California, USA), following the 
manufacturer’s extraction guidelines. The amounts of total 
RNA in the homogenates were determined by a micro-
volume spectrophotometer (MaestroNano, Maestrogen 
Inc., Hsinchu, Taiwan). cDNA was synthesized with Taq-
Man Reverse Transcription protocol using 2 µg of RNA. 
The synthesized cDNA was added to an SYBR Green PCR 
Master Mix (Catalog no. 330620, Qiagen) and used for the 
RT-qPCR. Expression of target genes (GLUT1, GLUT2, 
GLUT5, SGLT1, FATP1, PPARγ, SREBP-1c, LxR-α, and 
FAS) was assessed by Rotor-Gene Q (Qiagen, Maryland, 
USA). PCR reaction (denaturation: 95 °C, 15 s, 40 cycles; 
annealing: 60 °C, 15  s; extension: 70 °C, 30 s) was per-
formed with 5  µL SYBR green master mix, 2  µL cDNA, 
1 µL RNA-free water, and 2 µL primer pair (Table 2). Each 
PCR was performed at least three times. The mean Ct val-
ue of PCR reactions was considered for statistical analysis. 
GAPDH was used as the endogenous gene to standardize 

Table 1. Composition of rat chow diet (AIN-93M).*

Ingredients %

Casein 20.00
Starch 57.95
Sucrose 5.00
Soybean oil 7.00
Cellulose 5.00
Mineral premix** 3.50
Vitamin premix*** 1.00
l-cysteine 0.30
Choline bitartrate 0.25
Chemical analysis
Metabolic energy, MJ/kg 15.93
Crude protein, % 17.90
Ether extract, % 7.00
Ash, % 4.20
Calcium, g/kg 5.00
Phosphorus, g/kg 3.00

*AIN-93M diet contains 0.5 mg/kg elemental boron. Each rat intakes 0.001 mg (0.5 mg/1000 g diet) of elemental boron from the chow 
diet. 
** AIN-93G-MX 
***AIN-93G-VX
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mRNA expressions. The expression levels of target genes 
were normalized according to the control group.
2.8. Statistical analysis
The data were analyzed using a statistical package tool 
(IBM Corp. 2012. Version 22.0. Armonk, NY, USA). The 
normality of the data was controlled with the Shapiro-Wilk 
test, and the homogeneity of variance was determined 
with the Levene test. For statistical comparisons, one-way 
analysis of variance (ANOVA) and Tukey’s post hoc test 
were performed. p < 0.05 is regarded as significant. Data 
demonstrated as mean ± standard deviation.

3. Results
3.1. Nutrient digestibility
B supplementation did not affect the final body weight of 
the rats (Figure 1a; p > 0.05). The SPP and BA groups had 
higher DM (p < 0.0001, for all), OM (p < 0.0001, for all), 
CP (p < 0.001 for the BA group and p < 0.0001 for the SPP 
group), and EE (p < 0.001 for the BA group and p < 0.01 
for the SPP group) digestibility (Figures 1b–1e) than the 
control group. However, B supplementation did not affect 
ash digestibility (Figure 1f; p > 0.05).
3.2. Biochemical parameters
There was no statistical difference in serum BUN, creati-
nine, ALT, and AST parameters between the control and 
other groups (Figures 2a–2d, p > 0.05). The SPP (27.73 ng/
mL) and BA (28.59 ng/mL) groups had higher serum B 
levels than the control group (18.56 ng/mL) (Figure 2b; 
p < 0.0001, for all). However, the serum B level was in-
creased in the SPP and BA groups compared to the control 
group (p < 0.0001), and there was no statistical difference 
between the SPP and BA groups (p > 0.05).
3.3. Intestinal nutrient transporters
Rats administrated SPP and BA had higher jejunal GLUT1, 

GLUT2, GLUT5, SGLT1, FATP1, and FATP4 mRNA ex-
pression levels than nonsupplemented rats (Figure 3 and 
4; p < 0.0001, for all). GLUT1 and GLUT5 expressions 
were significantly higher in the SPP group than in the BA 
group (p < 0.0001). However, GLUT2 and SGLT1 expres-
sions were increased in the BA group compared to the SPP 
group (p < 0.0001 for GLUT2; p < 0.01 for SGLT1). Ad-
ditionally, SPP administration effectively stimulated the 
jejunal FATP1 (Figure 4a, p < 0.05) and FATP4 (Figure 4b, 
p < 0.0001) expression compared to BA administration.
3.4. Liver lipid-regulated transcription factors 
BA-supplemented rats had significantly higher liver 
PPARγ expression levels than other groups (Figure 5a, p < 
0.0001). Liver SREBP-1c (Figure 5b) and FAS (Figure 5d) 
expression levels were markedly decreased by SPP supple-
mentation compared to nonsupplemented (p < 0.0001, for 
all) and BA-supplemented rats (p < 0.05 for SREBP-1c and 
p < 0.001 for FAS). Similarly, LxR-α (Figure 5c) expression 
was significantly inhibited in the SPP group compared to 
the other groups (p < 0.0001 for all).

4. Discussion
The present study showed that SPP and BA could enhance 
nutrient digestibility and intestinal glucose and fatty acid 
transporters, as well as regulate hepatic lipogenesis. B is 
absorbed from the gastrointestinal tract and is rapidly dis-
tributed into tissues [27,28]. This rapid action of B prob-
ably increased serum B levels with SPP and BA supple-
mentation in this study. Because 90% of the absorbed B is 
excreted in the urine within a few days, it may not cause 
toxicity and does not accumulate in soft tissues when con-
sumed in low doses [12]. In the current study, we observed 
that a dose of 8 mg/kg elemental B administration for 12 
weeks did not lead to toxicity in rats and did not negatively 
alter the serum BUN, ALT, AST, and creatinine levels.

Table 2. RT-qPCR primers.

Gene Name Accession Number Forward Reverse

GLUT1 (SLC2A1) NM_138827.2 TCTCTGTCGGGGGCATGATT AACCCATAAGCACGGCAGAC
GLUT2 (SLC2A2) NM_012879.2 AGTCACACCAGCACATACGA TGGCTTTGATCCTTCCGAGT
GLUT5 (SLC2A5) NM_019741 GAAGACACACTGAGCCGTGGA CCTTTCTTCAGCAGGGAAGTGTC
SGLT1 (SLC5A1) NM_013033.2 AAGCGATTTGGAGGCAAGCG CCAGTCCCCCTGTGATGGTG
FATP1 (SLC27A1) NM_053580.2 TGCGAGAACCCGTGAGGAA CGATACGCAGAAAGCGCCAG
FATP4 (SLC27A4) NM_001100706.1 GGGTGCCAACAACAAGAAGATTGC TGCGGTCTCGGAAGTACAGGTAG
PPARγ NM_013124.3 GACCTGAAGCTCCAAGAATACCA CCCACAGACTCGGCACTCA
SREBP-1c NM_001276708.1 GACGACGGAGCCATGGATT GGGAAGTCACTGTCTTGGTTGTT
LxR-α NM_031627.2 CCTGATGTTTCTCCTGACTC TGACTCCAACCCTATCCTTA
FAS NM_017332.2 CCACCCTGTAGGTCACCGTTT GTGGGTATAAGCGTTCAGCTGC
GAPDH NM_017008.4 GGTTACCAGGGCTGCCTTCT CTTCCCATTCTCAGCCTTGACT
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Previous studies have shown the positive effects of BA 
on DM, OM, CP, EE, and ash digestibility [13,14]. Cho et 
al. showed that BA added to the diet (equal to 5 mg/kg di-
etary elemental B) reduced the incidence of diarrhea while 
increasing nutrient and energy digestibility in pigs [13]. 
Vijay Bhasker et al. reported that 352 mg/kg dietary so-
dium borate supplementation (equal to 40 mg/kg dietary 
elemental B) positively influenced nutrient digestibility in 
rats [29]. Our results demonstrated for the first time that 
SPP and BA supplementation have similar effects on nutri-
ent digestibility in rats. Likely, the positive impact of SPP 
on nutrient digestibility seems to be related to cell prolif-
erative activity [30], as does BA [13,14]. Also, the water so-
lution of BA [31] and SPP [32] has a low buffering capacity 
and almost the same pH values as the intestinal tract; thus, 
due to these boron compounds did not decompose to bo-
rate anions at physiological pH [33], they may have exert-
ed the same effect on nutrient digestibility. However, the 
lack of assessment of the histopathological alterations and 
luminal pH measurements is the limitation of our study.

Previous studies reported that BA might promote cell 
proliferation in intestinal epithelia, increase villus height 
and crypt depth [14,34], and improve intestinal health by 
modulating intestinal permeability [35]. Thus, in the cur-
rent study, the increased expression levels of glucose and 
fatty acid transporters may have stemmed from boosted 
nutrient digestibility [36] and improved intestinal integ-
rity, as reported by previous studies, after B supplementa-
tion [14,34,35]. 

To the best of our knowledge, this is the first study to 
evaluate the effect of the SPP and BA treatment on GLUT1, 
GLUT5, FATP1, and FATP4 expressions in the jejunum 
of rats. Parallel to the nutrient digestibility results, in the 
present study, rats treated with SPP had higher expres-
sion of GLUT1, GLUT5, FATP1, and FATP4 in the jeju-
num of rats treated with BA. Additionally, the GLUT2 and 
SGLT1 expression in the jejunum of rats was much higher 
in groups supplemented with BA compared with the SPP. 
No previous studies in jejeunum investigate the effects of 
SPP and BA supplementation on the nutrient transport 

Figure 1. Effects of different B derivatives on body weight (a) and DM (b), OM (c), CP (d), EE (e), and ash (f) digestibility in rats. 
Data are shown as mean ± standard deviation. The difference between groups is indicated with asterisks (**p < 0.01, ***p < 0.001, 
and ****p < 0.0001). One-way ANOVA and Tukey’s post hoc tests were used for statistical comparisons.
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response with which to compare this study. However, it 
has been reported that GLUT1 is the primary mediator of 
cellular glucose influx and cell proliferation, among other 
GLUTs [37]. Thus, intestinal GLUT1 expression might 
have been elevated by SPP owing to its higher cell prolif-
erating ability, as reported before [20,30]. Also, an in vitro 
study by Aydın et al. declared that 19.5 µg/mL of BA treat-
ment could relatively increase the GLUT2 expression than 
SPP in pancreatic β-cells [38]. 

In the present study, SPP and BA supplementation in-
creased PPARγ and decreased SREBP-1c, LxR-α, and FAS 
expression in the liver of rats. These data are consistent 
with earlier reports showing the effects of boron on lipid 
metabolism-related genes [21,39]. For example, Kucuk-
kurt et al. showed that 10 mg/kg B (as BA) increased 
PPARγ expression in the liver in HFD-fed rats [39]. On 
the other hand, supplemental BA (30 mg/L B) in drinking 
water decreased the PPARγ in the liver [40]. More recently, 
Abdik et al. found that oral 500–1500 mg/kg SPP adminis-

tration reduced the PPARγ, SREBP1, and FAS mRNA ex-
pression and adipogenesis-related genes in the white adi-
pose tissue in HFD-fed diabetic mice [21]. Although there 
are no data regarding the effect of B compounds on LxR-α, 
it is well known that LxR-α can stimulate the SREBP-1c 
and FAS activity in the liver and increase lipid accumula-
tion [41]. Additionally, while previous studies have shown 
that B may be effective in suppressing liver adipogenesis 
[21,39,40], these studies did not demonstrate the molec-
ular mechanism of action of B on the LXR-α/SREBP-1c/
FAS cascade in rat liver. Therefore, we show here for the 
first time that B can regulate lipogenesis in rat liver by in-
hibiting the LxR-α and possibly the LXR-α/SREBP-1c/FAS 
cascade. In addition, SPP form inhibited the expression of 
SREBP-1c, LxR-α, and FAS in the liver of rats more po-
tently than BA. Similarly, Yuksel et al. demonstrated that 
SPP promotes hair growth in rats by stimulating the Wnt/
β-catenin pathway [42] that inhibits SREBP-1c [43], LxR-α 
[44], and FAS [45].

Figure 2. Effects of different B derivatives on serum BUN (a), creatinine (b), ALT (c), AST (d), and boron (e) levels in rats. Data are 
shown as mean ± standard deviation. The difference between groups is indicated with asterisks (*p < 0.05, **p < 0.01, and ****p < 
0.0001). One-way ANOVA and Tukey’s post hoc tests were used for statistical comparisons.
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Figure 3. Effects of different B derivatives on jejunal GLUT1 (a), GLUT2 (b), GLUT5 (c), and SGLT1 (d) expres-
sion levels in rats. Each PCR was performed at least three times. GAPDH was used as the endogenous control 
gene. The expression of target genes was normalized to the control group. Data are shown as mean ± standard 
deviation. The difference between groups is indicated with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001). One-way ANOVA and Tukey’s post hoc tests were used for statistical comparisons.
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Figure 4. Effects of different B derivatives on jejunal FATP1 (a) and FATP4 (b) expression levels in rats. Each PCR 
was performed at least three times. GAPDH was used as the endogenous control gene. The expression of target 
genes was normalized to the control group. Data are shown as mean ± standard deviation. The difference between 
groups is indicated with asterisks (*p < 0.05 and ****p < 0.0001). One-way ANOVA and Tukey’s post hoc tests were 
used for statistical comparisons.
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Figure 5. Effects of different B derivatives on liver PPARγ (a), SREBP-1c (b), LxR-α (c), and FAS (d) expression 
levels in rats. Each PCR was performed at least three times. GAPDH was used as the endogenous control gene. The 
expression levels of target genes were normalized to the control group. Data are shown as mean ± standard deviation. 
The difference between groups is indicated with asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). 
One-way ANOVA and Tukey’s post hoc tests were used for statistical comparisons.

5. Conclusions
The present data showed that SPP and BA improved lipid 
metabolism and intestinal health by modulation of liver 
lipid-related genes and intestinal nutrient transporters, in-
cluding glucose and fatty acid transporters. The efficacy of 
boron as SPP was more notable than boron as BA, which 
could be attributed to higher bioavailability. However, 
clinical studies in humans and animals are needed to sup-
port current findings. Therefore, these data may shed light 
on future studies using boron (especially SPP) to prevent 
gastrointestinal and lipid metabolism disorders.
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