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Independent Components Analysis (ICA) is one of the most widely used methods for blind source separation.
In this paper we use this technique to facilitate the analysis of 3D- front face fluorescence spectra and to
evaluate the efficiency of Nigella seed extract as a natural antioxidant compared with butylated
hydroxytoluene (BHT) during accelerated oxidation of edible vegetable oils at 120 °C, 140 °C, 170 °C and
190 °C.
ICA has demonstrated its power to extract the most informative signals and thus to allow the interpretation of
the differences observed in the corresponding IC scores between Control, BHT-spiked and Nigella-spiked
samples.
The results of the study clearly indicate that the natural seed extract at a level of 800 ppm exhibited
antioxidant effects similar to those of the synthetic antioxidant BHT at a level of 200 ppm and thus contributes
to an increase in the oxidative stability of the oil.
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1. Introduction

Oxidation of oils, which occurs during storage andheat treatmentnot
only affects their organoleptic characteristics such as taste and aroma,
making them unacceptable to the consumer, but also influences their
nutritive value [1]. In fact, toxicity, mutagenicity and carcinogenicity of
oxidized lipids have been discussed by Johnson and Cort. [2].

Thus, due to health concerns and for economic reasons, many
investigations have been undertaken with the aim of enhancing the
heat stability of lipids.

The addition of antioxidants is one of the technically simplest ways
of reducing lipid oxidation [3,4].

Recently, the use of synthetic antioxidants such as butylated
hydroxy anisol (BHA) and butylated hydroxy toluene (BHT), the most
widely used anti-oxidants, has been decreasing because it is suspected
that they may act as promoters of carcinogenesis, this is in addition to
a general consumer rejection of the use of synthetic food additives
[5,6]. The search for and development of other anti-oxidants from
natural plant materials is therefore highly desirable.

In this study, Nigella sativa L. (Ranunculaceae ) seed extract was
used to enrich corn oil with a view to improving its thermal resistance
during accelerated oxidation at 120 °C, 140 °C , 170 °C and 190 °C over
4 h. The modifications that occur in oil samples were monitored by
front-face fluorescence spectroscopy (FFFS).

Over the last 10 years, fluorescence spectroscopy which is a fast,
nondestructive, selective, and sensitive technique, has been shown to
be able to provide important information about chemical and physical
properties as well as changes in several types of complex food
products [7,8]. The increased use of the technique has been facilitated
by improved instruments and new data analysis techniques such as
multivariate and even multiway chemometric data analyses [9]. In
fact, the interpretation of fluorescence spectroscopic data is complex
due to absorbance by several molecular groups, changes caused by
variation in the sample matrix, etc. It is shown here how recent data
analytical techniques are useful to improve the interpretation of the
data.

In this paper, Independent Components Analysis (ICA) is used to
analyse 3D- front face fluorescence spectra and facilitate monitoring
the antioxidant effect of Nigella seed extract during the thermal
evolution of samples.

ICA is a signal processing technique that aims at recovering the
underlying source signals from a set of mixed signals based on the
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assumption that these source signals are statistically independent
[10]. ICA has been applied, for example, to spectroscopic data [11–13],
medical signal processing [14], speech recognition [15,16], fault
detection [17], statistical process monitoring [18], and batch process
monitoring [19].

Thus, in the present article, we intend to demonstrate the
usefulness of ICA as a means to extract the pure underlying signals
from a set of mixed signals with unknown proportions.

2. Materials and methods

2.1. Nigella sativa.L extract preparation (natural antioxidant)

Nigella seeds were washed and then dried in a hot-air oven at
40 °C. The dried seeds were ground into a fine powder in a mill. The
material that passed through an 80 mesh sieve was retained for use.
Ten grams of ground seeds were extracted with 100 mL of ethanol
overnight in a shaker (Heidolph REAX 2) at room temperature. The
extract was filtered and the residue was re-extracted under the same
conditions. The combined filtrate was evaporated in a rotary
evaporator (Rotavapor R110, Büchi, Switzerland) at below 40 °C.
The extract obtained after evaporation of ethanol was used as the
natural antioxidant [20,21].

2.2. Oil samples

Corn oils (“Safi” and “Nejma”) were commercial brands bought in
the Tunisian marketplace.

2.3. Experimental parameters and software

Corn oils were heated at 120, 140, 170 and 190 °C for 4 h to mimic
frying conditions. Preliminary studies of Nigella sativa L seed extract at
concentrations from 200 ppm to 4800 ppm having shown that
enrichment with 800 ppm had a significant stabilising effect, this
concentrationwas chosen. A relatively low concentration is preferable
both for economic reasons and so as not to affect the organoleptic
characteristics of the oil. For comparison, the synthetic antioxidant
(BHT) was also tested at the legal limit of 200 ppm [22]. One 10 mL
aliquot of each sample was taken every 15 min up to 180 min. A final
aliquot was taken at 240 minwhich gives 14 samples for each oil as-is,
with BHT or with Nigella (13 samples at after different heating times
plus the unheated oil as the reference sample) resulting in 320 oil
samples (40 samples×4 temperatures×2 oils).

Fluorescence landscapes (3D spectra) were measured directly on
the samples without prior chemical treatment, using a Xenius
spectrofluorometer (SAFAS, Monaco) equipped with a xenon lamp
source, excitation and emission monochromators and a front face
sample-cell holder. Measurements were carried out using acryl
cuvettes. The instrumental settings were: bandwidth 10 nm, emission
wavelengths 300 to 550 nm (recorded every 2 nm) and excitation
wavelengths 280 to 500 nm (recorded every 2 nm). A photomultiplier
(PM) voltage of 420 V was used to avoid detector saturation. The
“Forcing” option was also applied in order to limit the emission range
so that data acquisition started 15 nm above the excitation frequency,
thus avoiding interference from Rayleigh scattering.

The data consisting of 3D fluorescence spectra were exported in
ASCII format for data treatment using MATLAB version 7.0.4 (The
MathWorks, Natick, USA).

3. Chemometrics methods

3.1. Independent components analysis

Independent Components Analysis is a blind source separation
(BSS) techniques developed to extract the pure underlying signals
from a set of signals where they are mixed in unknown proportions.
The general ICA model is [23,24]:

X = A:S

where X is the matrix of observed spectra, S is the matrix of unknown
"pure" source spectra and A is the mixing matrix of unknown
coefficients, related to the corresponding concentrations. Based on the
Central Limit Theorem, ICA assumes that statistically independent
source signals have intensity distributions that are less Gaussian than
are their mixtures [23,24]. For this reason, ICA aims to maximise the
non-gaussianity of the extracted signals.

This method is now widely applied in the signal processing fields,
such as biomedical signals [25], image processing [14] and financial
data analysis [26]. Its applications in processing analytical signals,
including NIR [12], MIR [13], fluorescence spectroscopy [27,28],
photoacoustic spectroscopy [29], GC/MS [11] and electron paramag-
netic resonance (EPR) [30], were also reported by some researchers in
their recent works.

There are a large number of ICA algorithms such as FastICA, Joint
Approximate Diagonalization of Eigenmatrices (JADE), Infomax ICA,
Mean-field ICA (MF-ICA), Kernel ICA (KICA), often based on different
definitions of independence and using different procedures to extract
the Independent Components [24]. In this paper, the JADE algorithm
was used [31]. JADE performs a joint diagonalization of matrices of the
fourth-order cumulants calculated from the data and does not require
any gradient searches, thus avoiding the convergence problems
encountered with other procedures.

PARAFAC is the multi-way method commonly used to decompose
3-way fluorescence datasets [32,33]. However, ICA has several
advantages over PARAFAC.

To obtain chemically interpretable results using PARAFAC, in the
present case, it was necessary to impose non-negativity constraints on
all three ways (“concentration”, excitation and emission). No such a
priori constraints are required when using ICA. If the extracted
proportions (“scores”) were negative, it was sufficient to multiply the
scores and corresponding signals (“loadings”) by −1.

As well, it was not possible to obtain a PARAFAC model which
could extract all the components that were visibly present in the
spectra. The Corcondia values used to determine the number of
significant PARAFAC factors were already at the level of noise with
only 3 or 4 Factors.

3.2. Choice of the number of ICA components

The choice of the optimal number of components to use in ICA is
one of the crucial points in the analysis. In this work, the Durbin–
Watson (DW) criterion was applied to the extracted signals to
determine which ones had a high signal/noise ratio and could
therefore be assumed to be informative ICs.

The DW statistic is a criterion which is classically used to test for
the correlation of residuals after a regression [34] but which has been
proposed as a measure of the signal/noise ratio of the loadings and
regression vectors obtained by multivariate analysis of signals, in
order to determine the optimal dimensionality of multivariate models
[35,36]. The basic justification for the use of this criterion is that
uninformative loadings and over fitted regression vectors contain
more random noise. If the DW value is close to zero, the vector is
structured and so the factor is significant and can be retained, while if
DW value is close to 2, the vector is noisy and can be discarded [35].

The Durbin–Watson (DW) criterion which reflects the signals/noise
ratio of the ICs is preferable to examining the scree plot of a Principal
Components Analysis which only reflects the extracted variance. As
well, the results of the PCA scree plot are ambiguous. In the present case,
the number of significant PCs is 8 based on the percentage of the total
variance divided by the total number of components; is 10 based on the
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break in the slope; and is 20 based on the appearance of the almost
horizontal plateau.

4. Results and discussion

The data corresponding to each oil heated at different times for a
given temperature, with and without the Nigella extract or the BHT
antioxidant is arranged in a (40×126×111) 3-way cubic array of 40
spectra, with 126 emission wavelengths and 111 excitation wave-
lengths. So as to simplify the interpretation of the data, all the
elementary cubes of the two corn oils (Safi and Nejma) were gathered
together giving a (320×126×111) 3-way cubic array. The final cube
of data was unfolded to create a (320×13,986) matrix.

4.1. Choice of the number of ICA components

Although the apriori choiceof theoptimal numberof ICs is a problem
which has yet to be adequately solved, in the present case, a posteriori
inspection can facilitate determiningwhen there are either toomany or
too few. Extracting too many ICs produces uninformative ICs corre-
sponding to noise. These can be detected by the Durbin-Watson
criterion or by visual inspection of the structure of the IC signals.

Too few ICs results in some IC signals having contributions from
several sources or in some sources not being extracted. By a posteriori
examination of the IC it is possible to determine when all signal
sources have been extracted.

Independent Components Analyses with from 1 to 20 Independent
Components (ICs) was applied to the unfolded matrix. These
components were used to calculate 20 approximation of the initial
unfolded data matrix. Residuals matrices were then calculated by
subtracting these approximations from the initial matrix. As progres-
sively more ICs are extracted from the matrix, the resulting residuals
Fig. 1. a) Durbin-Watson values of the residual matrices for increasing numbers of extracte
plotted as a function excitation wavelength; c) mean DW values over all samples plotted a
become progressively noisier. The Durbin–Watson (DW) criterion
was applied to the unfolded matrix of residuals for each spectrum in
order to detect when all the informative signals had been removed,
leaving just noise.

The residuals matrix was also refolded and the DW criterion
calculated for each sample along the excitation and along the
emission directions. The mean of these DW values were then
calculated over all the samples to determine how many ICs needed
to be extracted to detect the informative signals in each part of the
excitation and the emission signals.

Fig. 1a shows the DW values for each unfolded residuals matrix for
each sample, on abscissa, plotted as a function of the number of
Independent Components, on ordinate. The samples are sorted into
two main blocks, one per oil, each containing 4 sub-blocks, one per
temperature, each containing the oils sorted as a function of heating
time. It can be seen that all spectra give at least 5 structured ICs. Some
matrices are still structured up to 10 ICs and a small number of them,
towards the end of each block of heating times, remain structured
even up to 15 ICs. The signals that require up to 15 ICs correspond to
spectra obtained at the end of the heating (after 3 or 4 h) which can be
explained by the formation of new oxidation products after long
heating time.

Fig. 1b and c show the averages of the DW criteria over all oil
samples, for each excitation and emission wavelength, and highlight
which spectral regions require more Independent Components.

4.2. Independent components analysis

An Independent Components Analysis (ICA) with 17 Independent
Components (IC) was applied to the unfolded matrix (320×13,986).

We present only figures corresponding to the significant signals.
Certain figures are presented as supplementary information (SI).
d IC signals plotted as a function of the samples; b) mean DW values over all samples
s a function emission wavelength.
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Not all IC signals correspond to chemical components – some
result from variations in base line and residual Raleigh diffusion; and
several may correspond to the same chemical compound. However
Fig. 2. a) Scores (−✡- Control; -O- Nigell
using ICA to decompose the dataset into 17 “pure signals” results in
each IC signal plot (Figs. 2b–7b) presenting a single specific
wavelength zone corresponding to individual fluorophores or
a; …+… BHT) and b) signals of IC1.

image of Fig.�2


Fig. 3. a) Scores (−✡- Control; -O- Nigella; …+… BHT) and b) signals of IC2.
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interpretable artefacts, thus facilitating the comprehension of the
differences observed in the corresponding IC scores plot between
Control, BHT-spiked and Nigella-spiked samples (See Table 1).
Each IC signal plot (Figs. 2b–7b) presents a specific wavelength
zone corresponding to individual fluorophores, which facilitates the
interpretation of the differences observed in the corresponding IC

image of Fig.�3


Fig. 4. a) Scores (−✡- Control; -O- Nigella; …+… BHT) and b) signals of IC3.

37F. Ammari et al. / Chemometrics and Intelligent Laboratory Systems 113 (2012) 32–42
scores plot between Control, BHT-spiked and Nigella-spiked samples
(See Table 1).

All ICs (Figs. 2a–7a) show that during the heating, the scores
corresponding to the Nejma corn oil and Safi corn oil evolve in the same
way. This shows that the two corn oils are similar. It also demonstrates
that front-face fluorescence spectroscopy, the controlled heating of the
samples and the data processing using ICA produce repeatable results.
The effect of the addition of antioxidant is also repeatable.

image of Fig.�4


Fig. 5. a) Scores (−✡- Control; -O- Nigella; …+… BHT) and b) signals of IC5.
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The fact that the time courses of the IC scores are dramatically
different at different temperatures shows that the heat treatment has
a strong effect on oil oxidation reactions.
For the two corn oils heated at 120 °C, we notice that the scores of
almost all ICs decrease with the heating time indicating that the
corresponding fluorophore is being degraded. Enriched oils (with

image of Fig.�5


Fig. 6. a) Scores (−✡- Control; -O- Nigella; …+… BHT) and b) signals of IC8.
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either Nigella seeds extract or BHT) evolve less as a function of heating
time. In fact, the oxidation products in non-enriched oils are in greater
quantity than in the enriched oils.
IC2 (Fig. 3), IC9 (SI) are associated to oxidation products and
decrease with time indicating that the corresponding fluorophore is
degraded during heating.

image of Fig.�6


Fig. 7. a) Scores (−✡- Control; -O- Nigella; …+… BHT) and b) signals of IC16.
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On the one hand, IC1(Fig. 2), IC6 (SI), corresponding to
secondary, and on the other hand IC5 (Fig. 5), IC10 (SI),
corresponding to primary oxidation products, increase and then
decrease along the time axis, indicating that new fluorescent
oxidation products are formed and are then degraded during
heating.

image of Fig.�7


Table 1
Chemical interpretation of IC signals calculated by the JADE algorithm.

IC Wavelength region Possible fluorophores References

1 λex=350–370 nm,
λem=400–450 nm

Oxidation products
(oxidation of conjugated
dienes and trienes)

[28,29,38]

2 λex=350–380 nm,
λem=420–500 nm

3 λex=345–360 nm,
λem=380–500 nm

4 λex=375–395 nm,
λem=440–520 nm

5 λex=330–350 nm,
λem=380–450 nm

6 λex=365–385 nm,
λem=380–440 nm

7 λex=390–410 nm,
λem=410–480 nm

8 λex=410–450 nm,
λem=440–540 nm

9 λex=355–380 nm,
λem=480–550 nm

10 λex=350–370 nm,
λem=370–410 nm

11 λex=380–400 nm,
λem=390–450 nm

12 λex=320–350 nm,
λem=350–390 nm

13 λex=310–330 nm,
λem=390–490 nm

14 λex=430–490 nm,
λem=495–550 nm

15 λex=290–315 nm,
λem=355–455 nm

16 λex=295–315 nm,
λem=315–350 nm

Antioxidants
(tocopherols+polyphenols)

[28,38,39]

17 Noise
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It can be seen from the IC1 scores (Fig. 2) that oxidation products
decrease to a level which is below the initial level. In fact since corn oil
is refined it already contains oxidation products which can be
degraded by heating to give new oxidation products.

It is the same evolution for IC3 (Fig. 4), but with a less significant
formation.

At 170 °C, and especially at 140 °C, the antioxidant effect of Nigella
sativa L. is very clear. Indeed, the newly formed oxidation products are
definitely lower for the enriched samples. This effect is less discernible
at 190 °C.

At 120 °C, oil does not undergo much oxidisation. The protective
effect of the Nigella extract is therefore not very noticeable. However,
at higher temperatures (140 °C and 170 °C), the oxidation reactions
are accelerated and the antioxidant effect of Nigella extract becomes
more visible. However, at 190 °C, the oxidation reactions rates are so
much higher that the Nigella extract is no longer as effective in
slowing it down.

Except for the non-enriched oil at 170 °C and 190 °Cwhich starts at a
higher level, the IC1 scores (Fig. 2) all start at approximately the same
intensity level even for the two different oils. Since this initial point
corresponds to unheated oils, this discrepancy is probably an artefact
introduced by the ICA decomposition. Nevertheless, the evolutions of
the curves as a functionof oil, heating time, temperature andpresenceof
anti-oxidant are interpretable. These evolutions are very similar for the
two oils, indicating that the oils behave in very similarmanners and that
the observed changes are greater than the experimental errors.

At 120 °C, existing oxidation products are degraded by the heating
and the anti-oxidants have little effect. At 140 °C, oxidation products
are newly formed more quickly than they are degraded, and Nigella
extract has a strong anti-oxidant effect. At 170 °C, the formation of
new oxidation products is even faster, leading to a higher and earlier
maximum concentration. At 190 °C, this maximum is attained even
sooner.
IC8 (Fig. 6), and IC14 (SI) illustrate that at 140 °C scores remain
stable. However, at 170 °C and 190 °C (Fig. 6), the scores increase
indicating that at these higher temperatures new fluorescent
oxidation products are being formed. These new products are
definitely lower for the BHT-spiked and Nigella samples.

At relatively low temperatures (120 °C), the oxidation products
already present in the corn oil undergo degradation during the heat
treatment.

At higher temperatures, there is either formation of new oxidation
products due to the degradation of primary oxidation products or
development of new oxidation products which undergo additional
degradation especially at higher temperatures (170 °C and 190 °C).

IC16 (Fig. 7) scores corresponding to the naturally present
antioxidants (polyphenols and tocopherols) [28,37–39] remain
almost stable throughout heating, which may seem strange because,
normally antioxidants are degraded during heating. This could be due
to the fact that these products are present in very small quantities in
refined oils and so the variations are masked by the effect of baseline
changes due to other much larger peaks in the spectra.

All ICs show (Figs. 2–7) that during heating, the scores corre-
sponding to the oils enriched with Nigella extract or with BHT evolve
in the same way, which confirms that the addition of the extract plays
the same role as the addition of synthetic antioxidant. In certain cases,
for example IC1 and IC5 (Figs. 2 and 5), Nigella exhibited an
antioxidant effect more powerful than that of the BHT, thus assuring
a better protection of corn oil against the effects of heat treatment.
5. Conclusion

ICA is an effective tool to facilitate the analysis of 3D- fluorescence
spectra and simplifies monitoring the antioxidant effect during the
thermal evolution of samples with or without addition of Nigella
extract or synthetic antioxidant.

Based on the results of this study, the addition of Nigella seed
extract to edible oils may improve their thermal stability and shelf-
life. Thus, Nigella extract could be an interesting alternative to the use
of synthetic antioxidants. The next step in this study will be to verify
the innocuity of the Nigella extract through toxicological tests before
proposing its use in food product applications.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.chemolab.2011.06.005.
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