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	 Although our discovery of the 
distinct constituents of bile goes back 
to the mid-19th century,1 record of 
their first use therapeutically dates 
far earlier than this. Bile from many 
different animals and even human 
sources at times of battle have a record 
in traditional Chinese medicine (TCM) 
beginning in the Zhou dynasty from 
1046-256 BCE.2 In TCM, bile acids have 
an array of uses, including the treatment 
of gallstones (still a common use for 
bile acids, in particular ursodeoxycholic 
acid3,4), infectious skin diseases or burns, 
vision and eye conditions, respiratory 
infections, and even coma and epilepsy. 
Ox bile was one of the first forms of bile 
to be used in TCM and contains many 
of the same bile acids found in human 
bile.2 
	 In addition to their well-known role 
in the digestion of dietary fats, bile 
acids influence the balance of flora 
in the gut,5 gastrointestinal motility,6 
immune system function,7 and bind 
with numerous receptors distributed 
throughout the human body.8 Lower 
levels of bile acids in the gut are 
associated with an overgrowth of 
Clostridium difficile and Helicobacter 
pylori,9,10 constipation,11 and increased 
bacterial translocation.12 Given their 
origination in the liver, it may not come 
as a surprise that bile acids also have 
a significant impact on metabolism13 
and liver/gallbladder health,14 reviewed 
herein. 

Bile Acid Metabolism and Receptor 
Interactions
	 The human bile salt pool is 
primarily comprised of cholic acid (CA), 

chenodeoxycholic acid (CDCA), and 
deoxycholic acids (DCA), with smaller 
amounts of lithocholic acid (LCA) and 
ursodeoxycholic acid (UDCA).15,16 The 
primary bile acids CA and CDCA are 
produced in the hepatocyte from 
cholesterol by the classic or alternative 
pathways involving multiple cytochrome 
P450 (CYP450) enzymes.17 They are 
then conjugated with glycine or taurine 
(increasing their water solubility) prior 
to being excreted from the hepatocyte 
across the canalicular membrane via 
transporters also associated with Phase 
III detoxification: bile salt export protein 
(BSEP) and multidrug resistance-
associated protein-2 (MRP2).18 
	 In the digestive tract, enzymes 
produced by certain microbes in the 
gut deconjugate and dehydroxylate 
these bile acids, forming the secondary 
bile acids DCA (from CA) and LCA (from 
CDCA).19 Deconjugated bile acids are 
more hydrophobic and have greater 
detergent action, which increases their 
ability to facilitate solubilization and 
absorption of dietary lipids, fat soluble 
vitamins, and break down bacterial 
membranes.20,21 DCA is a particularly 
strong antimicrobial agent, having 10 
times the antimicrobial activity of CA, its 
precursor.22
	 Bile acids have a multitude of effects 
throughout the body due to their 
interactions with the nuclear receptors 
farnesoid X receptor (FXR),23 pregnane 
X receptor (PXR),24 and the vitamin D 
receptor, as well as multiple G-protein 
coupled receptors (GPCRs), which are 
found on the cell membrane.7 In the 
hepatocyte, the majority of the actions 
of bile acids are mediated by FXR, 

which also plays a role in the synthesis, 
transport, and enterohepatic circulation 
of the bile acids themselves. Interactions 
of bile acids with FXR in the hepatocyte 
serves a self-regulatory role, protecting 
the cell from damage that can take 
place when an excessive amount of bile 
exists (such as occurs with cholestasis) 
by increasing transcription of efflux 
transporters25 and reducing bile acid 
synthesis,26 which both help lower the 
intracellular bile acid concentration. 
	 In addition to protecting hepatocytes 
in the setting of cholestasis,27 activation 
of FXR by bile acids induces genes 
involved in the different phases of 
detoxification,28 protecting the cells 
of the liver from drug and xenobiotic 
toxicity.29,30 This is one reason why 
supplemental bile acids are a life-saving 
intervention for individuals with bile 
acid synthesis disorders,31 as they help 
protect the liver by increasing bile acid-
dependent bile flow and toxin transport 
out of the hepatocyte. For individuals 
with bile acid synthesis disorders, CA is 
the primary bile acid used as a therapy.32
	 FXR is known to be expressed in 
the liver, pancreas, ileum, kidney, and 
adrenal glands, and at lower levels 
in the heart, central nervous system, 
adipose tissue, and arterial walls.15 
The ability of the different bile acids to 
activate FXR varies, with CDCA being 
the strongest activator and CA the 
weakest. Animal and in vitro studies 
suggest that activation of FXR by bile 
acids decreases plasma triglycerides, 
cholesterol, and hepatic steatosis; 
reduces gluconeogenesis; and increases 
insulin sensitivity, glucose transporter 
type 4 (GLUT4) transcription, and 
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glycogen synthesis.33-37 Stimulation of 
the ileal enterocytes with bile acids also 
activates FXR and increases secretion 
of fibroblast growth factor 19 (FGF19), 
which has insulin-sensitizing and 
hypolipidemic effects.38 
	 Interactions of bile acids with 
TGR5, a cellular membrane GPCR, is 
another major route via which their 
metabolic actions are exerted. TGR5 
is not expressed in the hepatocyte 
but is expressed in brown adipose 
tissue, pancreatic beta cells, intestinal 
neuroendocrine cells, the biliary tract, as 
well as Kupffer cells and liver endothelial 
cells.39 Interactions of bile acids with 
TGR5 increases cyclic-AMP synthesis, 
which impacts energy production and 
increases insulin secretion by pancreatic 
beta cells;40 and increases production 
of glucagon-like peptide-1 (GLP-1) and 
peptide YY (PYY),41 which play important 
roles in appetite and blood sugar 
regulation.

Metabolic Disease
	 The effect of bile acids on blood 
sugar, cholesterol, appetite, and even 
weight via their interactions with FXR 
and TGR5 have been demonstrated in 
numerous animal and human studies.
	 In animals, enhanced expression of 
the primary CYP450 enzyme regulating 
bile acid synthesis enlarged the bile 
acid pool and led to increased hepatic 
cholesterol catabolism and decreased 
expression of several genes involved 
in lipogenesis and glucogenesis.42 
Despite being subject to high-fat 
diet (HFD) feeding, these mice were 
resistant to HFD-induced obesity, fatty 
liver changes, and insulin resistance, 
and had increased whole body energy 
expenditure.
	 Supplementation of CA along with 
HFD feeding was shown to prevent 
the increases in weight and adipose 
mass seen in mice fed a HFD alone, 
also preventing brown adipose tissue 
(BAT) whitening (which has negative 
metabolic effects).43 In mice initially fed 
a HFD for 120 days, the addition of CA to 
the diet also returned their body weight 
to that of the typical chow-fed mice 
within 30 days. Similar effects of weight 
normalization, in addition to improved 
glucose tolerance, were also seen in 

mice fed CDCA along with HFD feeding.44 
In both of these studies, it was shown 
that these effects were at least in part 
due to increased expression of cyclic-
AMP-dependent type 2 iodothyronine 
deiodinase (D2) in the BAT. D2 converts 
thyroxine (T4) to triiodothyronine (T3) 
within the cells of the BAT,45 mediated by 
TGR5. In the investigation using CA as an 
intervention,44 it was noted that serum 
levels of T3 and T4 in the mice did not 
change. Both CA and CDCA have also 
been shown to induce mitochondrial 

health and weight. In one study of 
healthy females, short-term oral 
supplementation with CDCA at a 
dose of 15 mg/kg/day was shown 
to be bioavailable and significantly 
increase BAT activity as well as whole 
body energy expenditure without any 
deleterious effects such as diarrhea.57 
In obese individuals with T2D, rectal 
administration of taurocholic acid dose-
dependently increased secretion of 
GLP-1, PYY, and insulin, simultaneously 
decreasing plasma glucose,58 while 

uncoupling protein 1 (UCP1),46,47 which 
is known to regulate BAT-mediated 
thermogenesis. 
	 Several studies suggest that the 
weight loss and improved glycemic 
control seen with bariatric surgery, 
or other weight-loss procedures such 
as gallbladder bile diversion to the 
ileum, may be due to altered bile acid 
availability.48,49 In patients post-gastric 
bypass, total bile acid levels, as well 
as the bile acid subfractions, were 
significantly higher than overweight 
controls.50,51 Total bile acid levels and 
their subfractions were inversely 
correlated with 2-hour post-prandial 
glucose and triglyceride levels as well 
as thyroid stimulating hormone, and 
positively correlated with adiponectin 
and GLP-1 levels.51 
	 Multiple studies have also shown 
altered bile acid homeostasis in 
individuals with type 2 diabetes 
(T2D).52,53 Serum fasting levels of CDCA 
and FGF19 (a marker commonly used 
to assess for FXR activation) have been 
shown to be independently related and 
significantly lower in individuals with 
impaired glucose tolerance and T2D.54,55 
Interestingly, serum levels of FGF19 
have also been observed to be lower 
in patients with overt and subclinical 
hypothyroidism,56 which may contribute 
to metabolic changes seen in this setting 
as well. 
	 As a therapy, there are currently 
only a few human studies investigating 
the impact of bile acids on metabolic 

in healthy volunteers, in addition to 
stimulating GLP-1 and PYY, it dose-
dependently increased the sensation 
of fullness.59 Tauroursodeoxycholic acid 
(UDCA conjugated with taurine), taken 
orally at a dose of 1,750 mg/day, was 
shown to significantly improve hepatic 
and muscle insulin sensitivity compared 
to placebo in obese individuals after 
four weeks of supplementation.60 
	 One additional item worthy of 
note in a discussion of bile acids 
and metabolic disease is the use 
of probiotic bacteria to modify the 
balance of bile acids. Known as bile salt 
hydrolase (BSH)-active bacteria, these 
bacteria produce the enzyme BSH that 
deconjugates bile acids, reducing the 
absorption of cholesterol and increasing 
FXR activation, as the deconjugated 
bile acids are strong activators of 
FXR.61 Human studies using the BSH-
active probiotic strain Lactobacillus 
reuteri NCIMB 30242 have shown that, 
indeed, such a probiotic is capable 
of improving not only the balance 
and levels of cholesterol,62,63 but also 
improves symptoms of irritable bowel 
syndrome,64 which may be somewhat 
attributable to the antimicrobial effects 
of the secondary bile acids in addition 
to other well-known properties of 
Lactobacillus spp. bacteria.

Fatty Liver Disease
	 Given that the main uses of bile 
acids in modern medicine are for the 
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dissolution of cholesterol gallstones 
and as a treatment for cholestatic 
disease,65-67 it should not come as a 
surprise that bile acids have other 
potential applications in the setting of 
liver and gallbladder disease. Although 
UDCA is the primary bile acid indicated 
for uncomplicated cholelithiasis, at one 
time, CDCA, found in both human and ox 
bile, was also a common intervention.68 
CDCA was abandoned as a primary 
intervention with UDCA taking its place 
due to the reduced occurrence of side 
effects, such as diarrhea, and lower dose 
required for resolution of gallstones.69 
	 Although the condition of non-
alcoholic fatty liver disease (NAFLD), 
frequently seen in conjunction 
with obesity and T2D, is primarily 
attributed to increased triglyceride 
accumulation in the cells of the liver, 
it also is associated with dysbiosis, 
intestinal inflammation, and increased 
gut permeability.70,71 In addition to 
the antimicrobial, insulin-sensitizing, 
and triglyceride-reducing effects that 
bile acids have,72,73 activation of FXR 
by bile acids also supports intestinal 
barrier integrity and reduces bacterial 
translocation, positioning bile acids as a 
very promising agent for the treatment 
of this condition, which to date has 
no recommended pharmaceutical 
intervention. Activation of FXR by bile 
acids may reduce hepatic inflammation 
and injury associated with alcoholic 
liver disease as well,74,75 mediated by 
many of the same mechanisms. Both 

FXR and TRG5 play a role in protecting 
the liver from fibrosis,76 the end stage of 
both NAFLD and alcoholic liver disease. 
	 In animals fed a HFD, increased bile 
acid synthesis prevented fatty liver 
changes, suggesting similar effects also 
may be seen in humans.42 Obeticholic 
acid (OCA) is a synthetic variant of 
CDCA, produced by the addition of 
an ethyl group, which increases its 
binding affinity for FXR approximately 
100-fold.77 It also is a TRG5 activator, 
much like CDCA.78 Cellular studies 
comparing CDCA to OCA have shown 
that they have similar effects of 
increasing the transport of bile acids 
out of the hepatocyte (protecting 
it in cholestasis)79 and reducing the 
production of proinflammatory 
mediators such as tumor necrosis factor 
alpha.80 OCA has been shown in clinical 
studies to be beneficial at very low doses 
(typically 5 to 25 mg) for liver disease 
including non-alcoholic steatohepatitis, 
the more severe form of NAFLD,81 also 
possibly supporting weight loss in this 
population as well.82  Occasionally, the 
side effect of pruritis may occur with 
this and other FXR agonists. Given their 
similar mechanism of action, natural 
forms of the bile acids also may be of 
benefit in NAFLD. 
	 Clearly, although bile acids have a 
long history of use medicinally, we are 
only starting to understand their broad 
therapeutic application. Unfortunately, 
we will likely only see such research 
with regards to their more potent, 
synthetic derivatives – which neglects 
the importance that a blend of bile 
acids, similar in composition to what 

is naturally produced by our body, 
may offer as a natural therapy. Often, 
lower doses of such substances gently 
stimulate the body rather than pushing 
a single pathway very strongly, leading 
to great potential for their systemic 
healing action.
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