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 Although	 our	 discovery	 of	 the	
distinct	 constituents	 of	 bile	 goes	 back	
to	 the	 mid-19th	 century,1	 record	 of	
their	 first	 use	 therapeutically	 dates	
far	 earlier	 than	 this.	 Bile	 from	 many	
different	 animals	 and	 even	 human	
sources	at	times	of	battle	have	a	record	
in	 traditional	 Chinese	 medicine	 (TCM)	
beginning	 in	 the	 Zhou	 dynasty	 from	
1046-256	BCE.2	 In	TCM,	bile	acids	have	
an	array	of	uses,	including	the	treatment	
of	 gallstones	 (still	 a	 common	 use	 for	
bile	acids,	 in	particular	ursodeoxycholic	
acid3,4),	infectious	skin	diseases	or	burns,	
vision	 and	 eye	 conditions,	 respiratory	
infections,	and	even	coma	and	epilepsy.	
Ox	bile	was	one	of	the	first	forms	of	bile	
to	 be	 used	 in	 TCM	 and	 contains	many	
of	 the	same	bile	acids	 found	 in	human	
bile.2 
	 In	addition	 to	 their	well-known	role	
in	 the	 digestion	 of	 dietary	 fats,	 bile	
acids	 influence	 the	 balance	 of	 flora	
in	 the	 gut,5	 gastrointestinal	 motility,6 
immune	 system	 function,7	 and	 bind	
with	 numerous	 receptors	 distributed	
throughout	 the	 human	 body.8	 Lower	
levels	 of	 bile	 acids	 in	 the	 gut	 are	
associated	 with	 an	 overgrowth	 of	
Clostridium difficile and	 Helicobacter 
pylori,9,10	 constipation,11	 and	 increased	
bacterial	 translocation.12	 Given	 their	
origination	in	the	liver,	it	may	not	come	
as	 a	 surprise	 that	 bile	 acids	 also	 have	
a	 significant	 impact	 on	 metabolism13 
and	 liver/gallbladder	health,14	reviewed	
herein.	

Bile Acid Metabolism and Receptor 
Interactions
	 The	 human	 bile	 salt	 pool	 is	
primarily	comprised	of	cholic	acid	(CA),	

chenodeoxycholic	 acid	 (CDCA),	 and	
deoxycholic	 acids	 (DCA),	 with	 smaller	
amounts	 of	 lithocholic	 acid	 (LCA)	 and	
ursodeoxycholic	 acid	 (UDCA).15,16	 The	
primary	 bile	 acids	 CA	 and	 CDCA	 are	
produced	 in	 the	 hepatocyte	 from	
cholesterol	by	the	classic	or	alternative	
pathways	involving	multiple	cytochrome	
P450	 (CYP450)	 enzymes.17	 They	 are	
then	conjugated	with	glycine	or	taurine	
(increasing	 their	 water	 solubility)	 prior	
to	being	excreted	 from	 the	hepatocyte	
across	 the	 canalicular	 membrane	 via	
transporters	also	associated	with	Phase	
III	detoxification:	bile	salt	export	protein	
(BSEP)	 and	 multidrug	 resistance-
associated	protein-2	(MRP2).18 
	 In	 the	 digestive	 tract,	 enzymes	
produced	 by	 certain	 microbes	 in	 the	
gut	 deconjugate	 and	 dehydroxylate	
these	bile	acids,	forming	the	secondary	
bile	acids	DCA	(from	CA)	and	LCA	(from	
CDCA).19	 Deconjugated	 bile	 acids	 are	
more	 hydrophobic	 and	 have	 greater	
detergent	action,	which	 increases	 their	
ability	 to	 facilitate	 solubilization	 and	
absorption	of	dietary	 lipids,	 fat	 soluble	
vitamins,	 and	 break	 down	 bacterial	
membranes.20,21	 DCA	 is	 a	 particularly	
strong	 antimicrobial	 agent,	 having	 10	
times	the	antimicrobial	activity	of	CA,	its	
precursor.22
	 Bile	acids	have	a	multitude	of	effects	
throughout	 the	 body	 due	 to	 their	
interactions	with	 the	nuclear	 receptors	
farnesoid	 X	 receptor	 (FXR),23	 pregnane	
X	 receptor	 (PXR),24	 and	 the	 vitamin	 D	
receptor,	 as	well	 as	multiple	 G-protein	
coupled	 receptors	 (GPCRs),	 which	 are	
found	 on	 the	 cell	 membrane.7	 In	 the	
hepatocyte,	the	majority	of	the	actions	
of	 bile	 acids	 are	 mediated	 by	 FXR,	

which	also	plays	a	role	in	the	synthesis,	
transport,	and	enterohepatic	circulation	
of	the	bile	acids	themselves.	Interactions	
of	bile	acids	with	FXR	in	the	hepatocyte	
serves	a	self-regulatory	role,	protecting	
the	 cell	 from	 damage	 that	 can	 take	
place	when	an	excessive	amount	of	bile	
exists	 (such	 as	 occurs	with	 cholestasis)	
by	 increasing	 transcription	 of	 efflux	
transporters25	 and	 reducing	 bile	 acid	
synthesis,26	 which	 both	 help	 lower	 the	
intracellular	bile	acid	concentration.	
	 In	addition	to	protecting	hepatocytes	
in	the	setting	of	cholestasis,27	activation	
of	 FXR	 by	 bile	 acids	 induces	 genes	
involved	 in	 the	 different	 phases	 of	
detoxification,28	 protecting	 the	 cells	
of	 the	 liver	 from	 drug	 and	 xenobiotic	
toxicity.29,30	 This	 is	 one	 reason	 why	
supplemental	bile	acids	are	a	life-saving	
intervention	 for	 individuals	 with	 bile	
acid	 synthesis	 disorders,31	 as	 they	 help	
protect	the	liver	by	increasing	bile	acid-
dependent	bile	flow	and	toxin	transport	
out	 of	 the	 hepatocyte.	 For	 individuals	
with	bile	acid	synthesis	disorders,	CA	is	
the	primary	bile	acid	used	as	a	therapy.32
	 FXR	 is	 known	 to	 be	 expressed	 in	
the	 liver,	 pancreas,	 ileum,	 kidney,	 and	
adrenal	 glands,	 and	 at	 lower	 levels	
in	 the	 heart,	 central	 nervous	 system,	
adipose	 tissue,	 and	 arterial	 walls.15 
The	ability	of	the	different	bile	acids	to	
activate	 FXR	 varies,	 with	 CDCA	 being	
the	 strongest	 activator	 and	 CA	 the	
weakest.	 Animal	 and	 in	 vitro	 studies	
suggest	 that	 activation	 of	 FXR	 by	 bile	
acids	 decreases	 plasma	 triglycerides,	
cholesterol,	 and	 hepatic	 steatosis;	
reduces	gluconeogenesis;	and	increases	
insulin	 sensitivity,	 glucose	 transporter	
type	 4	 (GLUT4)	 transcription,	 and	
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glycogen	 synthesis.33-37	 Stimulation	 of	
the	ileal	enterocytes	with	bile	acids	also	
activates	 FXR	 and	 increases	 secretion	
of	 fibroblast	 growth	 factor	 19	 (FGF19),	
which	 has	 insulin-sensitizing	 and	
hypolipidemic	effects.38 
	 Interactions	 of	 bile	 acids	 with	
TGR5,	 a	 cellular	 membrane	 GPCR,	 is	
another	 major	 route	 via	 which	 their	
metabolic	 actions	 are	 exerted.	 TGR5	
is	 not expressed	 in	 the	 hepatocyte	
but	 is	 expressed	 in	 brown	 adipose	
tissue,	 pancreatic	 beta	 cells,	 intestinal	
neuroendocrine	cells,	the	biliary	tract,	as	
well	as	Kupffer	cells	and	liver	endothelial	
cells.39	 Interactions	 of	 bile	 acids	 with	
TGR5	 increases	 cyclic-AMP	 synthesis,	
which	 impacts	 energy	 production	 and	
increases	insulin	secretion	by	pancreatic	
beta	 cells;40	 and	 increases	 production	
of	 glucagon-like	 peptide-1	 (GLP-1)	 and	
peptide	YY	(PYY),41	which	play	important	
roles	 in	 appetite	 and	 blood	 sugar	
regulation.

Metabolic Disease
	 The	 effect	 of	 bile	 acids	 on	 blood	
sugar,	 cholesterol,	 appetite,	 and	 even	
weight	 via	 their	 interactions	 with	 FXR	
and	 TGR5	 have	 been	 demonstrated	 in	
numerous	animal	and	human	studies.
	 In	 animals,	 enhanced	 expression	 of	
the	primary	CYP450	enzyme	 regulating	
bile	 acid	 synthesis	 enlarged	 the	 bile	
acid	 pool	 and	 led	 to	 increased	 hepatic	
cholesterol	 catabolism	 and	 decreased	
expression	 of	 several	 genes	 involved	
in	 lipogenesis	 and	 glucogenesis.42 
Despite	 being	 subject	 to	 high-fat	
diet	 (HFD)	 feeding,	 these	 mice	 were	
resistant	 to	 HFD-induced	 obesity,	 fatty	
liver	 changes,	 and	 insulin	 resistance,	
and	 had	 increased	whole	 body	 energy	
expenditure.
	 Supplementation	 of	 CA	 along	 with	
HFD	 feeding	 was	 shown	 to	 prevent	
the	 increases	 in	 weight	 and	 adipose	
mass	 seen	 in	 mice	 fed	 a	 HFD	 alone,	
also	 preventing	 brown	 adipose	 tissue	
(BAT)	 whitening	 (which	 has	 negative	
metabolic	effects).43	In	mice	initially	fed	
a	HFD	for	120	days,	the	addition	of	CA	to	
the	diet	also	returned	their	body	weight	
to	 that	 of	 the	 typical	 chow-fed	 mice	
within	30	days.	Similar	effects	of	weight	
normalization,	 in	 addition	 to	 improved	
glucose	 tolerance,	 were	 also	 seen	 in	

mice	fed	CDCA	along	with	HFD	feeding.44 
In	 both	of	 these	 studies,	 it	was	 shown	
that	 these	effects	were	at	 least	 in	part	
due	 to	 increased	 expression	 of	 cyclic-
AMP-dependent	 type	 2	 iodothyronine	
deiodinase	(D2)	in	the	BAT.	D2	converts	
thyroxine	 (T4)	 to	 triiodothyronine	 (T3)	
within	the	cells	of	the	BAT,45	mediated	by	
TGR5.	In	the	investigation	using	CA	as	an	
intervention,44	 it	was	noted	that	serum	
levels	of	T3	and	T4	 in	the	mice	did	not	
change.	 Both	 CA	 and	 CDCA	 have	 also	
been	 shown	 to	 induce	 mitochondrial	

health	 and	 weight.	 In	 one	 study	 of	
healthy	 females,	 short-term	 oral	
supplementation	 with	 CDCA	 at	 a	
dose	 of	 15	 mg/kg/day	 was	 shown	
to	 be	 bioavailable	 and	 significantly	
increase	 BAT	 activity	 as	 well	 as	 whole	
body	 energy	 expenditure	 without	 any	
deleterious	 effects	 such	 as	 diarrhea.57 
In	 obese	 individuals	 with	 T2D,	 rectal	
administration	of	taurocholic	acid	dose-
dependently	 increased	 secretion	 of	
GLP-1,	 PYY,	 and	 insulin,	 simultaneously	
decreasing	 plasma	 glucose,58	 while	

uncoupling	 protein	 1	 (UCP1),46,47	which	
is	 known	 to	 regulate	 BAT-mediated	
thermogenesis.	
	 Several	 studies	 suggest	 that	 the	
weight	 loss	 and	 improved	 glycemic	
control	 seen	 with	 bariatric	 surgery,	
or	 other	 weight-loss	 procedures	 such	
as	 gallbladder	 bile	 diversion	 to	 the	
ileum,	may	be	 due	 to	 altered	 bile	 acid	
availability.48,49	 In	 patients	 post-gastric	
bypass,	 total	 bile	 acid	 levels,	 as	 well	
as	 the	 bile	 acid	 subfractions,	 were	
significantly	 higher	 than	 overweight	
controls.50,51	 Total	 bile	 acid	 levels	 and	
their	 subfractions	 were	 inversely	
correlated	 with	 2-hour	 post-prandial	
glucose	 and	 triglyceride	 levels	 as	 well	
as	 thyroid	 stimulating	 hormone,	 and	
positively	 correlated	 with	 adiponectin	
and	GLP-1	levels.51 
	 Multiple	 studies	 have	 also	 shown	
altered	 bile	 acid	 homeostasis	 in	
individuals	 with	 type	 2	 diabetes	
(T2D).52,53	Serum	 fasting	 levels	 of	 CDCA	
and	 FGF19	 (a	 marker	 commonly	 used	
to	assess	for	FXR	activation)	have	been	
shown	to	be	independently	related	and	
significantly	 lower	 in	 individuals	 with	
impaired	glucose	tolerance	and	T2D.54,55	
Interestingly,	 serum	 levels	 of	 FGF19	
have	 also	 been	 observed	 to	 be	 lower	
in	 patients	 with	 overt	 and	 subclinical	
hypothyroidism,56	which	may	contribute	
to	metabolic	changes	seen	in	this	setting	
as	well.	
	 As	 a	 therapy,	 there	 are	 currently	
only	a	 few	human	studies	 investigating	
the	 impact	 of	 bile	 acids	 on	 metabolic	

in	 healthy	 volunteers,	 in	 addition	 to	
stimulating	 GLP-1	 and	 PYY,	 it	 dose-
dependently	 increased	 the	 sensation	
of	 fullness.59	Tauroursodeoxycholic	acid	
(UDCA	 conjugated	with	 taurine),	 taken	
orally	 at	 a	 dose	 of	 1,750	mg/day,	 was	
shown	 to	 significantly	 improve	 hepatic	
and	muscle	insulin	sensitivity	compared	
to	 placebo	 in	 obese	 individuals	 after	
four	weeks	of	supplementation.60 
	 One	 additional	 item	 worthy	 of	
note	 in	 a	 discussion	 of	 bile	 acids	
and	 metabolic	 disease	 is	 the	 use	
of	 probiotic	 bacteria	 to	 modify	 the	
balance	of	bile	acids.	Known	as	bile	salt	
hydrolase	 (BSH)-active	 bacteria,	 these	
bacteria	produce	 the	enzyme	BSH	 that	
deconjugates	 bile	 acids,	 reducing	 the	
absorption	of	cholesterol	and	increasing	
FXR	 activation,	 as	 the	 deconjugated	
bile	 acids	 are	 strong	 activators	 of	
FXR.61	 Human	 studies	 using	 the	 BSH-
active	 probiotic	 strain	 Lactobacillus 
reuteri NCIMB	30242	have	shown	that,	
indeed,	 such	 a	 probiotic	 is	 capable	
of	 improving	 not	 only	 the	 balance	
and	 levels	 of	 cholesterol,62,63	 but	 also	
improves	 symptoms	 of	 irritable	 bowel	
syndrome,64	 which	 may	 be	 somewhat	
attributable	to	the	antimicrobial	effects	
of	 the	 secondary	 bile	 acids	 in	 addition	
to	 other	 well-known	 properties	 of	
Lactobacillus	spp.	bacteria.

Fatty Liver Disease
	 Given	 that	 the	 main	 uses	 of	 bile	
acids	 in	 modern	 medicine	 are	 for	 the	
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dissolution	 of	 cholesterol	 gallstones	
and	 as	 a	 treatment	 for	 cholestatic	
disease,65-67	 it	 should	 not	 come	 as	 a	
surprise	 that	 bile	 acids	 have	 other	
potential	 applications	 in	 the	 setting	 of	
liver	 and	 gallbladder	 disease.	Although	
UDCA	is	the	primary	bile	acid	indicated	
for	uncomplicated	cholelithiasis,	at	one	
time,	CDCA,	found	in	both	human	and	ox	
bile,	was	also	a	common	intervention.68 
CDCA	 was	 abandoned	 as	 a	 primary	
intervention	with	UDCA	taking	its	place	
due	 to	 the	 reduced	occurrence	of	 side	
effects,	such	as	diarrhea,	and	lower	dose	
required	for	resolution	of	gallstones.69 
	 Although	 the	 condition	 of	 non-
alcoholic	 fatty	 liver	 disease	 (NAFLD),	
frequently	 seen	 in	 conjunction	
with	 obesity	 and	 T2D,	 is	 primarily	
attributed	 to	 increased	 triglyceride	
accumulation	 in	 the	 cells	 of	 the	 liver,	
it	 also	 is	 associated	 with	 dysbiosis,	
intestinal	 inflammation,	 and	 increased	
gut	 permeability.70,71	 In	 addition	 to	
the	 antimicrobial,	 insulin-sensitizing,	
and	 triglyceride-reducing	 effects	 that	
bile	 acids	 have,72,73	 activation	 of	 FXR	
by	 bile	 acids	 also	 supports	 intestinal	
barrier	 integrity	 and	 reduces	 bacterial	
translocation,	positioning	bile	acids	as	a	
very	promising	agent	for	the	treatment	
of	 this	 condition,	 which	 to	 date	 has	
no	 recommended	 pharmaceutical	
intervention.	 Activation	 of	 FXR	 by	 bile	
acids	may	reduce	hepatic	inflammation	
and	 injury	 associated	 with	 alcoholic	
liver	 disease	 as	 well,74,75	 mediated	 by	
many	 of	 the	 same	 mechanisms.	 Both	

FXR	and	TRG5	play	a	 role	 in	protecting	
the	liver	from	fibrosis,76	the	end	stage	of	
both	NAFLD	and	alcoholic	liver	disease.	
	 In	animals	 fed	a	HFD,	 increased	bile	
acid	 synthesis	 prevented	 fatty	 liver	
changes,	 suggesting	similar	effects	also	
may	 be	 seen	 in	 humans.42	 Obeticholic	
acid	 (OCA)	 is	 a	 synthetic	 variant	 of	
CDCA,	 produced	 by	 the	 addition	 of	
an	 ethyl	 group,	 which	 increases	 its	
binding	 affinity	 for	 FXR	 approximately	
100-fold.77	 It	 also	 is	 a	 TRG5	 activator,	
much	 like	 CDCA.78	 Cellular	 studies	
comparing	 CDCA	 to	 OCA	 have	 shown	
that	 they	 have	 similar	 effects	 of	
increasing	 the	 transport	 of	 bile	 acids	
out	 of	 the	 hepatocyte	 (protecting	
it	 in	 cholestasis)79	 and	 reducing	 the	
production	 of	 proinflammatory	
mediators	such	as	tumor	necrosis	factor	
alpha.80	OCA	has	been	shown	in	clinical	
studies	to	be	beneficial	at	very	low	doses	
(typically	 5	 to	 25	mg)	 for	 liver	 disease	
including	 non-alcoholic	 steatohepatitis,	
the	more	 severe	 form	of	NAFLD,81	 also	
possibly	 supporting	 weight	 loss	 in	 this	
population	 as	 well.82	 	Occasionally,	 the	
side	 effect	 of	 pruritis	 may	 occur	 with	
this	and	other	FXR	agonists.	Given	their	
similar	 mechanism	 of	 action,	 natural	
forms	 of	 the	 bile	 acids	 also	may	 be	 of	
benefit	in	NAFLD.	
	 Clearly,	 although	 bile	 acids	 have	 a	
long	history	of	use	medicinally,	we	are	
only	starting	to	understand	their	broad	
therapeutic	 application.	 Unfortunately,	
we	 will	 likely	 only	 see	 such	 research	
with	 regards	 to	 their	 more	 potent,	
synthetic	 derivatives	 –	 which	 neglects	
the	 importance	 that	 a	 blend	 of	 bile	
acids,	 similar	 in	 composition	 to	 what	

is	 naturally	 produced	 by	 our	 body,	
may	 offer	 as	 a	 natural	 therapy.	 Often,	
lower	 doses	 of	 such	 substances	 gently	
stimulate	the	body	rather	than	pushing	
a	 single	 pathway	 very	 strongly,	 leading	
to	 great	 potential	 for	 their	 systemic	
healing	action.
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