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Innate immune cells are the “doorkeepers” in the immune system and are important

for the initiation of protective vaccine responses against infection. Being an essential

regulatory component of the immune system in these cells, autophagy not only mediates

pathogen clearance and cytokine production, but also balances the immune response by

preventing harmful overreaction. Interestingly, recent literature indicates that autophagy

is positively or negatively regulating the innate immune response in a cell type-specific

manner. Moreover, autophagy serves as a bridge between innate and adaptive immunity.

It is involved in antigen presentation by delivering pathogen compounds to B and T cells,

which is important for effective immune protection. Upon infection, autophagy can also

be hijacked by some pathogens for replication or evade host immune responses. As a

result, autophagy seems like a double-edged sword to the immune response, strongly

depending on the cell types involved and infection models used. In this review, the

dual role of autophagy in regulating the immune system will be highlighted in various

infection models with particular focus on dendritic cells, monocytes/macrophages

and neutrophils. Targeting autophagy in these cells as for therapeutic application or

prophylactic vaccination will be discussed considering both roles of autophagy, the

“angel” enhancing innate immune responses, antigen presentation, pathogen clearance

and dampening inflammation or the “demon” enabling viral replication and degrading

innate immune components. A better understanding of this dual potential will help to

utilize autophagy in innate immune cells in order to optimize vaccines or treatments

against infectious diseases.

Keywords: autophagy, dendritic cells, macrophages, innate immunity, adaptive immunity, vaccines and therapies

against infectious diseases

INTRODUCTION

The awarding of the Nobel Prize in 2016 to Yoshinori Ohsumi reflects the importance of autophagy
in human health and disease. Autophagy is a homeostatic degradation process that enables cells
to survive in case of stress, like accumulation of misfolded proteins and damaged organelles
or starvation and energy deprivation. Mammalian cells deliver those “unwanted” materials to
lysosomes for degradation. Three major ways can be distinguished: microautophagy, chaperone-
mediated autophagy, and macroautophagy. The latter has been intensively characterized in recent
years because of its high impact on human health and disease (1). In this review, we will focus on
macroautophagy, simply referred to as autophagy in the following.
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The autophagic pathway has been widely discussed and
reviewed (1–3). Here, only a brief summary will be provided,
including the four major steps in the pathway: initiation,
membrane elongation, maturation/fusion and degradation. In
mammalian cells, after a strong stimulus such as starvation,
autophagosomes initiate as omegasomes at the endoplasmic
reticulum (ER). Autophagy can be induced by two different
arms of upstream signaling based on either mammalian target
of rapamycin (mTOR) inactivation or adenosine monophosphate
(AMP) activated protein kinase (AMPK) activation which
leads to distinct Unc-51-like autophagy activating kinase 1
(ULK1) activation. mTOR typically responds to nutrient signals
while AMPK responds to the energy status of the cell. Two
protein complexes are important for phagophore formation:
ULK and PI3K (phosphoinositide 3-kinase catalytic subunit
type III) complex. The ULK complex consists of autophagy-
related (ATG)13, FIP200, ATG101, andULK1. The PI3K complex
comprises Beclin1, VPS34 (vacuolar protein sorting 34), VPS15
and ATG14L. Furthermore, two ubiqutin-like (UBL) conjugation
complexes are important for the membrane extension. One is
ATG16L1 complex, in which ATG12 is conjugated to ATG5 and
then bind to ATG16L1. This facilitates another ubiquitin cascade
involving ATG7 and ATG3, namely microtubule-associated

FIGURE 1 | Autophagy pathways in mammalian cells. The molecular pathway comprised of the core autophagy-related proteins (ATGs) is illustrated together with the

respective associated autophagy membrane compartments. The four major steps in the autophagolysosomal pathway are indicated in red.

protein 1A/1B-light chain 3 (LC3/ATG8) lipidation (conjugation
to phosphatidylethanolamine-PE). LC3-PE mediates membrane
tethering and fusion to extend the isolation membrane by
recruiting membranes from multiple sources, leading to the
formation of autophagosomes. During the final maturation,
autophagosomes are decorated with Rab7 and tail-anchored
SNAP receptor (SNARE) syntaxin 17 (STX17), which leads
to the fusion with lysosomes and degradation of sequestered
substrates (Figure 1). Recent findings suggest that autophagy
can also occur in the absence of some key autophagy-related
proteins (ATGs) through unconventional autophagy pathways,
also called “non-canonical autophagy” (4–6). Furthermore, the
double membrane does not necessarily elongate from a single
source. Such variation gives alternatives to recognize or eliminate
pathogens, for instance, receptor mediate internalization and
LC3-associated phagocytosis (LAP).

The immune system is a big network with crosstalk of
cells from innate and adaptive immunity. Autophagy is a key
mechanism against invading bacteria, parasites, and viruses
in innate immune cells including monocytes/macrophages,
dendritic cells (conventional dendritic cells-cDCs and
plasmacytoid dendritic cells-pDCs) and neutrophils. In the
past few years, a number of studies have highlighted the potential
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of targeting autophagy for the control of infections. These data
combined with the emerging role of autophagy for immune
impairment in some infectious diseases have attracted significant
interest in developing autophagy modulators or targets as a new
approach for vaccination.

VACCINES TARGETING AUTOPHAGY FOR
EFFECTIVE ANTIGEN PROCESSING AND
PRESENTATION

DCs as one of most potent professional antigen-presenting cells
(APCs) bridge between the innate and adaptive immune system.
They are particularly critical for naïve T cell activation and drive
protective immunity against infection. An increasing number of
recent studies have characterized the involvement of autophagy
in various DC functions in physiological as well as pathological
context (7), especially with regard to T cell activation (8, 9)
(Figure 2).

Autophagy has been shown to be involved in antigen
processing and presentation in DCs, especially for MHC
class II restricted peptides. Those peptides are often derived
from lysosomal degradation, either from LAP (non-canonical
pathway) (10) or from macroautophagy (canonical pathway).
In the latter, cytosolic antigens are recognized by a group of
SQSTM1-like receptors (SLRs) such as p62, NDP52, OPTN
or NBR1. This selective form of autophagy is also called
“xenophagy” (3, 11). SLRs serve as links to ubiquitin (tagged
with substrates) and LC3 homologs on the autophagosomal
membrane. Peptides are further loaded on MHC class II in late
endosomal MHC class II containing compartments (MIIC) (12).
LAP involves single-membraned phagosomes, but also leads to
MHC class II presentation (5). As a result, it is not surprising
that autophagy promoted MHC class II antigen presentation to
CD4+ T cells in various infection models, such as modified
vaccinia virus Ankara (13) or herpes simplex virus 1 (HSV-1)
(14–17) or was able to enhance cytokine production by CD4+
T cells in Toxoplasma gondii (T. gondii) (18) or respiratory
syncytial virus (RSV) infection (19). Indeed, enabling access of
antigens to autophagolysosomes by genetic engineering to link

them to key components like LC3-II, greatly enhanced vaccine
efficacy. For instance, human immunodeficiency virus-1 (HIV-
1) Gag and Env fail to colocalize with LC3 containing vesicles
during infection. However, once antigens were targeted to LC3b,
the autophagic degradation process was enhanced and could
efficiently stimulate CD4+ T cell responses (20, 21). Besides,
autophagy also indirectly promoted antigen presentation by
benefitting lysosomal enzyme activity during HIV-1 infection
(22). Further examples include the conjugation of influenza A
virus (IAV) matrix protein 1 (M1) to LC3 in DCs which led to
enhanced antigen-specific CD4+ T cell responses (23). Japanese
encephalitis (JEV) prM and E proteins fused to LC3 (pJME-LC3
DNA vaccine) allowed for increased T cell responses and long
lasting antibody-mediated protection after immunization (24).

In addition to MHC class II presentation to CD4+ T cells,
autophagy in several APCs has been considered to contribute
to MHC class I presentation to CD8+ T cells. Indeed, pDCs
(25) as well as some subtypes of macrophages (26) showed
potential for antigen capture and processing, and promoted T
cell priming in infection models. Viral peptides derived from
autophagosomes were further processed by proteasomes in HIV-
1 infected macrophages (27). The MHC class I presentation
of human cytomegalovirus (HCMV) protein pUL138-derived
peptide epitopes was autophagy-mediated and TAP-independent
(28). H1N1 infected bone marrow-derived DCs (BMDCs) were
activating strong CD4+ T cell proliferation and additionally,
were more efficiently cross-presenting antigen to CD8+ T
cells (29). All these reports suggest an interaction between
vacuolar and MHC class I presentation pathways. Dribbles
are autophagosomal structures derived from tumor cells after
proteasomal inhibition and are currently tested as tools to
enhance cross-presentation. Human DCs loaded with DRibbles
isolated from tumor cells expressing CMV peptide epitopes were
significantly more efficient in stimulating CD8+ memory T
cells (30). Similarly, DCs loaded with DRibbles containing CMV
proteins revealed a superior ability to induce CMV-specific T
cells (31).

Among SLRs, p62 and NDP52 are considered most important
for pathogen recognition through autophagy. p62 delivers
ubiquitinated Mycobacterium tuberculosis (Mtb) proteins into

FIGURE 2 | Vaccines targeting autophagy for enhanced antigen processing and presentation. Blue squares mark important autophagy components that could be

targets in APCs for vaccine design by enhancing antigen presentation and T cell activation. Ag refers to antigen.
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autolysosomes for clearance (32, 33), while clearance of Bacillus
anthracis is based on rapid induction of LC3 conversion, Beclin1
expression and p62-mediated degradation in neutrophils (34).
Redirection of vaccine antigens from proteasomal degradation
into autophagosomal pathways could increase the generation and
variability of antigen-specific T cells. Fusion of HIV-1 Gagp24 to
the selective autophagy receptor sequestosome 1 (SQSTM1)/p62
complex enhanced antigen delivery and increased antigen-
specific T cell responses in comparison to Gagp24 alone (35). The
connection of p62 and autophagy is highly conserved between
species and could be an interesting candidate for T-cell-based
vaccine strategies in humans. More recently, another recognition
molecule in selective autophagy captured attention regarding
autophagy-mediated host defense against infection. Smurf1 is
an E3 ubiquitin ligase and a key component in autophagic
targeting of Mtb in macrophages supporting host defense in vivo
(36) which may suggest a new potential target for enhancing
xenophagic degradation.

Recently, a self-assembling peptide vaccine in which the
amphipathic peptide KFE8 (FKFEFKFE) was either combined
with MHC class II restricted epitopes from Mtb Ag85B
or MHC class I restricted peptides from ovalbumin. These
conjugate vaccines were tested in vitro in APCs with known
ability to induce strong antibody and cellular responses
to conjugated antigens. Interestingly, both variations were
processed through autophagy and displayed a highly efficient
antigen presentation capacity to T cells (37). However, the

vaccine efficacy still needs to be established in vivo and for other
target antigens.

ADJUVANTS THAT ENHANCE VACCINE
EFFICIENCY THROUGH AUTOPHAGY

Some vaccines are derived from attenuated strains of pathogens.
Deleting virulence genes increases the vaccine safety but
sometimes also reduces immunogenicity, especially when the
lost genes are associated with autophagy functions. In order
to enhance vaccine efficacy, the boosting of host immune
responses with adjuvants which induce autophagy may increase
phagocytosis and clearance of pathogens as well as antigen
presentation by innate immune cells (Figure 3).

For instance, Bacillus Calmette-Guerin (BCG) representing
a live attenuated strain from Mycobacterium tuberculosis (Mtb)
is still used as a vaccine for tuberculosis (TB). However, it’s
efficiency varies and is especially low in adults. Therefore, vaccine
adjuvants have gained great interest to improve BCG vaccines.
Compared to Mtb, the attenuated BCG lacks a functional ESX-
1 system (secreting ESAT-6 and CFP-10). This system allows
cytosolic components of ubiquitin-mediated autophagy to access
phagosomes and to free contained mycobacteria which supports
bacterial evasion from xenophagic elimination (38) and reduces
antigen presentation (39). Combination of BCG vaccines with
autophagy inducers or with peptides from the above mentioned

FIGURE 3 | Vaccine adjuvants and therapeutic strategies against infection by modulating autophagy. Approaches or targets aiming to enhance autophagy are labeled

in red, those inhibiting autophagic functions are labeled in blue.
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virulence proteins showed better protection in vivo than
BCG alone. A BCG vaccine that overexpressed immunogenic
Ag85B has been proven superior compared to the wild-type
BCG vaccine. Particularly, additional application of rapamycin
enhanced Ag85B-specific MHC class II presentation by DCs via
autophagy and thus increased vaccine efficacy (40). An autophagy
inducing and TLR2 activating C5 peptide from Mtb-derived
CFP-10 protein was overexpressed in BCG in combination with
Ag85B (BCG85C5). This recombinant BCG85C5 induced robust
LC3-dependent autophagy in macrophages which increased
antigen presentation to CD4+ T cells in vitro and enhanced
effector and central memory T cell responses in vivo (39).
Accordingly, a recombinant BCG1ureC::hly(+) (rBCG) vaccine
with enhanced AIM2 inflammasome activation and autophagy
was more efficient against TB in preclinical animal models than
parental BCG (41). Consequently, triggering other synergistic
innate pathways in conjunction with autophagy should boost the
immune response and vaccine efficacy.

DCs play a key role for antigen presentation and T cell
induction during viral infections. Autophagy has been shown to
be involved in DC maturation during RSV infection (42) which
enabled DCs to migrate to secondary lymphoid tissues, interact
with naïve T cells and trigger effector T cell responses (43). HIV-
1 protein Env has been proposed to downregulate autophagy
by activating mTOR and reducing lysosomal enzyme activity in
DCs, thereby inhibiting antigen presentation and enhancing the
transfer of infection into CD4+ T cells (22, 44). However, viral
inhibition was bypassed by rapamycin-mediated stimulation of
autophagy in DCs and restored CD4+ T cell responses (44).
Starvation is an efficient way to induce autophagy. By activating
the cellular starvation sensor general control non-derepressible 2
(GCN2) kinase, yellow fever vaccine YF-17D induced autophagy
in human DCs which operated via the induction of cell death in
infected “donor” cells and the enhanced uptake by bystander DCs
through LAP, which subsequently resulted in enhanced antigen
presentation and robust T cell responses (45). Beclin1, one
important component of canonical autophagy also proved to act
as a potent vaccine adjuvant. By enhancing autophagy-mediated
antigen presentation, a combinatory HPV-16 E7/Beclin1 DNA
vaccine led to superior lymphocyte proliferation and cytotoxicity
as compared to the HPV-16 E7 DNA vaccine alone (46).

Additional to traditional adjuvants inducing autophagy such
as rapamycin, several drugs may be repurposed from their
original usage (e.g., against cancer or diabetes), since they activate
autophagy and increase vaccine-specific immune responses. For
instance, curcumin is known for inducing autophagy in tumor
cells and is currently tested for tumor therapy. Due to its
poor intestinal absorption and rapid metabolism, this drug
has clinical limitations. However, a recent paper demonstrated
that a nanoparticle-formulated version of curcumin could
overcome these limitations and optimized various APC functions
including autophagy and finally enhanced BCG vaccine efficacy
by inducing central memory T cell as well as Th1 and Th17
responses (47). Another biological, the antioxidant glutathione
(GSH), improved BCG vaccination by increasing autophagy and
the production of IFNγ and TNFα which prevented loss of T
cells by decreasing the expression of PD-1 (48). However, those

adjuvants have not been widely used in other infection models
and the effect could be pathogen-specific.

THERAPEUTIC APPROACHES AGAINST
INFECTIONS BY MODULATING
AUTOPHAGY

Since autophagy has important functions in innate and adaptive
immunity, it is not surprising that pathogens employ autophagy
to escape the host immune response. In macrophages, the Gram-
positive bacteria Listeria monocytogenes (Lm), mycobacteria
(Mtb) including BCG, and parasites such as Toxoplasma
gondii (T. gondii) are well-studied intracellular pathogens
that have different strategies to utilize autophagy for long-
term survival or replication (49), while LAP (5) as well
as xenophagy (11) usually result in bacterial degradation by
lysosome fusion. However, Lm masks its surface with ActA
and InlK to avoid recognition (50, 51), while Mtb evades
killing by CpsA which prevents a robust oxidative response
(ROS) and further leads to LAP (52). To bypass these
defects, treatment of innate immune cells with autophagy
inducers could enhance pathogen killing (Figure 3). Common
therapies include adenosine monophosphate–activated protein
kinase (AMPK) modulators. CD40 may stimulate autophagic
killing of T. gondii in macrophages via calcium/calmodulin-
dependent kinase kinase ß (CaMKKß), AMPK and ULK1
(53) and subsequent fusion of vacuoles and late lysosomes
(54). Gamma-aminobutyric acid (GABA) or GABAergic drugs
promote autophagy via intracellular calcium release and AMPK
signaling resulting in enhanced phagosomal maturation and
subsequently antimicrobial responses against mycobacterial
infection (55). The U.S. Food and Drug Administration (FDA)-
approved antidiabetic drug metformin increases the production
of mitochondrial reactive oxygen species (ROS) and facilitates
phagosome-lysosome fusion which has been shown to limit Mtb
growth and to reduce chronic inflammation in infectedmice (56).

Another option to enhance autophagy is through vitamin D
receptor (VDR) activation and cathelicidin induction. The active
form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), induces
autophagy in human monocytes and activates transcription
of the autophagy-related genes Beclin1 and ATG5 (57). A
combination of retinoic acid (RA) and vitamin D3 (VD)
(RAVD) enhanced the levels of DC-SIGN andmannose receptors
on THP-1 macrophages which increased mycobacterial uptake
and inhibited the subsequent intracellular growth of Mtb by
inducing ROS and autophagy (58). TLR2/1/CD14 stimulation
activates antibacterial autophagy through VDR and cathelicidin
in human primary monocytes (59). Additionally, some effector
cytokines such as IFNγ activate autophagy in macrophages.
IFNγ treated macrophages could overcome the inhibition of
phagosome-lysosome fusion by Mtb and controlled intracellular
Mtb growth (60). In severely ill TB patients, IFNγ as well as
Th1 and Th17 immune responses are required to eliminate Mtb.
Interestingly, IL17a alone was unable to augment autophagy
because of a disease-associated defect in MAPK1/3 signaling.
Adding IFNγ to IL17a increased autophagy levels in the patients’
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monocytes resulting in strong immunity to Mtb and promoting
mycobacterial killing (61).

Though autophagy plays a key role in macrophages and
neutrophils for pathogen clearance through xenophagy or LAP,
it is still unclear how phagosomes trigger autophagy. One
paper suggests a connection to TLR signaling, but this has
not been investigated in infectious context (62). Autophagy
may not always work best to eliminate pathogens. Previous
reports have shown that phagocytosis of Escherichia coli
triggers the autophagic machinery in neutrophils (63). On the
other hand, autophagy may reduce the phagocytosis rate of
mycobacteria in murine macrophages (64) and neutrophils (65).
The reduced internalization is due to decreased expression
of two class A scavenger receptors, namely macrophage
receptor with collagenous structure (MARCO) and macrophage
scavenger receptor 1 (MSR1) (66). Therefore, pharmacological
modulation of autophagy should aim to target both, autophagy
and phagocytosis, and should be carefully designed for
each pathogen.

Clearing blood-borne pathogens is a hallmark feature of the
spleen. In this secondary lymphoid organ, pDCs and red pulp
macrophages efficiently cleared malaria parasites after boosting
autophagy with rapamycin (67, 68). The treatment enhanced
antigen presentation in these cells and shifted the cytokine and
chemokines profile in vivo which recruited effector cells into the
spleen and enhanced T cell responses. Thus, targeting autophagy
in pDCs and red pulp macrophages may open new prospects for
the development of novel antimalarial drugs.

When it comes to viral infection, some viral proteins directly
inhibit autophagy. For instance, HIV-1 Nef is interacting with
Beclin1 which blocks the late stage of autophagy in macrophages,
thereby protecting virus particles from degradation (69). That
is able to suppress IFNγ-induced autophagy in infected
macrophages (70) as well as in bystander macrophages through
Src-Akt and STAT3 signaling (71). Rescue of autophagy function
could be a novel approach to prevent and treat HIV-1
infection and related opportunistic infections. The PI3K/MTOR
inhibitor (dactolisib) and PI3K/MTOR/BRD4 inhibitor (SF2523,
JQ1) restrain HIV replication through degradative autophagy
without altering the initial susceptibility of macrophages to
infection (72). Low vitamin D levels in HIV-1 infected
patients are associated with more rapid disease progression
and increased risk for other infections such as Mtb. 1,25D3
targets multiple steps in autophagy and inhibits HIV replication
and mycobacterial growth in co-infected human macrophages
through the induction of autophagy (73). In RSV infection,
Sirtuin 1 (SIRT1) an NAD+ dependent deacetylase regulates
autophagy depending on the nutrient status. SIRT1 may induce
autophagy directly by deacetylating TAG5 and 7 and LC3.
Activated DCs produce crucial cytokines promoting antiviral
Th1 responses, while pathologic Th2 and Th17 responses are
suppressed during infection (74). SIRT1 inducers like SRT1720
could be a therapeutic alternative for RSV patients.

Autophagy may have distinct functions depending on the
stage of infection or the host cell type infected (75, 76). In
the early phase of HSV-1 infection, autophagy was found to
be transiently induced in human THP-1 cells favoring viral

replication (77). In the later phase, however, viral protein ICP34.5
blocked the maturation of autophagosomes which reduced
viral antigen presentation by DCs (17). Alternatively, human
gamma herpesviruses EBV and KSHV regulate autophagy in
immune cells during de novo infection, while autophagy plays
a distinct role in chronic murine gamma herpesvirus 68 (MHV-
68) infection by triggering virus reactivation from latency (78).
Thus, opposing effects of the same drug may occur depending
on the infection settings. While rapamycin induces killing of
Mtb in macrophages, it supports Mtb growth during low-
dose and controlled infection when co-infected with HIV-1
by interfering with phagosomal maturation (35). Therefore,
a detailed knowledge of how pathogens modulate autophagy
during the infection cycle will help to develop more specific
targets for autophagy-based strategies against infectious diseases.

Various viral virulence factors such as ICP34.5 (HSV-1), Nef
(HIV-1), or M11 (MHV-68) have been shown to specifically
interact with autophagy-related proteins such as Beclin1 to
exploit autophagy for viral replication. New therapy approaches
that target specific components of autophagy pathways, which
are manipulated by pathogens, should maximize clinical benefits
while minimizing toxicity. For instance, an autophagy inducing
cell-permeable peptide (Tat–Beclin1) has been generated by
mapping the functional region of Beclin1 with the HIV-1
Tat transduction domain (PTD). Therapeutic application of
Tat-Beclin1 was associated with reduced HIV-1 replication,
decreased intracellular survival of the bacterium Lm in human
macrophages and reduced mortality of mice infected with
chikungunya or West Nile virus (79). Inhibitors of interactions
between viral and autophagic proteins may also have potential
benefits for the prevention and treatment of a broad range of
human diseases. Bcl-2 binds to Beclin1 preventing assembly of
pre-autophagosomal structures which inhibits autophagy. This
interaction involves a Bcl-2 homology 3 (BH3) domain in
Beclin1. Proteins containing BH3 domains such as BH3mimetics
(80, 81) can competitively disrupt the interaction between
Beclin1 and Bcl-2 and thereby induce autophagy (82). Another
example is MHV-68 M11 which binds to one BH3 domain of
Beclin1 and inhibits autophagy. Alternatively, a Beclin1 BH3
domain-derived peptide which selectively binds to M11, but not
to Bcl-2, abrogatedM11-mediated down-regulation of autophagy
(83) (Figure 3).

Autophagy is additionally regulated by mitochondrial
integrity and contributes to the elimination of damaged
organelles. Autophagy may selectively degrade inflammasome
components such as NLRP3 and products such as Pro-IL1ß (84)
thereby limiting the secretion of pro-inflammatory cytokines. As
a result, the dampening of inflammation is another important
role of autophagy in innate immune cells which so far has
been exclusively shown in myeloid cells. For instance, loss of
autophagy-related proteins in macrophages causes massive
inflammation after infection which may lead to host tissue
damage such as lung injury in IAV (85, 86) and Mtb infection
(87) as well as in pseudomonas aeruginosa-driven abdominal
infection (88). Autophagy also helps to curtail virus-induced
systemic inflammation by creating an environment that
prevents host injury mediated by pro-inflammatory cytokines.
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Trichostatin A (TSA), an autophagy inducer used to reduce
systemic inflammation and to attenuate sepsis-induced organ
injury, promotes M2 polarization in peritoneal macrophages
and ultimately improved the survival of mice with polymicrobial
sepsis (89). In some autoimmune diseases such as inflammatory
bowel disease (IBD), the containment of inflammation may
prevent the development of disease and reduce the risk of
infections. Enhancing autophagy may be therapeutically
beneficial by regulating inflammation and clearing intestinal
pathogens. Recently, IL-10 was reported to induce mitophagy
(autophagy-mediated mitochondria degradation) to prevent
accumulation of dysfunctional mitochondria and production
of mitochondrial ROS in macrophages from IBD patients (90)
(Figure 3).

THERAPEUTIC STRATEGIES AIMING TO
INHIBIT AUTOPHAGY TO BLOCK VIRUS
REPLICATION AND IMMUNE EVASION

Autophagy seems to be an angel for most infection scenarios,
except for two: first, autophagy may benefit virus replication
rather than support host immune protection as seen for
flaviviruses. Second, autophagy may degrade components of
innate immune pathways which negatively affects innate
sensing of pathogens and antiviral cytokine production. The
former represents a potential therapeutic target for several
(re-)emerging diseases for which we currently have no vaccine
available due to rapid spread and high virulence. The latter
is exemplified by multiple targets in the cGAS/STING DNA
sensing pathway aiming to halt IFN production. A direct
interaction between cGAS and Beclin1 has been described
in macrophages during HSV-1 infection (91). Similarly, p62-
mediated degradation of cGAS in HSV-1 and VSV infection
(92) as well as poxin-mediated cGAMP degradation by various
poxviruses has been reported (93). The latter has not been
associated with autophagy so far, but the therapeutic potential
of any autophagy modulator that may arise from these studies
has not been assed and molecular mechanisms still need to
be elucidated.

Some viruses induce autophagy for their own replication
by taking advantage of membrane structures produced in
this process as reported for flaviviruses [hepatitis C virus
(HCV), dengue virus (DENV), zika virus (ZIKV)] or hepatitis
B virus (HBV) (94). For viruses that infect specific organs or
tissues like HBV or HCV, tissue-specific targeting of autophagy
e.g., hepatocytes, would be favorable. HCV genomic RNA is
recognized by RIG-I, MDA5 and TLRs to activate IFN signaling
and pro-inflammatory cytokine secretion. HCV induces
autophagy in hepatocytes which enables its replication and
trafficking, additionally, attenuates the innate immune response
by viral proteins NS3 and NS5A (95). Consequently, knockdown
of autophagy-related proteins (Beclin1 or ATG7) in immortalized
human hepatocytes (IHH) could inhibit HCV growth (96) and
block exosome-mediated virus transmission (97).

For DENV and ZIKV, some autophagy pathway components
are crucial for replication including maturation and packaging.

The induction of autophagy by ZIKV appears to be linked
to the activation of AMPK, while DENV induces autophagy
by activation of VPS34 (98). USP10 and USP13 are needed
to reverse ubiquitination and subsequently degradation of the
Beclin1-VPS34-ATG14 complex. Targeting this complex by
Spautin1 which inhibits the deubiquitination activity of the two
molecules inhibited DENV infection (99). In innate immune
cells, the pro-inflammatory cytokine macrophage migration
inhibitory factor (MIF) induces autophagy and facilitates
DENV replication. Inhibition of MIF-induced autophagy by
minocycline might represent an alternative therapeutic approach
against DENV infection (100). Pharmacological inhibitors of
autophagolysosomal activity such as chloroquine (CQ) prevents
endosomal viral RNA release and autophagy-dependent viral
replication and is currently used to prevent maternal to fetal
transmission of ZIKV (101–103) (Figure 3).

MicroRNAs (miRNAs) represent a new tool to regulate
autophagy by specifically targeting the expression of autophagy-
related genes. They bind to the target mRNA through specific
base-pairing interactions between the “seed” region of miRNA
and sites within coding and untranslated regions (UTRs)
of mRNAs, especially 3′UTRs, to suppress gene expression.
Several miRNAs have been shown to augment or repress
virus replication through interfering with autophagy. Therefore,
manipulation of cellular miRNAs which target autophagy
components represent a novel approach for purging pathogens.
Administration of miRNA130a diminished HCV replication
by interfering with ATG5-dependent autophagy (104), while
miRNA146a targets TRAF6 which blocked DENV-induced
autophagy in THP-1 cells (105). Enterovirus 71 (EV71)-induced
autophagy is mediated by Beclin1 which contains a potential
binding site for miRNA30a. By using a miRNA30a mimic,
EV71 replication was suppressed by blocking virus-induced
autophagy (106). This therapeutic approach is widely used in the
tumor field, but the options for different pathogens may vary,
since miRNA expression is altered during conditions of stress
and disease (Figure 3).

FUTURE PROSPECTS

Innate immune cells are the first line of defense against infection.
Targeting autophagy in those cells is an attractive approach to
augment vaccination efficacy or to improve immunotherapeutic
strategies against infectious diseases. Vaccines which are based
on genetic fusion of antigens to important components of
autophagy pathways improved adaptive immune responses
by enhancing antigen processing and presentation in APCs.
Combination with autophagy modulators as adjuvants has
been proven to further boost host immune responses by
triggering innate immunity as well as increasing immune cell
functions such as cytokine/chemokine production, maturation,
and migration. Pharmacological induction of autophagy could
increase pathogen clearance in phagocytes through xenophagy
or LAP. Furthermore, given the potent anti-inflammatory effect
associated with autophagy, employing autophagic functions in
myeloid cells might also help to control infections in some
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autoimmune diseases. The functions or effector mechanisms
exerted by or related to autophagy during infection may
vary among cell types, the type of pathogen or the stage of
infection. The impact of autophagy goes beyond single cell
types and involves intensive cross-talk within the whole immune
system and therapeutic strategies may have to be determined
individually for a given pathogen. Future studies will have to
focus on investigating the role of autophagy for pathogen–
host-specific interplay in vivo and identify relevant steps in
the course of infection in which the targeting of autophagy—
possibly in selected cell types—proves to be most efficient
for pathogen clearance and protection. This will allow to
develop new strategies for vaccines or therapeutic approaches

with optimized efficacy against infectious diseases and help to
minimize unwanted off-target effects or toxicity.
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