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Rapamycin and fasting sustain autophagy
response activated by ischemia/reperfusion
injury and promote retinal ganglion cell
survival
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Rossana Girardello4, Valentina Cianfanelli 5, Federica Cavaliere1, Luigi Antonio Morrone1, Maria Tiziana Corasaniti6,
Francesco Cecconi3, Giacinto Bagetta1 and Carlo Nucci2

Abstract
Autophagy, the cellular process responsible for degradation and recycling of cytoplasmic components through the
autophagosomal–lysosomal pathway, is fundamental for neuronal homeostasis and its deregulation has been
identified as a hallmark of neurodegeneration. Retinal hypoxic–ischemic events occur in several sight-treating
disorders, such as central retinal artery occlusion, diabetic retinopathy, and glaucoma, leading to degeneration and
loss of retinal ganglion cells. Here we analyzed the autophagic response in the retinas of mice subjected to ischemia
induced by transient elevation of intraocular pressure, reporting a biphasic and reperfusion time-dependent
modulation of the process. Ischemic insult triggered in the retina an acute induction of autophagy that lasted during
the first hours of reperfusion. This early upregulation of the autophagic flux limited RGC death, as demonstrated by the
increased neuronal loss observed in mice with genetic impairment of basal autophagy owing to heterozygous
ablation of the autophagy-positive modulator Ambra1 (Ambra1+/gt). Upregulation of autophagy was exhausted 24 h
after the ischemic event and reduced autophagosomal turnover was associated with build up of the autophagic
substrate SQSTM-1/p62, decreased ATG12-ATG5 conjugate, ATG4 and BECN1/Beclin1 expression. Animal fasting or
subchronic systemic treatment with rapamycin sustained and prolonged autophagy activation and improved RGC
survival, providing proof of principle for autophagy induction as a potential therapeutic strategy in retinal
neurodegenerative conditions associated with hypoxic/ischemic stresses.

Introduction
Autophagy is a highly conserved catabolic process

responsible for degradation of cytoplasmic content1.

During macroautophagy (hereafter referred to as autop-
hagy), cytosolic components are sequestered in a double-
membrane vesicle called autophagosome and delivered to
lysosomes2,3. The pathway regulates the physiological
turnover of long-lived proteins and organelles, and acts as
a quality control mechanism by clearing protein aggre-
gates and dysfunctional organelles4. Furthermore,
through the mobilization of intracellular resources,
autophagy enables cells to adapt to stressful environ-
ments, allowing the survival under states of increased
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metabolic requirement or reduced nutrient availability5.
On the other hand, autophagy overactivation, and the
consequent self-digestion, has been associated with cel-
lular death6.
Owing to their post-mitotic nature, high energy demand

and distinctive morphology, neurons are strictly depen-
dent on autophagy efficiency7, and several studies have
shown that maintaining the appropriate level of autop-
hagy is fundamental for neuronal health8–10. Indeed,
alterations of autophagy recur in a variety of neurode-
generative pathologies11–13. Retinal ganglion cells (RGCs)
are the primary output neurons of vertebrate retina and
their loss occurs in several eye diseases, including reti-
nopathy of prematurity14,15, diabetic retinopathy16,17,
central retinal artery occlusion18, and glaucoma19, with
the last being the second cause of irreversible blindness
worldwide20. Hypoxic/ischemic events are common in
several of the above disorders21,22 and retinal hypoperfu-
sion has been shown to occur in glaucoma patients, this
contributing to the initiation and progression of the
neuropathy23,24.
In our previous work, we described the calpain-

mediated cleavage of the autophagy related protein
BECN1/beclin1 in rat retina following an ischemic insult
and suggested a deregulation of autophagy under this
experimental conditions25. However, the mechanisms and
the role of the observed modulation still remain con-
troversial. Indeed, we and others reported in vitro and
in vivo evidence for a neuroprotective role of autophagy in
retinal neurons26–28, whereas other groups have shown
opposite results29,30.
Here, with the aim to validate the hypothesis of indu-

cing autophagy as a potential strategy to achieve neuro-
protection, we first depicted the time-window and
molecular mechanisms of autophagy modulation in the
ischemic retina and then used the acquired information to
design the most appropriate approach to modulate the
pathway.

Materials and methods
Animals
Male C57BL/6 J mice (25–30 g) were purchased from

Charles River (Lecco, Italy), male Ambra1+/gt31 and GFP-
LC3 mice32 were provided by Professor Cecconi (Rome,
Italy), and housed with a 12 h light–dark cycle with ad
libitum access to food and water. Animals assigned to the
fasting protocol were deprived of food with free access to
water for 24 or 48 h; body weight was monitored at the
beginning and at the end of the fasted period. Animal care
and experimental procedures were carried out in accor-
dance to the guidelines of the Italian Ministry of Health
(D.L. 26/2014), the European Communities Council
Directive (2010/63/UE) and the ARVO Statement for the
Use of Animals in Ophthalmic and Vision Research. The

experimental protocol was approved by the Italian Min-
istry of Health (Rome; NIH license no. 1026/2016-PR). All
surgical procedures were performed under deep anes-
thesia and efforts were made to minimize the number of
animals used and their suffering.

Cells
Murine embryonic fibroblast (MEFs) primary cells were

prepared from E13.5 embryos, cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Sigma-Aldrich, Milan,
Italy) supplemented with 20% fetal calf serum (FCS,
Sigma-Aldrich, Milan, Italy), 2 mM L-glutamine, 1%
penicillin/streptomycin solution at 37 °C under 5% CO2.
Cells were utilized for experiments at the second passage
in culture. Ambra1 expression levels correspond to half
dosage in Ambra1+/gt cells, as well as in the corre-
sponding animals, if compared with wild-type cells/
animals33

Retinal ischemia
Retinal ischemia was induced in the right eye (I,

ischemic) by acute increase of the intraocular pressure
(IOP) according to the method previously reported21,34–36.
Animals were deeply anesthetized by intraperitoneal
injection of Xilazin (Rompun®, Bayer Spa, Milan, Italy),
Tiletamin-Zolazepam (Zoletil®, Virbac Srl, Milan, Italy)
mixture and laid on a heating pad to maintain the body
temperature at 37 °C. Topical anesthesia was induced by
0.4% Oxibuprocain eye drops (Novesina®, Novartis Farma,
VA, Italy). A 29-gauge infusion needle, connected to a 500
ml bottle of sterile saline, was inserted in the anterior
chamber of the right eye, and the saline container was
elevated to produce an intraocular pressure of 90–100
mmHg for 60min. For each animal, left eye (C, control)
was used as non-ischemic control.
Body temperature was monitored and animals with

values lower than 35.5 °C were excluded from the study.
Mice were killed at 0, 1, 6, 24 h, or 7 days of reperfusion.
To minimize the basal variations due to the circadian
autophagy regulation37, animals were all killed between
1.00 and 3.00 pm. For western blot analysis both eyes were
immediately enucleated and retinas quickly dissected,
snap frozen in liquid nitrogen, and stored at − 80 °C until
use.

Drug administration
Rapamycin (cat. nr. R5000; LC Laboratories, Woburn,

MA, USA) was dissolved in 100% ethanol and stored at −
20 °C. Rapamycin (10 mg/Kg; Zhou et al., 2009) or vehicle
(10% ethanol, 5% PEG400, and 5% Tween 80) were
injected intraperitoneally once a day for 6 consecutive
days. Retinal ischemia was induced on the fifth day of
treatment and animals were killed after 24 h or 7 days of
reperfusion.

Russo et al. Cell Death and Disease  (2018) 9:981 Page 2 of 18

Official journal of the Cell Death Differentiation Association



Autophagic flux
Retinas were rapidly isolated at the indicated time

points, chopped with a vannas scissors and placed in a 24-
well plate with RPMI-1640 medium (Gibco, Life Tech-
nologies, Paysley, UK) in presence or absence of ammo-
nium chloride (NH4Cl, 20 mM) and leupeptin (Leu, 200
μM; Sigma-Aldrich, Milan, Italy) as lysosomal enzymes
activity inhibitors3,38. NH4Cl and leupeptin stock solution
were prepared in water at the concentration of 2M and
10mM, respectively. Samples were incubated at 37 °C in
humidified atmosphere of 5% CO2 for 2 h. Tissue sus-
pension was centrifuged at 5000×g for 5 min at 4 °C; the
supernatant was discarded and the tissue homogenized
with a pestle (Sigma-Aldrich, Milan, Italy) in 25 μl of ice-
cold RIPA buffer containing protease (cod. P8349; Sigma-
Aldrich, Milan, Italy) and phosphatase (cod. 524625,
Calbiochem, La Jolla, CA, USA) inhibitor cocktails. The
homogenate was centrifuged for 15min, 10,000 g at 4 °C,
and the supernatant assayed for protein content by the
Bio-Rad DC Protein Assay Kit (Bio-Rad Laboratories,
Milan, Italy) and subjected to immunoblot analysis.
For the autophagy flux assay in MEFs, cells were cul-

tured in DMEM supplemented with 20% FCS, or in Earle’s
balanced salt solution (EBSS), in presence or absence of
the lysosomal inhibitor chloroquine (Clq; Sigma-Aldrich,
Milan, Italy)3. Clq stock solution was prepared in water at
the concentration of 20mM and cells were treated with
20 μM Clq for 30 min, in DMEM supplemented with 20%
FCS, or in EBSS. To analyze GFP-LC3 dots, cells grown
on coverslips were fixed with 4% paraformaldehyde in
phosphate-buffered saline (PBS), washed three times and
then examined under a Delta Vision Fluorescent Micro-
scope (Olympus). The results indicate the number of
GFP-LC3-positive cells (cells with more than 10 GFP-LC3
punctate dots). 80 cells per sample were counted.

Protein extraction and western blotting
Retinas were lysed in ice-cold RIPA buffer (50 mM Tris-

HCl (pH 8), 150 mM NaCl, 1 mM thylenediaminete-
traacetic acid, 0.1% sodium dodecyl sulfate, 1% IGEPAL,
0.5% Sodium deoxycholate) containing protease (cod.
P8349; Sigma-Aldrich, Milan, Italy) and phosphatase (cod.
524625, Calbiochem, La Jolla, CA, USA) inhibitor cock-
tails. Lysates were centrifuged for 15min, 10,000 g at 4 °C,
and supernatants assayed for protein content by the Bio-
Rad DC Protein Assay Kit (Bio-Rad Laboratories, Milan,
Italy).
Equal amount of total proteins were separated by

sodium dodecyl sulfate–polyacrylamide gel electrophor-
esis, transferred onto PVDF membranes (Immobilon-P,
Sigma-Aldrich, Milan, Italy) and blocked with 5% non-fat
milk or 5% BSA (bovine serum albumin, Sigma-Aldrich)
in Tris-buffered saline containing 0.05% Tween 20 for 1 h
at room temperature. Primary antibodies were incubated

overnight at 4 °C followed by a species-specific horse-
radish peroxidase conjugated goat IgG as secondary
antibody (Pierce Biotechnology, Rockford, IL, USA) for 1
h at room temperature. A list of the primary antibodies
used is reported in Table 1. Protein bands were visualized
with Western Blotting Luminol Reagent (Santa Cruz
Biotechnology, Dallas, USA) and the chemiluminescence
signal detected using X-ray films (Santa Cruz Bio-
technology, Dallas, USA). Autoradiographic films were
scanned, digitalized at 600 dpi, and band quantification
was performed using ImageJ software (NIH, Bethesda,
MD, USA).

Immunofluorescence
After induction of retinal ischemia, mice were killed at

the indicated time points. Eyes were enucleated and fixed
in 4% paraformaldehyde at 4 °C for 1 h, cryopreserved in
15% sucrose overnight and then in 30% sucrose for
1 week39. Specimens were frozen in Optimal Cutting
Temperature compound (Tissue-Tek®, Sakura Finetek
Europe, The Netherlands), and 14 μm cryostat sections

Table 1 Sources and dilutions of primary antibodies

Target Supplier and catalog no. Method and

dilution

LC3 MBL, PM036 WB, 1:2000

p62 Sigma, P0067 WB, 1:4000

p62 Santa Cruz, sc-25575 IFC, 1:50

Beclin1 Cell Signaling, 3495 WB, 1:1000

4EBP1 Cell Signaling, 9644 WB, 1:1000

p-4EBP1 (Thr37/

46)

Cell Signaling, 2855 WB, 1:1000

ULK1 Cell Signaling, 8054 WB, 1:1000

p-ULK1 (Ser757) Cell Signaling, 6888 WB, 1:1000

mTOR Cell Signaling, 2972 WB, 1:1000

p-mTOR (Ser2448) Cell Signaling, 2971 WB, 1:1000

AMPK Cell Signaling, 2603 WB, 1:1000

pAMPK (Thr172) Cell Signaling, 2535 WB, 1:1000

ATG4B Cell Signaling, 5299 WB, 1:1000

ATG7 Cell Signaling, 2631 WB, 1:1000

ATG12 Cell Signaling, 4180 WB, 1:1000

β-actin Sigma, A5441 WB, 1:30000

GAPDH Applied Biosystem, AM4300 WB, 1:30000

LAMP-2 Pierce Biotechnology, PA1-

655

IFC, 1:50

TUJ1 BioLegend, MMS-435P IFC, 1:500

WB western blotting, IFC immunofluorescence
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were cut, mounted onto Superfrost Plus glass slides
(Thermo Fisher Scientific, Waltham, MA, USA) and
stored − 80 °C until use.
For detection of GFP-LC3 signal, sections were washed

in 0.1M PBS (pH 7.4) and mounted with Vectashield
mounting media with 4′,6-diamidino-2-phenylindole
(DAPI) (Vector Laboratories, Burlingame, CA, USA). For
cellular and subcellular localization of specific antigens,
retinal sections were thawed, air-dried, post-fixed in 4%
paraformaldehyde for 15min and washed in 0.1M PBS
(pH 7.4). Sections were permeabilized with 0.3% Triton-
X100 (Sigma-Aldrich, Milan, Italy) for 1 h and blocked
with 10% donkey serum (Sigma-Aldrich, Milan, Italy) at
room temperature for 1 h. Slides were incubated with
primary antibody in 5% donkey serum overnight (primary
antibodies used are listed in Table 1) followed by incu-
bation with anti-rabbit Alexa Fluor 555, 1:500 (Molecular
Probes, Eugene, OR, USA) at room temperature for 1 h
and mounted with Vectashield mounting media with
DAPI (Vector Laboratories, Burlingame, CA, USA). Image
acquisition was performed using a confocal microscope
(Leica TC-SP2 Confocal System; Leica Microsystems,
Milan, Italy).

Transmission electron microscopy
Mice were killed 6 or 24 h following the ischemic injury

and eyes enucleated. Retinas were fixed in Karnowsky
fixative (4% paraformaldehyde and 2.5% glutaraldehyde in
0.1M phosphate buffer, pH 7.4) for 4 h at 4 °C, and then
post-fixed with 1% osmium tetroxide in 0.1M phosphate
buffer for 1 h at room temperature. After standard ethanol
dehydration, samples were embedded in an Epon-Araldite
812 mixture. Ultrathin sections (80-nm-thick) were
obtained with a Reichert Ultracut S ultratome (Leica,
Nussolch, Germany). After staining with uranyl acetate
and lead citrate, samples were observed with a JEM-1010
transmission electron microscope (Jeol, Tokyo, Japan).
TEM images were acquired with a Morada digital camera.

Retrograde labeling of RGCs
To evaluate cell loss, RGCs were retrogradely labeled by

stereotaxically injecting the fluorescent tracer FluoroGold
(FG; Fluka, Sigma-Aldrich, Milan, Italy) into the superior
colliculi40. Four days after the ischemic insult, mice were
deeply anaesthetized, immobilized in a stereotaxic device
(Kopf 900, Analytical Control, Milan, Italy) and the
positions of superior colliculi were identified using the
Paxinos and Watson atlas (1998). The skull was exposed
and 2 µl of 2% FluoroGold solution were injected on both
sides of the skull 4 mm posterior to the bregma, 1 mm
lateral to the sagittal suture and 1.6 mm ventral from the
bone surface using a Hamilton Neuros-syringe with a 33-
gauge needle (Hamilton Europe, Bonaduz, Switzerland).
The skin was then sutured and a 0.3% tobramycin

ointment was applied (Tobral®, Alcon, Milan, Italy).
Animals were killed 7 days after ischemia and eyeballs
enucleated and fixed for 20min in paraformaldehyde 4%
in PBS. The timing of FG injection (after injury) and the
time elapsed between the dye application and the pro-
cessing of the retina were chosen based on previous stu-
dies; this experimental setting also prevents the labeling of
activated microglia41,42. The anterior segment of the eye
was removed and the posterior eye-cup additionally fixed
for 30 min. Isolated retinas were divided into four quad-
rants (superior, inferior, nasal and temporal) and moun-
ted on slides using the ProLong Gold Antifade Mountant
(Thermo Fisher Scientific, Waltham, MA, USA). Thirty-
two images per retina (three from the peripheral, three
from the middle, and two from the central retina for each
quadrant) were acquired using a deconvolution micro-
scope (Leica Microsystems CMS EL6000, GBH, Man-
nheim, Germany) at × 40 magnification and subjected to
cell count using ImageJ software (NIH, Bethesda, MD,
USA) by blind investigators. The total number of labeled
cells in the ischemic eye was compared with contralateral
eye and expressed as percentage of RGC loss.

Statistical analysis
Data were expressed as mean ± standard error of the

indicated number of independent experiments and eval-
uated statistically for difference by analysis of variance
followed by Tukey–Kramer test for multiple comparisons.
Where indicated, Student’s t test was used to evaluate
differences between two means. A value of P < 0.05 was
considered significant.

Results
Retinal ischemia induces a reperfusion time-dependent
modulation of autophagic flux
Following conjugation with phosphatydilethanolamine,

cytosolic protein LC3I (microtubule-associated protein
light chain 3 I) is converted into LC3II that stably
associates with the autophagosomal membrane43.
Ischemia and the following reperfusion have opposite

effects on LC3II levels, whereas LC3I is not significantly
affected (Fig. 1A, B). The ischemic insult applied to the
right eye (I, ischemic; reperfusion time 0) induced a sig-
nificant reduction of LC3II (Fig. 1A–C) as compared with
the left non-ischemic retina (C, control). During the first
hour of reperfusion, LC3II recovered toward basal value
(set to 1 in the figure) and further accumulated at 6 h
(Fig. 1A–C).
In GFP-LC3 mice subjected to retinal ischemia followed

by 6 h of reperfusion, increased endogenous fluorescence
was mostly evident in the inner retinal layers (ganglion
cell layer, GCL and inner plexiform layer) (Fig. 1D). The
enrichment in GFP-LC3-positive round-shaped structures
was marked in RGCs as demonstrated by the
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Fig. 1 (See legend on next page.)
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colocalization of the endogenous fluorescence with the
RGC marker TUJ1 (Fig. 1E).
Immunofluorescence for lysosomal-associated mem-

brane protein 2 (LAMP-2) showed that, in the ischemic
retina, a fraction of GFP-LC3 accumulated in LAMP-2-
positive vesicles, suggesting that autophagolysosomal
structures are formed in the ischemic retina (Fig. 1F).
To distinguish if the observed LC3II increase was due to

enhanced autophagosomal formation or reduced autop-
hagosomal turnover we performed ex vivo autophagic flux
(Fig. 1G). Control and ischemic retinas from mice sub-
jected to 6 or 24 h reperfusion were incubated with or
without NH4Cl and leupeptin, two lysosomal inhibitors3.
When lysosomal activity was inhibited, a significant
increase of LC3II was reported in both control and
ischemic retinas subjected to 6 h reperfusion, as compared
with vehicle (Fig. 1G). However, the extent of LC3II
accumulation was significantly higher in the ischemic
retinas as compared with contralateral, suggesting that
autophagosome clearance was upregulated in the retina
isolated at this time point. On the contrary, no LC3II
increase was reported upon lysosomal inhibition in retinas
subjected to 24 h reperfusion (data not shown).
p62/SQSTM-1 (sequestrosome 1) is an autophagy

receptor that links ubiquitinated proteins/organelles to
LC3 and it is loaded with the autophagic cargo into the
autophagosomes. Therefore, increased autophagic flux
leads, in general, to p62 depletion, whereas the
protein accumulates when autophagic degradation is
inhibited3,44,45.
In our experimental conditions, upregulation of LC3II

at 6 h of reperfusion was associated with a significant
reduction of p62/SQSTM-1, a result consistent with
autophagy induction (Fig. 2A). Conversely, following 24 h

reperfusion, we reported a pronounced increase of p62/
SQSTM-1 in retina homogenates (Fig. 2A). At this time
point, p62/SQSTM-1 immunoreactivity was upregulated
in the innermost layers where it partially colocalized with
TUJ1-positive RGCs (Fig. 2B, C).

Ultrastructural features of autophagy in retinas subjected
to ischemia/reperfusion injury
The observation of double-membrane compartments by

transmission electron microscopy represents the gold
standard for identifying autophagosomes3. Although cells
in the GLC from non-ischemic control showed a normal
cytoplasm, devoid of vacuoles, in which mitochondria
were easily recognizable (Fig. 3A, B), in the ischemic
retina subjected to 6 h reperfusion, numerous double-
membrane vacuoles were observed (Fig. 3C–E). In addi-
tion to mature autophagosomes containing electron-
dense material (Fig. 3D, E), phagophores, involved in the
initial step of autophagosome formation, could be detec-
ted (Fig. 3C, C’). In retina subjected to 24 h reperfusion,
accumulation of autophagic compartments was observed
(Fig. 3F–H) corroborating the hypothesis that the build up
of p62 (see Fig. 2C) in the GCL was due to reduced
autophagy efficiency.

Changes of upstream ATG proteins following retinal
ischemia/reperfusion
Covalent conjugation of ATG12 to ATG5 mediates the

vesicle expansion and promotes LC3 lipidation46, whereas
ATG4 is involved in the processing and lipidation of
LC347. A significant increase of ATG12-ATG5 conjugates
was observed in the ischemic retinas following 6 h of
reperfusion, whereas a significant reduction was detected
at 24 h as compared with contralateral non-ischemic

(see figure on previous page)
Fig. 1 Modulation and distribution of LC3 following retinal ischemia/reperfusion injury. Mice were subjected to retinal ischemia in the right
eye (I) for 60 min and killed after 0, 1, 6, or 24 h. For each animal, retina from contralateral eye was used as control. A Immunoblot showing the time-
dependent modulation of LC3 expression in whole retinal lysates at the indicated time of reperfusion (Rep time). Histograms represent the
densitometric analysis of the bands expressed as B LC3I and C LC3II normalized to loading control (actin). Dashed lines indicate the baseline
expression of the protein in non-ischemic retinas set to 1. Data are reported as mean ± s.e.m. (4–6 independent experiments for each group). #P <
0.05 vs control non-ischemic retina (Student’s t test); *P < 0.05 vs 1 and 24 h of reperfusion (ANOVA followed by Tukey–Kramer multiple comparisons
test); ***P < 0.001 vs 0 h of reperfusion (Student’s t test). C, control non-ischemic retina; I, ischemic retina; MW, molecular weight; Short Exp, short
exposure; Long Exp, longer exposure. D Confocal images showing the upregulation of endogenous fluorescence in retinas of GFP-LC3 transgenic
mice subjected to ischemia and killed after 6 h of reperfusion. The inserts are higher magnification photomicrographs showing the signal distribution
in GCL and IPL. E colocalization of GFP-LC3 signal with the RGC marker TUJ1 (red) in ischemic retinas reperfused for 6 h. F Representative retinal tissue
sections from GFP-LC3 transgenic mice showing the partial colocalization of lysosomal marker LAMP-2 (red) with GFP-LC3-positive round-shaped
vesicles (white arrowhead) at the ganglion cell layer (GCL) of the ischemic retina. Images are representative of three animals per experimental
conditions. Frozen tissue sections were prepared as described in the methods and nuclei counterstained with DAPI (blue). GCL, ganglion cell layer;
IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bars D 50 μm, E 47.62 μm F 50 μm. G Immunoblot showing the
ex vivo analysis of autophagic flux in retinas subjected to ischemia (I, Isch) followed by 6 h of reperfusion as compared with non-ischemic retinas (C,
Ctr). Samples from individual retinas were split in half and incubated for 2 h in medium with (NH4Cl/Leu) or without (vehicle) ammonium chloride
(NH4Cl, 20 mM) and leupeptin (Leu, 200 μM) to inhibit lysosomal enzymatic activity. Histograms show the densitometric analysis of the bands
normalized on internal control (actin). Data are reported as mean ± s.e.m. of three independent experiments. *P < 0.05, **P < 0.01 (Student’s t test)
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Fig. 2 Changes of SQSTM-1/p62 levels following retinal ischemia reperfusion. A Western blotting analysis reporting the reperfusion time-
dependent modulation of SQSTM-1/p62. SQSTM-1/p62 expression decreased in the ischemic retina as compared with contralateral after 6 h of
reperfusion, whereas accumulated at 24 h. Histograms show the densitometric analysis of the bands normalized to loading control (actin) and
reported as mean ± s.e.m. (3–6 independent experiments for each group). Dashed line indicates the baseline expression of the protein of interest in
control non-ischemic retinas set to 1. #P < 0.05 vs C (Student’s t test); *P < 0.05, **P < 0.01 (ANOVA followed by Tukey–Kramer for multiple
comparisons test). C, control non-ischemic retina; I, ischemic retina; MW, molecular weight; Rep time, reperfusion time. B Representative retinal tissue
sections showing SQSTM-1/p62 immunoreactivity in control and ischemic retinas after 24 h of reperfusion. C Colabeling of ischemic retina at 24 h
reperfusion with anti-p62 (green) and anti-TUJ1 (red), a RGC-specific marker, demonstrating p62 upregulation in RGC soma (GCL) and dendrites (IPL).
Nuclei were counterstained with DAPI (blue). Images are representative of three animals per experimental conditions ONL, outer nuclear layer; OPL,
outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Scale bars B 50 μm; C 47.62 μm
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retina (Fig. 4A). Similarly, ATG4 expression dropped in
the ischemic retina after 24 h of reperfusion (Fig. 4B).
The BECN1 (ATG6)/class III phosphoinositide 3-kinase

(Vsp34) complex participates to the membrane nucleation
step preceding the autophagic vesicle formation48. We
recently showed that, in retinas of rats subjected to
ischemia, BECN1 is reduced during the post-ischemic
phase owing to calpain-mediated proteolytic cleavage25.
Similarly, here we observed a significant time-dependent
decrease of BECN1 that was significant at 6 h of reper-
fusion and accompanied by the appearance of the pro-
teolytic fragment (Fig. 4C).

Autophagy modulation by retinal ischemia/reperfusion is
associated with changes in the activation state of mTOR
and AMPK pathways
Autophagy activity inversely correlates with the activa-

tion state of the mammalian target of rapamycin (mTOR)
and the mTOR complex 1 (mTORC1) formation that,
when active, phospho-inhibits Unc51-like kinase 1
(ULK1) complex preventing autophagy49,50. To verify the
possibility of targeting mTOR to achieve retinal autop-
hagy modulation, we monitored the time-dependent
changes of mTOR signaling between 0 and 24 h of
reperfusion.

Fig. 3 Ultrastructural analysis of retinas after ischemia/reperfusion injury. A, B TEM micrographs showing the cytoplasm of cells in GLC. C–E In
retinas subjected to 6 h reperfusion, abundant autophagosomes (arrows), characterized by a double-limiting membrane, are detected in the cells.
F–H After 24 h reperfusion, autophagic compartments (arrowheads) accumulating in the cytoplasm are visible. Asterisk: phagophore; m:
mitochondria; n: nucleus. Boxed area in c is shown at higher magnification in c’. Scale bars 500 nm A, H; 200 nm B, D, C’, E, G; 1 μm C, F
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As shown in Fig. 5, retinal ischemia induced a transient
dephosphorylation of mTOR (Ser2448), which corre-
sponded with the kinase deactivation, as confirmed by the
decreased phosphorylation of two mTOR downstream
targets, ULK1 (Ser757) and 4EBP1 (Thr37/46) (Fig. 5A, B).
The opposite effect was detected at 6 h of reperfusion,
when a significant upregulation of phospho-mTOR was
evident as compared with contralateral non-ischemic
retina (Fig. 5A). At this time point, activation of mTOR
was associated with the return to basal levels of p-ULK and
increased p-4EBP1 (Fig. 5A, B). The latter was maintained
through the following 24 h of reperfusion (Fig. 5B).
Opposite to mTOR, the serine/threonine AMP activated

kinase (AMPK), which is activated under low-energy con-
ditions, promotes autophagy through inhibition of
mTORC1 and activation of ULK151–53. AMPK phosphor-
ylation (Thr172) was significantly upregulated in the injured
retina as compared with contralateral (Fig. 5C) and
returned to basal level within 1 h of reperfusion (Fig. 5C).
mTOR is a downstream target of the phosphatidylino-

sitol 3-kinase (PI3K)/Akt pathway54. Once phosphory-
lated on Ser347, Akt directly phosphorylates mTOR on
Ser2448, activates mTORC1 and inhibits autophagy55.
Under our experimental setting, retinal ischemia induced
a transient dephosphorylation of Akt (Fig. 5D), followed
by a significant increase of p-Akt that peaked at 6 h; after
24 h, p-Akt levels in the ischemic retina were comparable
to contralateral non-ischemic tissue (Fig. 5D).

Systemic administration of rapamycin activates retinal
autophagy and decreases RGC loss induced by ischemia
Based on the modulation of mTOR pathway following

retinal ischemia/reperfusion injury, we used the mTOR
inhibitor rapamycin to pharmacologically enhance

Fig. 4 Time-dependent changes of ATG proteins expression
following ischemia/reperfusion injury. Immunoblotting of A
ATG12-ATG5 conjugate and B ATG4 showing a significant decrease of
the indicated proteins in the ischemic retina after 24 h of reperfusion.
C Reduced levels of BECN1 were reported in the retinas subjected to
ischemia plus 6 h of reperfusion and associated with the accumulation
of a 50 kDa proteolytic fragment (figure box). Note that fragment was
detectable only by longer exposure time leading to the saturation of
the full-length band (long exp, longer exposure). For each animal,
retina from contralateral eye was used as control. Histograms
represent the densitometric analysis of the bands normalized to
loading control (actin). Dashed lines indicate the baseline expression
of the protein in non-ischemic retinas set to 1. Data are reported as
mean ± s.e.m. (3–4 independent experiments for each group). #P <
0.05, ##P < 0.01 vs. control non-ischemic retina (Student’s t test). C,
control non-ischemic retina; I, ischemic eye; MW, molecular weight;
Rep time, reperfusion time
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Fig. 5 Time-dependent modulation of mTOR signaling pathway upon retinal ischemia. Retinal ischemia was induced in the right eye and mice
were killed after 0, 1, 6, or 24 h of reperfusion. For each animal, contralateral non-ischemic retina was used as control. The phosphorylation level of A
mTOR (p-mTOR), C AMPK (pAMPK), and D Akt (p-Akt) was studied in whole retinal lysates by western blotting. mTOR activity was indirectly checked
by analyzing the state of phosphorylation of its downstream targets A ULK1 and B 4EBP1. Histograms represent the densitometric analysis of the
bands normalized to loading control (actin). Dashed lines indicate the baseline expression of the protein in non-ischemic retinas set to 1. Data are
reported as mean ± s.e.m. of 3–7 independent experiments for each group. #P < 0.05, ##P < 0.01, ###P < 0.001 vs control non-ischemic retina (Student’s
t test). C, control non-ischemic retina; I, ischemic retina; MW, molecular weight; Rep time, reperfusion time
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Fig. 6 Rapamycin promotes autophagy and increases RGC survival following retinal ischemia/reperfusion. A Rapamycin treatment schedule.
Rapamycin (10 mg/Kg) or vehicle were injected i.p. once a day for 6 consecutive days; ischemia was induced the fifth day and mice killed after 24 h
for the biochemical analysis B, C, D or 7 days for evaluation of RGC survival E, F. Western blotting analysis of B ULK and C 4EBP1 phosphorylation
levels was performed to indirectly check the inhibition of mTOR activity in the retina of rapamycin-treated mice. p-ULK (S757) and p4EBP (T37/46)
were reduced in control and ischemic retinas from rapamycin-treated mice as compared with both control and ischemic retinas of vehicle-treated
mice. D Rapamycin reduced basal p62 expression in non-ischemic retina as compared with vehicle-treated control and prevented the accumulation
of p62 in the ischemic retinas at 24 h of reperfusion. Histograms represent the densitometric analysis of the bands normalized by the internal loading
control (actin). Data are reported as mean ± s.e.m. of three independent experiments for each group. *P < 0.05, **P < 0.01, ***P < 0.001 (ANOVA
followed by Tukey–Kramer for multiple comparisons test). C, control non-ischemic retina; I, ischemic retina; MW, molecular weight. E Representative
fluorescent photomicrographs of whole-mount ischemic and control retinas from vehicle and rapamycin-treated mice. Systemic treatment with
rapamycin significantly increased the percentage of FluoroGold-labeled RGCs in the ischemic retinas as compared with vehicle-treated animals.
Images are representative of three independent experiments. Scale bar 75 μm. F Histogram reports the result of RGC count. Twenty images per retina
were acquired and the total number of labeled cells in the ischemic retina I was compared with contralateral, non-ischemic retina C and expressed as
percentage of RGC survival. Results are reported as mean ± s.e.m. of three independent experiments. *P < 0.05 (Student’s t test)
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autophagy in the retina. Mice were treated with rapamy-
cin for 6 consecutive days, starting 5 days before the
induction of ischemia (Fig. 6D). To ascertain that, under
the described posology, effective dose of rapamycin
reached the retina, phosphorylation of mTOR substrates
was checked. As reported in Fig. 6, p-ULK1 (Ser757) and
p-4EBP1 (Thr37/46) were reduced in the control retinas of
animal treated with rapamycin, confirming the effective
inhibition of mTOR (Fig. 6B, C). The reduced level of
p62/SQSTM-1 in the left retinas of treated mice further
substantiated the efficacy of the treatment and the
induction of autophagy (Fig. 6D).
Accordingly, in the ischemic retinas, treatment with

rapamycin significantly reduced the upregulation of p-
4EBP1, maintained lower levels of p-ULK1 Ser757, and
reduced the accumulation of p62/SQSTM-1 observed 24 h
after the insult (Fig. 6B–D). We also reported that rapa-
mycin administration increased Akt phosphorylation
(figure S2).
These biochemical changes were associated with a sig-

nificant increase of FluoroGold-labeled RGCs in the
ischemic retina of rapamycin-treated mice as compared
with vehicle-treated (Fig. 6E, F), thus supporting the
neuroprotective role of autophagy.

Effect of fasting on ATG proteins expression in the retina
To further support the evidence of the neuroprotective

role of autophagy, we attempt to induce retinal autophagy
by fasting. Since in eukaryotic cells nutrient starvation
induces autophagy through inhibition of mTOR signal-
ing56, to prove the effectiveness of fasting in the retina we
looked for changes of p-ULK1 (Ser757) in naive mice food-
restricted for 24 or 48 h. A significant reduction of p-
ULK1 was detectable in the 48 h fasted mice, whereas no
significant changes were reported in mice fasted for 24 h
(Fig. 7A). Deactivation of mTOR was further confirmed
by a significant reduction of p-4EBP1 (Thr37/46) following
48, but not 24 h fasting (Fig. 7B).
Analysis of ATG proteins in retinas of mice fasted for

48 h showed a significant upregulation of ATG12/ATG5
conjugate, while no significant changes were reported for
BECN1, ATG4, and ATG7 (figure S1).
In the retina of mice subjected to ischemia, 48 h fasting

reduced the phosphorylation of 4EBP1 (Thr37/46)
observed after 24 h reperfusion (Figs. 7C and 5B) sug-
gesting that, at this time point, a low mTOR activation
state was maintained in the ischemic retina of fasted mice
as compared with fed (Fig. 7C). As shown in Fig. 7C,
LC3II was upregulated in both control and ischemic
retinas from food-restricted mice. Furthermore, in the
ischemic retina allowed to reperfuse for 24 h, upregulation
of LC3II was significantly higher in fasted mice as
compared with mice with free access to food (fed)
(Fig. 7C).

Fasting prevents RGC death following ischemia/
reperfusion injury
To determine the effect of fasting on RGC loss extent,

retinal ischemia was induced in mice subjected to food
restriction. Seven days after the insult a significant
increase of surviving RGCs was reported in the retina of
mice fasted for 48 h as compared with normal fed (45.1 ±
8.7% vs 23.4 ± 5.7%) (Fig. 7D, E); the neuroprotective
effect was absent in mice food-restricted for 24 h (data not
shown).

Partial autophagic impairment by heterozygous genetic
ablation of Ambra1 increases RGC loss induced by retinal
ischemia
Autophagy/beclin1 regulator 1 (AMBRA1) acts as a

positive regulator of autophagy by facilitating BECN1/
VPS34 interaction and stabilizing ULK157,58. AMBRA1 is
a very upstream regulator of autophagy, being inhibited
mTOR and activated by ULK158. Also, its deficiency has a
strong phenotype on the developing nervous system,
despite its ubiquitous expression31. In order to assess
whether the heterozygous genetic disruption of Ambra1 is
sufficient to impair autophagy, we crossed mice hetero-
zygous (Ambra1+/gt) for the gene-trap mutation in the
Ambra1 locus with mice expressing the autophagy
reporter GFP-LC3, and analyzed the autophagy flux in
primary MEFs isolated from the resulting embryos (wild
type - Ambra1+/+;GFP-LC3 - or heterozygous -
Ambra1+/gt;GFP-LC3 - for Ambra1). As reported in Fig-
ure 8 A, autophagy flux is impaired in Ambra1+/gt;GFP-
LC3 with respect to Ambra1+/+;GFP-LC3 cells, as
demonstrated by the lower number of GFP-LC3 dots
observed in Ambra1 heterozygous vs. wild-type cells,
upon chloroquine treatment. Also, we found that Ambra1
dosage affects both basal (control) and starvation-induced
(EBSS) autophagy (Fig. 8A). Given its key role in autop-
hagy upstream regulation, its dose-dependent impact on
autophagy and its key importance for neuronal growth
control and survival31, we decided to investigate whether a
deficiency of autophagy could affect RGC survival. To this
aim, retinal ischemia was induced in Ambra1+/gt and the
number of FluoroGold-labeled RGC evaluated. As
reported in Fig. 8C, the value of RGC survival in the
ischemic retina of wild-type mice 7 days after the insult
was 28.0 ± 3.3% as compared with the fellow control
retina. Heterozygous ablation of Ambra1 resulted in a
significant reduction of RGC survival following ischemia
(12.0 ± 1.2%) (Fig. 8B, C), suggesting that partial genetic
impairment of basal autophagy depletes RGCs from a
relevant endogenous neuroprotective mechanism.
At the biochemical level, retinas from Ambra1+/gt mice

showed a more pronounced decrease of LC3II at the end
of the ischemia (reperfusion time 0), and a reduced
recovery of LC3II in the following 6 h (Fig. 8C, D).
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Fig. 7 Fasting downregulates mTOR activity and upregulates autophagy in the retina and prevents RGC loss induced by ischemia/
reperfusion injury. Representative western blotting showing the downregulation of A ULK1 and B 4EBP1 phosphorylation in naive retina from mice
subjected to 48, but not 24, hours fasting as compared with retinas from fed animals. In C, D, and E animals fasted for 48 h were subjected to retinal
ischemia and killed after 24 h C or 7 days D, E. C Western blot analysis showing a significant increase of LC3II in both control and ischemic retinas
from fasted animals as compared with fed. Significant decrease of the phosphorylated form of 4EBP1 (p-4EBP1) in the ischemic retinas of fasted mice
as compared with fed was also reported. The results of the densitometric analysis of the autoradiographic bands reported in the graph show the
comparison between the relative levels of the protein of interest in fasted vs fed animals. Values were normalized to loading control (actin). Data are
shown as mean ± s.e.m. of 3–4 independent experiments for each experimental group. *P < 0.05, **P < 0.01 vs Fed (Student’s t test). c, control eye; I,
ischemic eye; MW, molecular weight D Representative fluorescent photomicrographs of whole-mount ischemic and control retinas from fasted and
fed animals. Fasting significantly increased the percentage of FluoroGold-labeled RGCs in the ischemic retinas as compared with fed animals. Images
are representative of three independent experiments. Histogram in E reports the quantification of RGC survival under the different diet regimens.
Thirty-two images per retina were acquired and the total number of labeled cells in the ischemic retina I was compared with contralateral, non-
ischemic retina C, and expressed as percentage of RGC survival. Results are reported as mean ± s.e.m. of three independent experiments. *P < 0.05
(Student’s t test). Scale bar 75 μm
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Discussion
Retinal hypoxic–ischemic events occur in several sight-

treating disorders such as central retinal artery occlusion,
diabetic retinopathy, and glaucoma22, leading to RGC

death and visual impairment. By using a mouse model of
retinal ischemia, here we showed that ischemic insult
triggers an acute autophagy response lasting the initial
hours of reperfusion. This induction contains RGC death,

Fig. 8 (See legend on next page.)
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as demonstrated by the increased RGC loss observed in
mice genetically unable to implement this response.
Upregulation of autophagy is exhausted 24 h after ische-
mia and its prolonged activation, by rapamycin or fasting,
sustained RGC survival, thus providing proof of principle
for autophagy induction as a therapeutic strategy for
retinal neurodegenerative conditions involving hypoxic/
ischemic stresses.
The recycling of cellular components through autop-

hagy is essential for cellular homeostasis and it represents
a cytoprotective mechanism allowing cells to cope with
stressing conditions59. In our study, a significant decrease
of the autophagosome-associated form of LC3 (LC3II)43

was observed at the end of the ischemic period; as LC3II is
degraded with the cargo content, this data might reflect a
robust induction of autophagy triggered by ischemia60,61.
The subsequent increase of LC3II, together with the
decrease of the autophagic substrate p62/SQSTM-1 and
the accumulation of GFP-LC3 puncta, pointed to the
occurrence of an increased autophagic flux. In this phase
of reperfusion the increased incidence of autophagosomal
structures in the cytoplasm of cells located in the GCL
and positive for RGC markers, suggest that autophagic
flux is enhanced in this cell type. In view of autophagy as
mechanism of self-adaptation to cellular stresses, this
initial autophagy response might represent the attempt to
preserve cellular homeostasis and limit the damage.
Indeed, when this reaction was impaired, as in mice with
autophagy deficiency (Ambra1gt/+)31, the extent of RGC
death increased. Consistently, in a mouse model of optic
nerve transection, RGC survival was reduced in ATG4B
knockout mice or following specific deletion of ATG5 in
RGCs26.
Upregulation of LC3II and accumulation of autopha-

gosomes have been reported in RGCs following exposure
to glaucoma-related stimuli, although the time path varies
depending on the initial insult12. Increased LC3 immu-
noreactivity has been reported in GCL between 6 and 24 h

after ischemia in rats29,30. In particular, Wei and collea-
gues showed a persistent upregulation of LC3 and
increased number of autophagosomal structures in RGCs
lasting until 7 days post injury30. Conversely, here we
showed that, following 24 h of reperfusion, accumulation
of LC3II is no longer detectable in the ischemic retina and
comparable levels of the protein accumulate in control
and ischemic retinas in the presence of lysosomal activity
inhibitors, this suggesting that autophagy induction is
eventually exhausted. In support of this, we observed a
decrease of ATG proteins (i.e., ATG4, ATG12-5, BECN1)
involved in earlier steps of autophagy and a build up of
p62/SQSTM-1 in the cytoplasm of RGCs. Decline of
autophagy turnover was further confirmed by the recur-
rence in RGC of autophagic compartments containing
partially degraded cytoplasmic material and
mitochondria.
Impairment of the autophagic flux with accumulation of

p62/SQSTM-1 has been reported in RGC axons following
IOP elevation by laser photocoagulation in rats62. Simi-
larly, we observed accumulation of p62/SQSTM-1-posi-
tive bodies in RGCs, suggesting a defect in protein
clearance by autophagy. However, as p62/SQSTM-1 also
targets ubiquitin-modified proteins to the proteasome63

and it is subjected to transcriptional regulation64 the
contribution of these processes in the reported accumu-
lation cannot be ruled out.
Macroautophagy and mitophagy are negatively regu-

lated by the mTORC150, mainly via inhibition of the
ULK1 complex65.In our experimental setting, autophagy
induction coincided with inactivation of mTOR and its
upstream modulator Akt55. Concomitantly, we observed a
transient activation of AMPK, a cellular energy sensor
that inhibits mTOR51 and activates ULK153. These data
suggest that inhibition of mTOR, by either inactivation of
the PI3K/Akt pathway and activation of AMPK, is
involved in the mechanisms of autophagy induction
triggered by retinal ischemia.

(see figure on previous page)
Fig. 8 Reduced basal autophagy in Ambra1+/gt mice increases RGC death induced by ischemia/reperfusion injury. A murine embryonic
fibroblasts (MEFs) dissected from Ambra1+/+; GFP-LC3 (n= 2), Ambra1+/gt; GFP-LC3 (n= 3) and Ambra1gt/gt; GFP-LC3 (n= 1) embryos were grown
in control (CTR) or starvation medium (EBSS, for 30 min). Where indicated, 20 μM chloroquine was added to CTR/EBSS media. The number of cells
positive for GFP-LC3 dots is reported in the graph (cells with more than 10 dots were considered positive for GFP-LC3 dots). Scale bar: 10 µM. Bars
represent mean ± s.e.m. with 80 cells analyzed per sample. *P < 0.05; ***P < 0.0005 (Student’s t test). B Representative fluorescent photomicrograph of
whole-mount retinas showing the reduction of FluoroGold-labeled RGCs in the ischemic retina of autophagy deficient Ambra1+/gt mice as
compared with non-ischemic contralateral retina and ischemic retinas from wild-type mice (WT). Scale bar 75 μm. Histograms in C report the
quantification (expressed as % of survival) of RGC 7 days after the injury in the ischemic retina I as compared with contralateral non-ischemic retina C.
RGC survival was significantly decreased in autophagy deficient mice (Ambra1+/gt) as compared with WT. Results are reported as mean ± s.e.m. of
three independent experiments. *P < 0.05 (Student’s t test). D Representative immunoblotting showing changes of LC3 expression in Ambra1+/gt

transgenic mice subjected to retinal ischemia as compared with wild type. Animals were killed at 0, 6, or 24 h of reperfusion. D Histograms represent
the densitometric analysis of the bands normalized to loading control (actin). Dashed lines indicate the baseline expression of the protein in non-
ischemic retinas set to 1. Data are reported as mean ± s.e.m. (4–6 independent experiments for each group). *P < 0.05, **P < 0.01, ***P < 0.001 (ANOVA
followed by Tukey–Kramer for multiple comparisons test). C, control non-ischemic eye; I, ischemic eye; MW, molecular weight; Rep time, reperfusion
time
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During reperfusion, AMPK is no longer active, whereas
a sustained phosphorylation of Akt can be observed.
Therefore, the maintenance of the upregulated autophagy
flux observed in the early phase of reperfusion takes place
in the absence of mTOR inhibition and might rely on
different molecular events or representing the final part of
the autophagy wave triggered by ischemia. Furthermore,
the transient overactivation of mTOR observed after 6 h
of reperfusion, might act as a brake on autophagy acti-
vation, slowing down the cargo clearance66. The efficiency
of the autophagic pathway, as the time of reperfusion
progresses, might be further compromised by BECN1
cleavage25.
Currently there are not unified views regarding the role of

autophagy in RGC death; likewise, pharmacological treat-
ments modulating autophagy in animal models of RGC
degeneration led to controversial results12. Here we showed
that rapamycin, whereas prolonged autophagic flux induc-
tion, also attenuated RGC loss, thus supporting the neu-
roprotective role of autophagy. Consistently, rapamycin
reduced loss of RGCs after optic nerve transection26,
improved RGC survival following chronic ocular hyper-
tension and reduced apoptosis in glutamate-injured primary
RGCs28. On the contrary, rapamycin exacerbated RGC
death following optic nerve ischemia67 and, in adult RGCs,
conditional deletion of PTEN, a negative regulator of
mTOR pathway, increased survival and promoted axon
regeneration after optic nerve injury68. These opposite
outcomes might reside on the different posology other than
the type of detrimental stimulus applied. Furthermore,
owing to the multifunctional role of mTOR, rapamycin
might affect other intracellular pathways. For example, the
rapamycin-mediated increased phosphorylation of Akt, a
pro-survival factor that is relevant for RGC survival69,70,
might take part to the observed neuroprotection.
However, the significant reduction of RGC loss

observed in fasted mice strengthens the neuroprotective
role of autophagy in the retina exposed to hypoxic/
ischemic insults. Caloric restriction is the most physio-
logical trigger of autophagy and the dogma of a neuronal
resistance to starvation-induced autophagy32,71 has been
recently refuted by evidence reporting autophagy upre-
gulation in the brain and retina of food-restricted
mice39,72–76. Here we showed that 48 h of food depriva-
tion activated autophagy in the retina; a shorter fasting
period (24 h) was ineffective in inducing autophagy and
failed in affording neuroprotection to RGCs (data not
shown). These results differ from what has been reported
by Esteban-Martinez and colleagues39, who showed acti-
vation of autophagy in all retinal layers of mice food-
restricted for 24 h. One possible explanation for the dif-
ferent results may arise from the fact that this study was
conducted in naive retinas and in a different mouse strain
(wild type vs GFP-LC3).

The neuroprotective effect of fasting reported here has
two main implications: (1) it supports the hypothesis that
inducing autophagy in insulted retina has neuroprotective
effects and (2) suggests that short-term food restriction
might represent a potential intervention for the treatment
of retinal neurodegenerative disorders, in particular those,
like glaucoma, where current available therapies are not
sufficient to halt the disease. This is also supported by a
recent study showing that 7 weeks of every other day fasting
suppresses retinal degeneration in a mouse model of nor-
mal tension glaucoma77. Moreover, a retrospective cohort
study showed that the risk of developing open-angle glau-
coma was reduced in diabetic patients taking the anti-
diabetic metformin, a caloric restriction mimetic drug that
has been shown to induce autophagy in several systems78.
Altogether, our data add knowledge to the autophagy

dynamic in the retina under hypoxic/ischemic conditions,
define autophagy as a determinant for RGC survival and
identify this pathway as an important endogenous neu-
roprotective mechanism that can be targeted for
neuroprotection.
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