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Abstract

The liver is controlled by several metabolic hormones, including thyroid hormone, and characteristically displays high
lysosomal activity as well as metabolic stress-triggered autophagy, which is stringently regulated by the levels of
hormones and metabolites. Hepatic autophagy provides energy through catabolism of glucose, amino acids and
free fatty acids for starved cells, facilitating the generation of new macromolecules and maintenance of the quantity
and quality of cellular organelles, such as mitochondria. Dysregulation of autophagy and defective mitochondrial
homeostasis contribute to hepatocyte injury and liver-related diseases, such as non-alcoholic fatty liver disease
(NAFLD) and liver cancer.
Thyroid hormones (TH) mediate several critical physiological processes including organ development, cell differentiation,
metabolism and cell growth and maintenance. Accumulating evidence has revealed dysregulation of cellular TH activity
as the underlying cause of several liver-related diseases, including alcoholic or non-alcoholic fatty liver disease and liver
cancer. Data from epidemiologic, animal and clinical studies collectively support preventive functions of THs in
liver-related diseases, highlighting the therapeutic potential of TH analogs. Elucidation of the molecular mechanisms
and downstream targets of TH should thus facilitate the development of therapeutic strategies for a number of major
public health issues.
Here, we have reviewed recent studies focusing on the involvement of THs in hepatic homeostasis through induction
of autophagy and their implications in liver-related diseases. Additionally, the potential underlying molecular pathways
and therapeutic applications of THs in NAFLD and HCC are discussed.
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Background
Thyroid hormones (TH) serve as potent regulators of cel-
lular development, growth and metabolism in mammals
[1] and control several metabolic activities related to ana-
bolism or catabolism of macromolecules, including carbo-
hydrates, proteins, lipids and damaged organelles within
cells to maintain homeostasis under different physiological
conditions [2]. In addition to their critical regulatory roles
in cellular homeostasis, imbalance of TH levels in the

body is associated with multiple chronic diseases, inclu-
ding diabetes mellitus [3, 4], cardiovascular disease [5, 6]
and liver-related disorders [7]. Liver is one of the most
important target organs whereby THs regulate compo-
nents involved in cellular metabolism, such as fatty acids,
supporting the possibility that disruption of TH action in
liver contributes to development of non-alcoholic fatty
liver disease (NAFLD). Indeed, recent studies have re-
ported associations between alterations in cellular TH sig-
naling and several liver-related diseases, including
NAFLD and hepatocellular carcinoma (HCC). Earl-
ier epidemiological findings suggest that long-term
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hypothyroidism is positively associated with high
risk of NAFLD and HCC incidence, independent of
other risk factors [8, 9]. Moreover, treatment with T3 or its
analogs has been shown to prevent a spectrum of liver-
related diseases ranging from hepatic steatosis to
HCC in rodents subjected to high-fat diet (HFD) or
carcinogens [10–17]. These collective findings support
the potential utility of TH analogs as therapeutic
drugs to prevent liver disease progression. Analysis of
the downstream signals of TH in liver may further
shed light on the underlying TH pathways that induce
therapeutic effects against liver-related diseases.
Autophagy is a self-digestion process primarily involving

recycling of cellular fuel stores in lysosomes to generate
amino acids, glucose and fatty acids [18]. Catabolism of
lipids through autophagy is termed lipophagy [19]. In
addition to metabolic functions, autophagy presents a
cellular surveillance mechanism to suppress accumulation
of toxic protein aggregates and impairment of organelles,
thus facilitating maintenance of organelle integrity and
cellular homeostasis [20]. The specific regulatory func-
tions of autophagy in hepatic homeostasis have been
increasingly explored in recent years. Dysregulation of
the autophagic process is reported to cause an imbalance
in energy metabolism in the liver and consequently affect
hepatic physiology and trigger disease [21–24]. Several
research groups, including ours, have shown that hepatic
lipid turnover is stimulated by THs through lipophagy,
preventing hepatosteatosis, both in vitro and in vivo
[25, 26]. Additionally, TH stimulates the metabolic
rate accompanied by increased mitochondrial turnover
through mitophagy, leading to elimination of mitochon-
drial dysfunction induced by hepatic carcinogens or hepa-
titis B virus HBx protein [16, 17, 27]. The finding that
THs and Thyroid hormone receptors (THRs) prevent
hepatic damage, hepatosteatosis and hepatocarcinogenesis
via autophagy stimulation supports their therapeutic
potential in clinical applications. In the current report,
we have reviewed studies published by our research
group and other investigators on the involvement of
TH-induced autophagy in liver-related diseases, parti-
cularly NAFLD and HCC. Elucidation of the network of
molecular mechanisms underlying the effects of TH/THR
on hepatic metabolism may aid in the design of effective
therapeutic strategies for a range of liver-related diseases.

Molecular actions of thyroid hormones and receptors
Genomic actions of TH
T3 (triiodothyronine) and T4 (L-thyroxine) are the two
major thyroid hormones affecting almost every organ
system. Under physiological conditions, T4 is the main
hormone secreted into the bloodstream by the thyroid
gland. However, the thyroid hormone receptor (THR)

binding affinity of T4 is considerably lower (10-fold less)
than that for T3. The conversion of T4 to T3 is regulated
via iodothyronine deiodinases (DIO1, DIO2, and DIO3)
in extrathyroidal tissue. Type I and type II iodothyronine
deiodinases (DIO1, DIO2) deiodinate circulating T4 to
produce biologically active T3. Conversely, type III deio-
dinase (DIO3) suppresses intracellular thyroid activity by
converting T4 and T3 to the comparatively inactive
forms, reverse T3 (rT3) and T2. Recently, T2 was shown
to possess thyromimetic activity and mimic some of the
effects of T3 on liver metabolism [28, 29], implying that
T2 or rT3 may not just be inert metabolites as originally
suggested. Expression levels and activities of DIO1,
DIO2 and DIO3 vary among different tissues, causing a
tissue-specific increase or decrease in circulating TH
levels or availability of active hormones for THR binding
[7, 30]. To exert genomic effects, cytoplasmic T3 enters
the nucleus, most likely through passive diffusion, and
binds THRs associated with thyroid hormone response
elements (TRE) within the promoter regions of down-
stream genes of TH/THR [31–33]. Typical TREs within
promoter regions of downstream genes contain two
half-site sequences (A/G)GGT(C/A/G)A in a palindromic,
direct repeat or inverted repeat arrangement that are
recognized by THR [1].
THRs are T3-inducible transcription factors belonging

to the nuclear receptor superfamily that are encoded by
two tissue-specific genes, THRA (TRα) and THRB
(TRβ). The THRA gene encodes one active T3-binding
receptor, TRα1, and two dominant-negative spliced
variants, TRΔα1 and TRΔα2 [34]. that lack T3 binding
ability [35]. TRα1 is the predominant subtype highly
expressed in brain, cardiac and skeletal muscle [36].
THRB encodes two functional T3-binding TRβ isoforms
(TRβ1 and TRβ2) and another dominant-negative iso-
form, TRβ4 [34]. TRβ1 is predominately expressed in
brain, liver and kidney whereas TRβ2 is limited to the
hypothalamus, retina and pituitary. THRs exert transcrip-
tional effects via formation of homodimers or hetero-
dimers with other nuclear receptors, such as retinoid X
receptor (RXR), Vitamin D receptors (VDR) and other
retinoic acid receptor subtypes. RXR generally functions
as a partner of several nuclear receptors to regulate target
genes [47]. THRs form heterodimers with RXR on TREs
within the promoter regions of target genes. In
addition, recent ChIP-Seq studies have shown that
THRs bind to specific response element motifs with
non-conserved sequences and in non-promoter regions
[37–39], implying that interactions with other tran-
scription factors are required to regulate chromatin
remodeling and gene expression.
In the absence of TH, THRs still bind to TREs but are

associated with co-repressors displaying histone deacety-
lase (HDAC) activity, leading to modifications in
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chromatin structure and repression of transcription. For
instance, nuclear receptor corepressor 1 (NCoR1) and
silencing mediator for retinoid or thyroid-hormone
receptors (SMRT), well-characterized co-repressors
with histone deacetylase activity, serve as platforms for
repressor complex-mediated chromatin remodeling
[40]. Binding of T3 induces conformational changes of
THR and recruitment of transcriptional coactivators
with histone acetyl transferase (HAT) activity to in-
crease histone acetylation at specific promoter regions,
facilitating generation of a permissive chromatin state
and further recruitment of general transcriptional
machinery (Fig. 1). For instance, steroid hormone
receptor coactivator (SRC), PCAF (p300/CBP-asso-
ciated factor) and p160 family members facilitate lig-
and-bound THRs to activate T3 target genes through
histone acetyltransferase activity [41]. Moreover, transcrip-
tional activities of THRs are stimulated by TR-associated
protein (TRAP) family independently of HAT activity [42].
Alterations in THR-associated co-regulator complexes
may induce differential responses for appropriate target
gene expression (Table 1).
In addition to positively regulating downstream targets,

TH binding to THR can lead to negative regulatory
effects. Notably, these negatively regulated target genes
are upregulated in the absence but downregulated in the
presence of THs [30, 43] although the precise details
remain to be established. In a typical case, high levels of
THs exert a negative feedback effect on thyrotropin-re-
leasing hormone (TRH) and thyroid stimulating hormone
(TSH), and low levels of THs stimulate secretion of TSH
from the anterior pituitary. This critical negative feedback
loop regulates the hypothalamic-pituitary-thyroid axis
[44–46]. TREs of genes negatively regulated by TH are
frequently located near proximal promoter regions. How-
ever, binding of THRs to these putative regions is gener-
ally weak, suggesting that interactions between THRs and
other co-factors may contribute significantly to negative
regulatory effects of THs. Alterations in chromatin re-
modeling through histone modification via recruitment of
HDACs and HATs may be involved in negative transcrip-
tional regulation by THs. Recently, a novel THR
co-repressor, LCOR, was identified as an inhibitor of
TRβ-dependent lipogenic gene activity. LCOR serves as a
competitor for binding of coactivators SRC-1/3 to TRβ
leading to reduced recruitment of SRCs to TREs within
the promoter regions of downstream target genes of TR,
potentially representing a novel mechanism by which
LCOR regulates gene transcription [47].
THRs are additionally reported to interact with tran-

scription factors to negatively regulate expression of sev-
eral genes, including Sp1 [48], p53 [49], Oct-1 [50],
GHF-1 [51, 52] and CTCF [53, 54], although the under-
lying mechanisms remain largely unknown at present.

Nongenomic actions of TH
In addition to transmission of signals through inter-
actions with nuclear THRs, activities of THs in the
plasma membrane or cytoplasm are termed nongenomic
effects (Fig. 1, Table 1). THs bind to integrin αvβ3 mem-
brane receptor protein independently of nuclear THRs
[55–57], which has been further characterized as a
membrane-bound THR. Integrin αvβ3 was originally
shown to contain the Arg-Gly-Asp (RGD) recognition
region that interacts with extracellular matrix ligands
[55]. Unexpectedly, TH could bind integrin αvβ3 near its
RGD recognition site [58]. Integrin αvβ3 contains two
TH-binding domains with no homology to nuclear
THRs. The S1 domain mainly recognizes T3, conse-
quently activating the phosphatidylinositol 3-kinase
(PI3K)/Akt/protein kinase B (PKB) pathway through Src
kinase [59]. Both T4 and T3 bind to the S2 domain and
activate the mitogen-activated protein kinase/extracellu-
lar signal-regulated kinase (MAPK/ ERK1/2) pathway.
Moreover, S1 and S2 domains mediate the specific ef-
fects of TH. For instance, S1 directs Src and
PI3K-mediated TRα translocation from the cytoplasm to
the nucleus and promotes expression of target genes,
such as hypoxia-inducible factor-1α (HIF-1α) while S2
activates MAPK1 and MAPK2, leading to nuclear
trafficking of TRβ1 from the cytoplasm and tumor
cell proliferation [58, 60].
THs also cause serial phosphorylation and nuclear

localization of other critical genes responsible for several
cellular functions (Table 1). For instance, TH-activated
ERK1/2 has been shown to promote estrogen receptor-α
(ERα), signal transducer and activator of transcription-3
(STAT3), and several THR-associated proteins [61–67].
TRα1 interacts with the p85α subunit of PI3K in a
T3-dependent manner, leading to activation of Akt and
endothelial nitric oxide synthase (eNOS) [7, 68]. In
addition, liganded TRβ1 associates with p85α in the
cytoplasm to activate Akt via phosphorylation. Activated
Akt subsequently triggers the nuclear mammalian target
of rapamycin (mTOR)-p70S6K cascade and sequential
induction of several HIF-1α target genes, including
glucose transporter 1 (GLUT1), platelet-type phospho-
fructokinase (PFKP) and monocarboxylate transporter 4
(MCT 4) [69–71]. TRβ1 is additionally reported to
modulate Na+/K+-ATPase activity by PI3K or ERK1/2.
For instance, PI3K signaling slows potassium voltage-
gated channel, subfamily H, member 2 (KCNH2) chan-
nel deactivation in the plasma membrane of pituicytes
[72–74]. Moreover, THRB-PV, a THRB mutant that
shows loss of T3 binding ability but interacts more sig-
nificantly with the PI3K regulatory subunit, p85, triggers
a greater increase in PI3K kinase activity and activation of
the PI3K-AKT- mTOR-p70S6K pathway in cytoplasmic
and nuclear compartments, with predisposition to tumor

Chi et al. Journal of Biomedical Science           (2019) 26:24 Page 3 of 15



Fig. 1 Nongenomic and Genomic actions of Thyroid hormone and thyroid hormone receptor. The diagram of nongenomic and
transcriptional actions of thyroid hormone (TH) and thyroid hormone receptor (THR). a Nongenomic effects of THs are initiated from
Integrin αvβ3 localized on the plasma membrane or occurs at cytoplasm. T3 interacts with S1 domain of Integrin αvβ3 to activate the
PI3K signal pathway via Src kinase, leading to trafficking of THRA from the cytoplasm to nucleus and increases HIF-1α expression. THs,
mainly T4, also interact with S2 domain of Integrin αvβ3 to activate ERK 1/2 signal, causing phosphorylation and nuclear localization
of THRβ, estrogen receptor α (ERα) and STAT3. Activated ERK1/2 and cytosolic THRB increase the activity of the sodium pump (Na, K-ATPase). T3-liganded
THRs in the cytoplasm interact with the PI3K regulatory subunit, p85α, to activate Akt, subsequently triggering mTOR/p70S6K and eNOS
signals. b In the nucleus, THRs form heterodimers with the retinoid X receptor (RXR) at thyroid hormone response elements (TREs), within
the regulatory regions of downstream genes. In the absence of T3, the co-repressor complex involving histone deacetylase (HDACs),
NCoR1 and SMRT deacetylate histones in the regulatory regions. Consequently, trimethylation of histone H3 at lysine 9 and 27 along with
DNA methylation causes a more closed conformation in chromatin and blocks the transcriptional machinery access to the DNA, causing
suppression of downstream targets transcription. Binding of T3 induces conformational changes of THRs and recruitment of transcriptional
coactivators (such as PCAF/P300 and SRC-1/p160) with histone acetyltransferase (HAT) activity to increase histone acetylation at specific
promoter regions, facilitating generation of a permissive chromatin state and further recruitment of general transcriptional machinery.
Typical TREs within promoter regions of downstream genes contain two half-site sequences (A/G)GGT(C/A/G)A in a palindromic, direct
repeat or inverted repeat arrangement that are recognized by THR

Chi et al. Journal of Biomedical Science           (2019) 26:24 Page 4 of 15



development in several cancer types, including thyroid and
mammary tumors [75, 76]. The THRB-PV mutant
additionally associates with β-catenin to regulate cell
proliferation in thyroid tumors of THRB PV/ PV mice [77].
This interaction favors the unliganded state of TRβ,
and T3-independent interactions between β-catenin
and TRβ promote activation of β-catenin-related
downstream targets.

The TH/THR axis in regulation of hepatic autophagy
The autophagic process
Autophagy was originally characterized as a catabolic
process targeting cellular constituents, including un-
folded proteins, damaged organelles and intracellular
pathogens, to lysosomes for degradation [19, 78].
Autophagy is categorized into three main types:
macroautophagy, chaperone-mediated autophagy and
microautophagy [79]. Macroautophagy, hereafter
known as autophagy, is generally considered the
major route for directing cytoplasmic components
into lysosomes for degradation. The autophagic
process involves membrane biogenesis and formation
of a double-membrane phagophore (termed autopha-
gosome), which sequesters partial cytoplasmic com-
ponents or entire organelles and subsequently fuses
with lysosomes for degradation. Amino acids and
other metabolic compounds generated by this
process are consequently released for energy produc-
tion or recycling. Chaperone-mediated autophagy in-
volves sequestration of proteins or polypeptides
harboring the KFERQ-like motif by chaperone pro-
teins. This process promotes translocation of target pro-
teins into lysosomes for degradation through interactions
with lysosome-associated membrane protein type 2A
(LAMP2A). Microautophagy is implicated in invagination
of cellular constituents within endosomes or lysosomes
but small fractions of cytoplasmic constituents in the close
vicinity of lysosomes are sequestered.
Under basal conditions, autophagy is implicated in the

degradation of long-lived proteins while another catabolic
system, the ubiquitin-proteasome process, is responsible
for the turnover of short-lived proteins [80, 81]. However,
under specific conditions, such as nutrient deprivation,
the autophagy pathway leads to selective degradation of
cytosolic materials (termed selective autophagy). Selective
autophagy directs degraded products into highly spatio-
temporally controlled metabolic pathways. When specific
autophagic cargo, such as misfolded proteins or damaged
cellular organelles, appear within the cytoplasm, they are
tagged with molecular markers, such as ubiquitin [82, 83],
resulting in assembly of autophagic adapter proteins,
such as SQSTM1, that bind to both molecular marker-
harboring cargo and LC3-II. A number of core autophagy
proteins, such as the ULK-FIP200 complex, also recognize
these tagged targets [84, 85], initiating autophagosome
formation. Selective autophagy is predominantly regulated
by cargo labeling as well as recruitment of adaptor
proteins to cargo.
Significant links between the regulation of selective au-

tophagy and liver complications associated with NAFLD
and HCC have been reported, supporting the manipu-
lation of this process as a potential therapeutic stra-
tegy for liver-related diseases.

Table 1 Summary of the genes/signals regulated by genomic
or nongenomic action of TH/THR signal axis

Molecular function Gene/signal name Reference

Nongenomic regulation by TH/THR

Membrane receptor of TH Integrin αvβ3 [55, 56]

Signal transductor Src kinase [59]

PI3K/Akt [7, 59, 68]

p-ERK1/2 [58, 61–66, 60, 67]

mTOR/p70S6K [69]

eNOS [7, 68]

Transcriptional factor Estrogen receptor [62, 67]

STAT3 [64]

HIF1-α [58, 60, 70, 69, 71]

β-catenin [77]

Metabolic regulator GLUT1 [71]

PFKP [71]

MCT 4 [71]

Na-K-ATPase KCNH2 [72]

Apoptosis regulator FOXO1 [136, 137, 176]

BCL2L11 [176]

Genomic regulation by TH/THR

Transcriptional coregulator of THR SP1 [48]

p53 [49]

Oct-1 [50]

GHF-1 [51, 52]

CTCF [53, 54]

LCOR [47]

Autophagy regulator DAPK2 [16]

Betatrophin [26]

Cell cycle regulator UHRF1 [171]

STMN1 [172]

Mir-214 [173]

BC200 [174]

Apoptosis regulator TRAIL [175]

Metastatic regulator BSSP4 [178]

LCN2 [180]

mir-130b [177]

mir-21 [179]
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Autophagy in liver-related diseases
In addition to the fundamental function of starvation-in-
duced autophagy, basal and selective autophagy
contribute to maintaining the quality and quantity of
cellular organelles and cytosolic proteins efficiently in
the liver. Consequently, dysregulation or malfunction of
the autophagic process is associated with the pathogenesis
of multiple disorders and liver-related diseases, such as
age-related hepatic disorders, NAFLD and HCC [86].

Aging in liver Aging is positively associated with seve-
rity and poor prognosis of several liver-related diseases,
including alcoholic liver disease, NAFLD and HCC [87].
Furthermore, the age-dependent frequent decrease in
autophagic activity underlies the pathogenesis of hepatic
diseases. The initial finding of age-dependent decrease
in hepatic autophagy was based on a marked increase in
oxidative damage-triggered protein carbonyl derivatives
in liver of 27-month-old rats, compared to 2-month-old
rats [88]. Further studies indicated that the efficiency of
autophagic degradation and capacity of autophagic pro-
teolysis of exogenous amino acids of primary hepato-
cytes from older rats is dramatically decreased relative
to that in young rats [89, 90]. Moreover, decreased
expression of LC3-II and number of autophagosomes in
mice were age-dependent [91]. These results suggest
that the age-dependent decrease in efficiency of auto-
phagy leads to substantially diminished clearance of
inactive organelles, including mitochondria, generating
increased oxidative stress and consequent accumulation
of oxidized protein aggregates.

NAFLD Fatty liver is attributed to continuous intake of
excess dietary fat without consumption of excessive
alcohol [92]. Nonalcoholic fatty liver disease (NAFLD)
incorporates a spectrum of liver-related diseases ranging
from steatosis to steatohepatitis, fibrosis and cirrhosis.
Non-alcoholic steatohepatitis (NASH) presents as a hep-
atic disease histologically similar to alcoholic hepatitis
but occurs without consumption of excessive alcohol,
representing a stage within NAFLD [93, 94]. Recent
metabolic studies on animals and humans demonstrated
that NAFLD represents one feature of metabolic syn-
drome closely associated with several metabolic diseases,
such as diabetes and insulin resistance. Moreover,
diabetes or insulin resistance conditions accelerate the
entire pathological spectrum of NAFLD [94]. Chronic
hepatic steatosis can trigger inflammatory responses
[95]. In some cases, NAFLD progresses to NASH,
which frequently advances into fibrosis and cirrhosis,
and 4–27% NASH cases develop HCC [96].
In response to accelerated lipid availability or nutrient

starvation, hepatic autophagy degrades lipid droplets to
produce free fatty acids (FFA) for ATP generation. This

autophagy-induced degradation of hepatic lipid droplets
is termed lipophagy [97]. Since lipophagy involves the
selective degradation of hepatic lipid droplets, autophagy
in liver could serve as a preventive mechanism against
NAFLD. In contrast, several studies indicate that
lipotoxic effects, including oxidative stress or insulin re-
sistance, elicited by excess triglycerides and free fatty acids
in NAFLD, inhibit activation of autophagy [19, 98, 99].
Hepatic autophagy regulates lipid metabolism through
elimination of triglyceride accumulation in liver and
prevents the development of steatosis [97]. Enhancement
of autophagic activity using pharmaceutical agents, such
as rapamycin or carbamazepine, has been shown to retard
liver steatosis [99–102]. Moreover, pharmacological
inhibition of autophagy via 3-methyladenine or knock-
down of the essential autophagy gene, atg5, in hepatocytes
challenged with a lipid load induced a dramatic increase
in the cellular triglyceride level. Excessive triglyceride and
cholesterol ester accumulation in hepatic lipid droplets
was observed owing to decreased lipolysis and fatty acid
훽-oxidation in cells with low autophagy activity.
Compared to hepatocytes, autophagy in stellate cells

exerts opposite effects on NAFLD progression. In
NAFLD, quiescent hepatic stellate cells are activated and
transdifferentiate into myofibroblasts, which express a
large number of inflammatory cytokines and collagen,
thereby promoting hepatic fibrosis [103]. In stellate cells
from livers of autophagy-deficient mice, CCl4-induced
hepatic fibrosis was dramatically inhibited [104].
Abnormal structural and functional alterations of

hepatic mitochondria in NAFLD are frequently ob-
served [105]. Mitochondria are the powerhouse of
cells and decreased mitochondrial function concomi-
tant with alterations in structural and molecular
pathways may elicit a metabolic imbalance, contrib-
uting to NAFLD progression. Mitochondrial biogen-
esis and mitophagy, a highly selective form of
autophagy that functions in removal of damaged mito-
chondria, are the major pathways that regulate mito-
chondrial mass [86, 105]. The balance of mitochondrial
biogenesis and mitophagy is a precisely regulated
process that influences cellular homeostasis. Activation
of hepatic mitophagy is reported to eliminate the lipid
content and oxidative stress, and dysregulation of
mitophagy implicated in the progression of NAFLD
[19, 86, 97].
Under oxidative stress conditions, SQSTM1 is phos-

phorylated and subsequently binds to KEAP1 with high
affinity. KEAP1 is an adaptor of the ubiquitin ligase
complex for nuclear factor-erythroid 2-related factor-2
(NRF2). Downstream target proteins of NRF2, such as
NAD(P)H, dehydrogenase quinone 1 (NQO1) and
glutathione S-transferase (GST), ameliorate ROS pro-
duction by damaged mitochondria [106, 107]. Selective
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autophagic degradation of the SQSTM1-KEAP1 com-
plex inhibits KEAP1-driven ubiquitylation and degrad-
ation of NRF2. In NAFLD, the turnover of hepatic
cytoplasm fractions is substantially impaired due to dys-
functional autophagy/mitophagy, leading to accumula-
tion of damaged mitochondria and elevated oxidative
stress, which activates the SQSTM1–KEAP1–NRF2
pathway to protect hepatocytes against oxidative stress.
However, under conditions where ROS levels exceed the
antioxidant capacity of NRF2-related signals, various
harmful effects, including lipid peroxidation, protein oxi-
dation, and DNA damage, trigger liver injury [106, 107].

HCC As autophagy plays important roles in mainte-
nance of the quality of organelles and supply of energy
to cancer cells, autophagy-related pathways are considered
important for cancer cell survival [108]. Previous studies
indicate that loss of autophagy inhibits KRAS–triggered
tumorigenesis of non small-cell lung cancer [109, 110].
Indeed, several clinical trials using a combination of exist-
ing anticancer drugs and autophagy inhibitors, such as
chloroquine and hydroxychloroquine, are currently under-
way for several cancer types [111, 112]. However, the
specific functions of autophagy in different tumors are
complex and context-dependent. Pancreas-specific
activated KRAS in mice leads to the development of
pancreatic ductal adenocarcinoma (PDAC), which is
suppressed by inhibition of autophagy [113]. In con-
trast, in mice lacking Tp53, loss of autophagy facilitates
tumor progression [113].
In the liver, autophagy appears to function as a tumor

suppressor. For instance, mosaic depletion of Atg5,
liver-specific Atg7, or Beclin-1 in mice causes accumu-
lation of degenerated protein aggregates, lipid droplets
and damaged cellular organelles, including mitochondria
and peroxisomes, as well as persistent activation of
NRF2 owing to sequestration of KEAP1 by SQSTM1-
positive cytoplasmic aggregates, leading to spontaneous
hepatic carcinogenesis [114–116]. Simultaneous loss of
nrf-2 or sqstm1 in mice with Atg5 or Atg7-deficient liver
suppresses tumor development [117]. Additionally, the
cargo receptor degraded by autophagy, SQSTM1, accu-
mulates in the hepatic tumor region [118], implying that
the SQSTM1–KEAP1–NRF2 axis contributes to tumor
growth. Further studies have revealed that heterozygous
deletion of a major regulator of autophagy, Beclin1,
increases the frequency of development of spontaneous
tumors and HBV–induced hepatic premalignant lesions
in mice [116, 119]. Additionally, ATG5 and BECLIN-1
levels are downregulated in hepatic tumor, compared to
adjacent non-tumor regions [120]. HCC patients with
low BECLIN-1 accompanied by high Bcl-xL (a crucial
anti-apoptotic protein) expression display poorer dis-
ease-free and overall survival rates [120], indicating that

normal autophagic flux is important for HCC prevention
in this apoptosis compromised background.
In view of the protective function of autophagy against

hepatocarcinogenesis, researchers have focused on the
mechanisms underlying autophagy-dependent tumor cell
death identified in several cancer types [121–123]. The
PI3K/Akt/mTOR axis is a known crucial signaling path-
way for cell growth, survival and metabolism in tumor
cells [124]. The mTOR pathway is activated in HCCs
and manipulation of mTOR inhibitors shown to
effectively exert anti-tumor effects in HCC [125, 126].
Rapamycin and its derivatives are mTOR inhibitors
reported to serve as autophagy inducers with anti-tumor
activity in a phase II study on 25 advanced HCC patients
[127]. Liver transplantation is an important therapeutic
option for the selected patients with unresectable HCC. In
another study, rapamycin-directed immunosuppression
was associated with improved survival after liver trans-
plantation in HCC patients, but showed a trend toward
lower survival in non-HCC patients, further showing the
clinical evidence of its anti-cancer impact [128]. However,
the utility of rapamycin and its derivatives in HCC therapy
is controversial due to insufficient and conflicting clinical
results. For example, everolimus (RAD001) exerted an
anti-tumor effect in xenografts of human HCC models
[129] whereas a recent clinical phase III trial disclosed no
benefits on advanced HCC prognosis [130]. Co-targeting
of mTOR via everolimus along with a PI3K/mTOR dual
inhibitor, BEZ235, displayed greater efficacy through acti-
vating autophagy, specifically mitophagy, in tumors and
led to decreased tumor sizes in a mouse model of HCC
[131]. Interestingly, recent findings suggest that combi-
nation of mTOR inhibitors with SBI-0206965, a highly
selective ULK1 inhibitor acting as a specific blocker of
autophagy, has a promising effect on HCC [132]. Further
investigations are required to validate the clinical utility of
rapamycin. Sorafenib, a multi-kinase inhibitor used as
first-line systemic therapy for advanced HCC, promotes
autophagy-dependent cell death through Mcl-1 signaling
[127]. A combination of sorafenib and autophagy
inhibitors was also shown to induce an enhanced thera-
peutic effect. Sorafenib-induced autophagy-dependent cell
death is reported to cause drug resistance in HCC [133].
Further research is therefore warranted to determine
the utility of autophagy inducers in improving the
current limits of HCC therapy and treatment outcomes.
The involvement of autophagy as a function of tumor
type, pathological stage and genetic context remains to
be established.

TH/THR regulation of hepatic autophagy
The effects of TH on hepatic lysosomal activity and pro-
teolysis were first described in 1978 [134], although the
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underlying mechanisms were yet to be elucidated.
Recently, T3 was shown to enhance hepatic lysosomal
activity accompanied by formation of autophagosomes
in hepatic cells or livers of mice [25, 26]. The effects of
T3 on autophagy were THR-dependent and binding of
NCoR-HDAC3, the corepressor of THR, abolished
T3-induced hepatic autophagy [25].
The T3/THR axis is known to promote fatty acid

훽-β-oxidation in liver via activation of autophagy (Fig. 2A).
Additionally, THs upregulate several critical genes in-
volved in the autophagic process, including ULK1, PINK1,
Beclin-1, DAPK2, betatrophin and LC3 (Fig. 2B-D) [16,
17, 25–27, 135]. These autophagy-related genes could be
regulated directly by T3/THR at the transcriptional level
or indirectly through FOXO1 activation by dephosphory-
lation and deacetylation via TH-activated SIRT1 [136,
137]. SIRT1 is a NAD+-dependent deacetylase activated
by increases in cellular NAD+ levels that serves as an en-
ergy sensor of cells to control transcriptional activity by
T3 and FOXO1. Furthermore, SIRT1 mediates T3-induced
autophagy through stimulation of expression as well as
deacetylation of autophagy-related genes [136]. The
master transcription factor, transcription factor EB
(TFEB), regulates autophagy and lysosome-related
genes may additionally be modulated by TH [44].

Other than transcriptional regulation, TH/THR
complexes also regulate autophagy through post-
transcriptional mechanisms. For instance, TH/THR is
reported to activate the autophagy process through
AMPK signaling. T3 induces mitochondrial activity
and biogenesis through inducing transcriptional regu-
lators, such as PPARs, PPARγ coactivator-1 (PGC-1)
and nuclear respiratory factors [138], which causes
the generation of reactive oxygen species (ROS) and
subsequently release of intracellular calcium, and ul-
timately, CAMKK2 activation. Activated CAMKK2
phosphorylates AMPK, in turn, inhibiting mTOR sig-
naling and stimulating autophagy via ULK1 phosphor-
ylation [27]. SQSTM1 is a key adapter protein of
autophagy, and accumulating evidence has demon-
strated that phosphorylation of this protein facilitates
clearance of ubiquitinated protein aggregates through
the autophagic process [139, 140]. We previously
showed that T3/THR interactions induce transcription
of DAPK2, which, in turn, phosphorylates SQSTM1
to promote clearance of protein aggregates through
autophagy. Our results collectively indicate that the
TH/THR signaling axis coordinates both transcrip-
tional and post-translational regulation of hepatic au-
tophagy [16].

Fig. 2 Model to Thyroid hormone stimulated hepatic autophagy. a T3/THR promotes mitochondrial activity and biogenesis through inducing
transcriptional regulators, such as PPARs, PPAR coactivators (PGC-1) and nuclear respiratory factors (NRF), causing reactive oxygen species (ROS)
generation and subsequently release of intracellular calcium, and ultimately, stimulating AMPK-ULK-1 dependent mitophagy. b T3/THR
upregulates at transcriptional level betatrophin to promote lipophagy. c T3/THR induces DAPK2-mediated of SQSTM1 (p62) phosphorylation to
enhance selective autophagy d HBV X protein (HBx) targets to mitochondria and consequently causes ROS generation, implicated in activation of
STAT-3, JNK and NF-κB. T3/THR activates PINK1/PARKIN-dependent mitophagy to ameliorate HBX-induced mitochondrial depolarization
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TH regulation of selective autophagy Lipophagy is
implicated in the digestion of neutral lipid droplets to
release free fatty acids for mitochondrial lipid oxidation
[97] and considered a major lipolytic pathway in hepatic
cells [141]. Recently, we and other groups showed that
T3 induces lipophagy in both human and mouse hepatic
cells that is essential for T3-mediated lipid catabolism
[25, 26]. Although the specific receptors for recognition
of lipid droplets by autophagosomes have not been iden-
tified, our results indicate that T3 upregulates hepatic
betatrophin transcription, which localizes to lipid droplets
and possibly targets lipids for autophagic degradation [26].
TH is considered an inducer of mitochondrial activity

and oxidative stress in the liver [142]. However, TH also
induces mitophagy to prevent accumulation of damaged
mitochondria and prevents hepatic injury by excessive
ROS production [27]. TH is reported to stimulate the
AMPK-ULK1 axis to initiate mitophagy. This process is
dependent on translocation of ULK1 to mitochondria and
subsequent recruitment of autophagic proteins, such as
SQSTM1 and LC3-II, to damaged mitochondria for even-
tual degradation in autolysosomes. PINK1/PARKIN-me-
diated mitophagy is another pathway that contributes to
protecting mitochondria against cellular ROS [143, 144].
PINK1 accumulates at the outer mitochondrial membrane
upon membrane depolarization and subsequently recruits
PARKIN to ubiquitinate damaged mitochondria, facili-
tating autophagic degradation. Experiments by our
group showed that T3 activates PINK1/PARKIN-depen-
dent mitophagy to ameliorate HBX-induced mitochon-
drial depolarization [17]. Selective removal of damaged
mitochondria by TH is crucial for preventing oxidative
damage in the liver.
Recently, we demonstrated that transcriptional regulation

of DAPK2 by TH promotes phosphorylation of SQSTM1
to facilitate clearance of diethylnitrosamine (DEN)-induced
protein aggregates through autophagy, which may protect
hepatocytes from DEN-induced hepatocarcinogenesis [16].

Potential application of TH and analogs in NAFLD and HCC
Thyroid hormones affect energy metabolism, glucose
homeostasis and lipid utilization. Hypothyroidism is
positively associated with high risk of NAFLD and HCC
incidence, independent of other risk factors [8, 9]. THs
may thus be useful in a therapeutic capacity in hyper-
lipidemia and NAFLD. However, excessive production or
administration of exogenous THs triggers several side-
effects, such as muscle wasting, increased heart rate with
possible atrial arrhythmia, and heart failure [145]. Over
the past few decades, biologists have focused on the
possibility that TH derivatives have the beneficial actions
of the thyroid hormone but without associated delete-
rious effects [145–149]. Recently, several analogs of TH

specific for THRB have been generated, which have
therapeutic activity in liver-related diseases with limited
side-effects in organs, such as heart or bone, with abun-
dant THRA expression.
GC-1 was the first synthetic THRB agonist that could

be used as a scaffold compound for developing other
TH derivatives, which are easily modified and synthe-
sized more efficiently than native TH [168]. GC-1 binds
all major isoforms of THRB with similar affinity to T3.

The binding affinity of GC-1 to THRB is 10-fold
higher than that to THRA. GC-1 accumulates pre-
dominantly in the liver but its uptake is low in other
organs, including skeletal muscle and heart. Due to
the specific binding of GC-1 to THRB in liver, it may
exhibit gene-specific actions relative to the native
form of the thyroid hormone [145].
In the CMD diet-triggered NAFLD rat model, admi-

nistration of either T3 or GC-1 could prevent steatohe-
patitis. Notably, GC-1 treatment not only caused a
more significant reduction in hepatic TG levels but also
did not elicit significant side-effects, such as increased
heart rate and muscle wasting [150, 151]. These find-
ings support the potential therapeutic application of
THs on NAFLD prevention. Furthermore, T3 and GC-1
exert therapeutic effects on HCC [16, 29, 152, 153].
Upon treatment of rats with DEN combined with a choli-
ne-deficient (CD) diet for weeks, development of pre-
neoplastic lesions was observed. Administration of T3

or GC-1 dramatically reduced the preneoplastic le-
sions caused by DEN.
Recently, a liver-selective prodrug, MB07811, was de-

veloped. Following hepatic enzymatic cleavage, the active
form, MB07344, is generated that has been characterized
as a liver-selective THRB agonist [154]. In HFD-exposed
or diabetic fatty animals, two weeks of MB07811 treat-
ment significantly reduced both hepatic and plasma
triglyceride levels with no other side-effects of TH [154].
Clearance of hepatic lipid droplets by MB07344 may be
attributable to acceleration of mitochondrial activity and
fatty acid catabolism [12].
KB2115 has been identified as another THRB-

selective agonist preferentially taken up in the liver.
In both animal and clinical studies, administration of
KB2115 significantly lowered serum total and LDL
cholesterol and prevented the development of hep-
atic steatosis [155–157]. Furthermore, treatment with
KB2115 as well as GC-1 in rats induced hepatomito-
genic activity with no evidence of hepatic toxicity
[158], supporting its potential for regenerative ther-
apy, including liver transplantation and other surgi-
cal modalities.
Despite encouraging results from human clinical studies

showing that GC-1, MB07811 and KB2115 exert thera-
peutic effects via lowering the levels of serum LDL
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cholesterol and triglycerides, these compounds have not
reached human clinical trials or been developed into
therapeutic agents. Phase II trials on GC-1 and MB07344
are yet to be performed. Clinical studies on KB2115 were
discontinued due to cartilage damage and hepatic toxicity
observed following long-term dosing in dogs [29, 159].
More recently, two liver-directed THRB selective ago-

nists, MGL-3196 and VK2809, have been developed
[160, 161]. Results from phase II trials showed preven-
tive effects on NAFLD accompanied by a decrease in
serum levels of LDL cholesterol and triglycerides as
well as hepatic lipids with none of the side-effects of
the thyroid hormone axis. Thus, therapeutic application
of THs in liver-related diseases in the clinic is feasible.
Recent studies by our group revealed a mechanistic

link between TH and HCC prevention [16, 17]. DEN-
treated liver cells have been shown to cause ROS accu-
mulation accompanied by increased DNA damage and
hepatic injury [162]. Increased oxidative stress may
occur due to the accumulation of SQSTM1-associated
protein aggregates and damaged organelles. SQSTM1 is
the major component of inclusion bodies in hepatocytes
(termed Mallory bodies), which have been identified in
the livers of patients diagnosed with alcoholic hepatitis
and NAFLD [163, 164]. T3-treated mice exhibit higher
DAPK2 expression, and consequently, T3-driven auto-
phagy alleviates DEN triggered hepatic injury and hepa-
tocellular carcinogenesis [16].
Chronic infection of hepatitis B virus in liver is one of

the major risk factors for HCC development, and the
HBV X protein (HBx) exerts powerful disruptive effects
on mitochondrial dysfunction and ROS production,
leading to progression of HCC [165]. Our group further
showed that mitophagy triggered by the TH-PINK1-Par-
kin axis is a putative pathway implicated in protection
of HBx-induced hepatocellular carcinogenesis. Add-
itionally, TH-triggered autophagy was shown to reduce
hepatic lipid droplets and mitochondrial fatty acid oxida-
tion [25, 27]. These results collectively support the in-
volvement of TH-triggered autophagy in regulating
mitochondrial metabolism in the development of NAFLD
and HCC and provide insights into the physiological
significance of THs in prevention of liver-related
diseases [17]. However, the role of autophagy in the
preventive and therapeutic potential of TH analogs
(GC-1, MB07344, KB2115, MGL-3196 and VK2809)
have not yet been determined.

Conclusions
Over the past decade, molecular mechanisms and
physiological effects of THs in liver have gradually been
elucidated. Disruption of TH signals is known to cause
multiple organ dysfunction that is closely associated with
several diseases [5, 6]. Liver is one of the major target

tissues of TH, and people with low thyroid function are
closely associated with multiple liver-related diseases.
The cross-sectional and systemic view studies indicated
that subclinical hypothyroidism, and even in the upper
normal limit of TSH levels were significantly asso-
ciated with the risk of NAFLD and advanced fibrosis
[166–169]. Interestingly, high level of TSH itself may be
an important risk factor points to the pathogenesis of
NAFLD, independent of thyroid hormones [168, 169],
and the supplementation of levothyroxine shows clear
benefits on NAFLD in subclinical- and mild subcli-
nical- hypothyroidism patients with dyslipidemia
[170]. Moreover, both in vitro and in vivo experiments
demonstrated THs and THs analogs exhibit the potential
therapeutic and preventive application in NAFLD and
HCC [7, 16, 17, 142, 145–149], highlighting the urgent
need to understand the complex mechanisms underlying
the effects of thyroid hormone. The TH/THR axis is a
strong inducer of hepatic autophagy, which promotes
lipid droplet degradation as well as mitochondrial bio-
genesis and turnover. This process has been implicated
in the removal of damaged mitochondria and ROS that
cause hepatic injury [7, 16, 17, 26, 27, 28]. In the present re-
view, we have discussed the growing complexity of
TH-regulated autophagy, highlighted advantages associated
with the TH/autophagy axis-based therapeutic strategy for
liver-related diseases, and discussed recent findings that
may be exploited for improving the therapeutic outcomes
of NAFLD and HCC [11, 12, 148, 150, 151, 154].
However, several challenges in TH-based therapies

for hepatic diseases, HCC in particular, remain to be
overcome, since the actions of individual TH deriva-
tives within the same tissue may be different. Alte-
rations in TH deiodinases, transporters, co-activators
or co-repressors may influence the cellular level and
molecular actions of THs, in turn, causing metabolic
changes [44]. Moreover, the processes of cancer pro-
gression are complex. Individual THR isoforms exert
different effects in a cancer type- and stage-specific
manner. The TH/THR signals and interacting partners
may facilitate the switch from tumor suppression in the
premalignant stages to promotion in the later stages of
HCC [7]. For instance, administration of TH not only
reduces the size of preneoplastic lesions in the livers of
rats suffering with HCC, but suppresses the aberrant
cellular growth via control the expression of cell cycle
regulators, such as CDK2, Cyclin E, UHRF1, STMN1
mir-214 and BC200 lncRNA [7, 171–174]. Our recent
studies further support the preventive effect of TH on
hepatocarcinogenesis via activating autophagy [16, 17],
whereas TH/THR is reported to promote metastasis
and chemoresistance through control the expressions
of BSSP4, TRAIL, BCL2L11, LCN2, mir-21, and
mir-130b [7, 173, 175–180]. This characteristic of THs
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supports the double-edged sword effect of autophagy in
cancer progression. Autophagy mitigates stress-caused
damage by removing damaged cellular organelles and pro-
tein aggregates and impaired autophagy causes accumula-
tion of excess oxidative stress and DNA damage, leading
to initiating hepatocarcinogenesis. Mosaic depletion of
Atg5, liver-specific Atg7 or Beclin-1 in mice causes accu-
mulation of degenerated protein aggregates, lipid droplets
and damaged cellular organelles, leading to spontaneous
hepatic carcinogenesis [114, 116]. By contrast, after the
initiation of tumorigenesis, autophagy can also facilitate
tumor cell survival under metabolic stress, becoming
dormant and regenerating with anti-stress capacity that
promotes tumor progression [181]. For instance, malfunc-
tion of autophagy inhibits KRAS–triggered tumorigenesis
of non small-cell lung cancer and DEN-induced HCC.
[109, 110, 182]. Moreover, inhibition of autophagy
increases the sensitivity of chemotherapy and triggers
cellular apoptosis and necrosis of HCC by activating
several tumor suppressor genes, including p53, PTEN
CDKN1, CDKN2 and Rb1 [182–184]. Therefore, further
animal and clinical studies are warranted to establish
the specific functions of THs-induced autophagy in the
different processes that lead to HCC development.
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