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Abstract: Oxidative stress has been proposed as a major mechanism of damage to motor neurons
associated with the progression of amyotrophic lateral sclerosis (ALS). Astrocytes are the most
numerous glial cells in the central nervous system and, under physiological conditions, protect
neurons from oxidative damage. However, it is uncertain how their reactive phenotype may affect
motor neurons during ALS progression. In two different ALS mouse models (SOD15%3A and FUS-
R521C), we found that increased levels of proinflammatory interleukin 6 facilitate glutathione (GSH)
release from the liver to blood circulation, which can reach the astrocytes and be channeled towards
motor neurons as a mechanism of antioxidant protection. Nevertheless, although ALS progression is
associated with an increase in GSH efflux from astrocytes, generation of reactive oxygen species also
increases, suggesting that as the disease progresses, astrocyte-derived oxidative stress could be key
to motor-neuron damage.

Keywords: amyotrophic lateral sclerosis; liver; astrocytes; motor neurons; mitochondria; glutathione;
oxidative stress

1. Introduction

Amyotrophic lateral sclerosis (or ALS) is a disease of the central nervous system (CNS)
characterized by a progressive degeneration of motor neurons (MNs) in the cerebral cortex
(upper MNs), brainstem and spinal cord (lower MNs) [1]. The consequence is muscle
weakness, which can progress to paralysis, spreading from one body region to another [2].
Most cases (90-95%) have no genetic background (sporadic ALS, SALS), and their cause is
unknown, whereas in 5-10% of cases, a specific genetic mutation (the most common are
found in C90rf72, SOD1, FUS, or TARDBP) is the main underlying mechanism (familial
ALS, FALS) [3]. In the pathophysiology of the disease, neuroinflammation and oxidative
stress are main mechanisms leading to neurodegeneration and MN death [4].

Progression of the disease is associated with reactive glia- and immunity-dependent
neuroinflammation [5]. As a consequence, an increase in levels of inflammation-related
cytokines can be detected in the cerebrospinal fluid (CSF) and blood of murine models
and ALS patients [6]. Interleukin 6 (IL6) is among these cytokines [6,7]. IL6 seems to
have important function in the CNS, i.e., neurogenesis and response of neurons and glial
cells following different types of injuries [8]. However, although it is difficult to evaluate
inflammation of the CNS or the relationship between neuroinflammation and disease
progression in ALS patients, it has been reported that the common IL6 receptor 358 Ala
variant (IL6R358Ala) and trans-signaling are disease modifiers in ALS [7].

Glutathione (L-y-glutamyl-L-cysteinyl-glycine; GSH), the most prevalent non-protein
thiol in mammalian cells and a physiological antioxidant, is involved in many cellular
functions [9]. Cys availability and y-glutamyl-cysteine synthase activity are rate-limiting
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factors for the synthesis of GSH [10]. A decrease in antioxidant defense associated with
alterations in GSH metabolism have been suggested as potentially negative factors involved
in the progression of ALS [11]. Astrocytes are the most abundant type of macroglial cells
in the CNS [12] and provide Cys and GSH to neurons [13]. It seems obvious that this
function and the pro-inflammatory reactive response of astrocytes during ALS progression
are in contradiction.

We found that IL6 plays a role in inducing the release of liver GSH in models of
metastatic melanoma [14]. Hepatic GSH is considered the main systemic reservoir of this
tripeptide and may be released to the blood and reach other organs and cells [15]. We
explored whether this mechanism is also activated in ALS murine models, as well as its
impact on GSH levels and generation of reactive oxygen species (ROS) in astrocytes.

2. Materials and Methods
2.1. Mice

Control (wild-type, WT) B6SJLF1/] mice https://www.jax.org/strain/100012 (ac-
cessed on 1 December 2020) (The Jackson Laboratory, Mount Desert Island, ME, USA).
B6.Cg-Tg(SOD1*G93A)1Gur/]J https:/ /www.jax.org/strain/004435 (accessed on 1 De-
cember 2020) mice, which are hemizygous for the SOD1%%34 transgene with transgenic
expression of a G93A mutant form of human SOD1. B6; SJL-Tg(Prnp-FUS*R521C)3313Ejh /]
https:/ /www.jax.org/strain /026406 (accessed on 1 December 2020) mice, where the major-
ity of the transgenic FUS-R521C protein is nuclear.

2.2. Neurological Score

Neurological score in mice was determined weekly, by visual inspection, starting at
approx. postnatal day 45. Neurological score is based on the scale of Weydt et al. [16].
Scores indicate the following: “0” a healthy mouse; “1” the presence of tremors in the
hind legs; “2” difficulties in separating the hind legs when suspended by the tail; “3”
difficulties walking; “4” unable to walk on all four legs, so access to food and water has to
be facilitated. At a score of “5” (unable to right themselves), the animals are euthanized for
ethical reasons. Onset is defined as the earliest time when mice show symptoms (score < 4)
for >2 consecutive weeks.

2.3. Rotarod Test

This test is widely used to evaluate the neuromotor coordination of rodents. We used
a touchscreen rotarod of Panlab/Harvard Apparatus (Cornella de Llobregat, Spain). Each
animal was given three trials, and the maximum period (seconds) that it could remain on a
rotating axle (3.5 cm diameter; speed of rotation 15 rpm) without falling was recorded. The
test was stopped after an arbitrary limit of 180 s. In the first 2 weeks, an adaptation period
of three trials was performed before beginning the test recordings.

2.4. Isolation and Incubation of Hepatocytes

We followed the Berry and Friend method [17]. Hepatocytes were purified from
the crude cell suspension by density gradient centrifugation in a vertical rotor [18]. The
crude suspension (50 mg dry wt in 2 mL) was added to a medium (40 mL) containing
40% (v/v) of Percoll, 3% (w/v) of defatted bovine serum albumin, 10% DMEM, 10 mM
MOPS, 120 mM NaCl, and 6.7 mM KCl, 1.2 mM CaCl, and adjusted to pH 7.4 with 0.1 N
NaOH. Centrifugation was performed at 4 °C in a Beckman-Coulter Optima XL-100K
(7 x 10* gav for 15 min). Metabolic viability and integrity of isolated hepatocytes was
assayed as previously described [18]. For incubations in Erlenmeyer flasks, hepatocytes
(10-12 mg dry wt/mL) were suspended at 37 °C in KHBM (pH 7.4) containing 1.3 mM
CaCl,. The gas atmosphere was 95% O;-5% COs.
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2.5. Glutathione and Glutathione Disulfide Levels

Glutathione (GSH) and glutathione disulfide (GSSG) were measured by liquid chromatography—
mass spectrometry (LC/MS) as previously described [19]. Cell processing followed the
published methodology, where rapid N-ethylmaleimide derivatization was used to prevent
GSH auto-oxidation [20].

2.6. Cerebrospinal, Blood and Liver Sample Collection

Whole-blood samples (0.5 mL) were obtained from the saphenous vein, collected in
standard red-topped Becton Dickinson (Franklin Lakes, NJ, USA) tubes and allowed to
clot for 30 min. Samples were centrifuged at 1500x g x 10 min (4 °C). Supernatants were
stored at —80 °C. Samples of CSF were obtained as described in detail by Lim et al. [21].
Liver samples were quickly dissected, washed at 4 °C in KHBM (pH 7.4) without Ca?* or
Mg?* and containing 0.5 mM EGTA, dried on tissue paper and frozen in liquid nitrogen.

2.7. Cytokine Levels

Simultaneous quantification of different cytokines in the blood serum or CSF was
obtained using xXMAP technology and a MAGPIX Luminex 200 platform (Thermo Fisher
Scientific, Waltham, MA, USA), as recently described in detail [6]. The results were analyzed
with xPONENT 4.2% software (Luminex, Austin, TX, USA) and expressed as pg/mL.

2.8. Anti-IL6 and Anti-IL6R Monoclonal Antibodies

Rat anti-mouse-IL-6 IgG1 monoclonal antibody (mAb) (BioXCell, BEO046, Lebanon,
NH, USA, RRID AB1107709) or rat anti-mouse-IL-6R IgG2 mAb (BioXCell, BE0047, RRID
AB1107588) was administered at a dose of 400 pug (i.p.) per mouse daily, based on previously
reported in vivo effective doses [22,23].

2.9. Isolation, Culture and Perifusion of Astrocytes

Isolation and culture of astrocytes from mouse adult spinal cords was based on the
methodology described by Beaudet et al. [24]. A perifusion system was designed for
cultured astrocytes, where a modified cultured flask was designed to have an inflow tube
placed across the flask screw cap and an outflow tube placed on the flask wall opposite
the screw cap. The system included a reservoir for the culture medium (including a gas
diffuser to ensure its saturation using a mixture of O,/CO; (19:1)), a roller pump, a bubble
trap and a filter (Amicon YM30, Bedford, MA, USA) placed at the screw cap. The culture
flask was partially submerged in a thermostatized water bath at a constant temperature of
37 °C. Effluent flow was monitored continuously for O, and pH with Philips electrodes.
The perifusion flow rate was of 2 mL/min.

2.10. HyO; and O,°~ Generation Assays

Determination of HyO, generation was based on H,O,-dependent oxidation of ho-
movanillic acid (4-hydroxy-3-methoxyphenylacetic acid) to a highly fluorescent dimer
(2,2'-dihydroxydiphenyl-5,5'-diacetic acid) mediated by horseradish peroxidase [25].

0O,°~ was quantitated using an electrochemical biosensor, as previously described [26].
To this end, a Co3(POy); nanorod/glassy carbon electrode was applied in situ to electro-
chemically detect O,®~ released from cells (5 x 10°/mL) in real time. To ensure accuracy
of measured O,°~ concentrations, cell culture medium inside the device was mildly stirred
during measurement of cell-released O,°~. A CHI760 electrochemical workstation (CH
Instruments Inc., Austin, TX, USA) was used for electrochemical measurements.

2.11. Analysis of Amino Acids

Arterial blood was collected from the left ventricle into a heparinized syringe/tube.
After centrifugation (10 min, 800 g), plasma was collected, and protein was precipitated
by mixing 1 mL of plasma and 4 mL of 3.75% (w/v) sulphosalicylic acid in 0.3 M-lithium
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citrate buffer (pH 2.8). The supernatant (0.5 mL) was injected into an LA8080 high-speed
amino-acid analyzer (Hitachi, Tokyo, Japan) for determination of amino acids.

2.12. RT-PCR

RNA was extracted using Qiagen RNAeasy mini kits (Hilden, Germany). Quantitative
and qualitative analyses of RNA samples were performed using a 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, CA, USA). cDNA was obtained using a random hexamer
primer and a MultiScribe reverse transcriptase kit as recommended by the manufacturer
(Tag-Man RT Reagents; Thermo Fisher Scientific). PCR master mix and AmpliTaq Gold
DNA polymerase were added to the specific primers (Sigma Genosys, Haverhill, UK),
as previously reported [19], for GCL (y-glutamylcysteine ligase, catalytic subunit), GGT
(v-glutamyl transpeptidase), SOD (superoxide dismutases) 1 and 2, CAT (catalase), GPX2
(glutathione peroxidase 2), GSR (glutathione reductase) and G6PDH (glucose-6-P dehydro-
genase). For real-time quantification of mRNA relative to GAPDH, a SYBR Green I assay
and an iCycler detection system (Biorad, Hercules, CA, USA) were used. Relative gene
expression is expressed as fold change. The threshold cycle (CT) was determined, and the
relative gene expression was expressed as fold change = 274(3¢T) where ACt = Cr target
— C1r GAPDH and A(ACt) = ACt treated — ACt control.

2.13. Enzyme Activities

GCL activity was determined by measuring the rate of ADP formation at 37 °C in
a medium containing Tris/HCI buffer (pH 8.2), KCl, ATP, phosphoenolpyruvate, L-Glu,
L-x-aminobutyrate, MgCl2, EDTA, NADH, pyruvate kinase and lactate dehydrogenase.
GGT activity was measured using glycylglycine as a y-glutamyl acceptor substrate and y
-glutamyl-4-nitroanilide and its carboxy derivative, y-glutamyl-3-carboxy-4-nitroanilide,
as donor substrates. SOD activity was measured using cyanide in the assay medium
to distinguish the mangano-type enzyme (SOD2) from the cuprozinc type (SOD1). To
measure CAT, activity samples were incubated in the presence of an H,O, solution for
2 min prior to rapid mixing of the incubation enzymatic reaction mixture with a cobalt-
bicarbonate reagent, which assesses non-reacting H,O,. Catalase activity is always directly
proportional to the rate of dissociation of HyO,. GPX (selenium-dependent) activity was
measured using H,O; as a substrate in Tris-HCI buffer with the addition of NaN3 and
EDTA (pH 8.5) at an incubation temperature of 37 °C. GSR activity follows the reduction
of GSSG to GSH by monitoring the oxidation of NADPH monitored by a decrease in
absorbance at 340 nm (see [25] and references therein).

2.14. Oxygen Consumption

O, concentration and rate of O, consumption in isolated astrocytes was continuously
recorded using a high-resolution oxygraph (OROBOROS INSTRUMENTS Corp., Innsbruck,
Austria). Isolated astrocytes were resuspended in respiration medium (DMEM 4500 mg/L
glucose to which was added 5 mM pyruvate) that had been pre-warmed to 37 °C. A
volume of 2.0 mL of cell suspension was added to the O, electrode chamber, where it
was magnetically stirred and kept at 37 °C. The chamber was sealed, and the cells were
incubated until a stable respiratory rate was reached.

2.15. Western Blotting

Western blots were run, as previously described [25]. Proteins were transferred to
a nitrocellulose membrane and subjected to Western blotting with specific anti-human
monoclonal antibodies (OriGene, Rockville, MD, USA; and Abcam, Cambridge, UK).
Blots were developed using horseradish-peroxidase-conjugated secondary antibody and
enhanced chemiluminescence (ECL system; GE HealthCare Life Sciences, Piscataway, NJ,
USA). Protein bands were quantified using laser densitometry.
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3.2. GSH Synthesis and Release in Hepatocytes from ALS Mice

Under physiological conditions, the liver is the main reservoir and source of circulating
GSH [27]. We studied the rates of GSH synthesis and efflux in isolated hepatocytes from
wild-type (WT), SOD1%%34 and FUS-R521C mice. As shown in Table 1, in the presence of
amino-acid precursors, GSH synthesis and efflux significantly increase in both models at
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an advanced state of disease progression, thus suggesting that an ALS-induced signaling
mechanism likely promotes those changes.

Table 1. Glutathione (GSH) synthesis and efflux in isolated hepatocytes from wild-type and ALS mice. The initial GSH
concentration was 5.2 & 0.3 umol/g in isolated hepatocytes from wild-type mice, 5.0 & 0.4 and 4.0 & 0.3 umol/g in

isolated hepatocytes from SOD15%A mice (at onset and advanced state of progression, respectively) and 4.8 + 0.4 and

3.7 £ 0.3 pmol/g in isolated hepatocytes from FUS-R521C mice (at onset and advanced state of progression, respectively).

Hepatocytes were incubated in 10-mL Erlenmeyer flasks (final volume 2 mL) for 60 min (see Methods) in the presence or

absence of amino-acid precursors for GSH synthesis (5 mM Gln, 2 mM Gly, 1 mM Ser, 1 mM N-acetylcysteine) [28]. Only

L-amino acids were used. Glucose (5 mM) and bovine serum albumin (2%) were present in all incubations. Rates of GSH

synthesis were calculated from total GSH content in incubations at 0, 20, 40 and 60 min. Rates of glutathione efflux were
calculated from contents of GSH and glutathione disulfide (GSSG) in the extracellular medium at 0, 20, 40 and 60 min. All
values are means + SD for 7-8 observations. For both groups, the significance test refers to the comparison of rates in

hepatocytes isolated from ALS mice versus those from the wild-type controls (* p < 0.05, ** p < 0.01).

GSH Synthesis GSH Efflux
(nmol/g-min) (nmol/g-min)
WT SOD16%A FUS-R521C WT SOD16%A FUS-R521C
Additions Onset Adv. Onset Adv. Onset Adv. Onset Adv.
None 2403 3+04* 54 1% 2+05 4+£1* 2405 4+07* 542 3+1 4+1*
L-Amino acids 22+5 24 +4 31+4* 23+3 30+4* 9+3 11+3 21 +4** 10+2 20 + 3 **

We also measured liver and blood GSH levels. As shown in Table 2 and as compared
to values obtained in the wild-type mice, liver GSH levels decrease in both ALS mouse
models at an advance state of progression, a fact that correlates with a decrease in the ratio
of synthesis/efflux (Table 1). However, the increase in liver GSH efflux does not cause the
consequent increase in circulating GSH; in fact, GSH decreases in the circulating blood in
both models (Table 2), a fact suggesting that blood GSH may be bypassed for metabolism.
This experimental evidence raises the question of how and where GSH flow is directed
during ALS progression.

Table 2. Blood and liver GSH in wild-type and ALS mice. Blood and liver samples were obtained and treated as described

in Methods. Data are means £ SD for 10-12 different mice. * p < 0.01 comparing values obtained in ALS mice versus

wild-type controls.

WT SOD1G%A FUS-R521C
Onset Adv. Onset Adv.
Blood GSH (umol/gHb) 72+0.5 70+ 04 454+04* 7.3 +£0.6 50£05*
Liver GSH (umol/g of tissue) 6.9 + 0.6 6.0+ 0.5 35+04* 6.4+ 0.5 39+03*

3.3. IL6 Induces GSH Efflux in Hepatocytes

It is well known that ALS is associated with neuroinflammation and an increase in
proinflammatory cytokines in plasma and CSF (see e.g., Obrador [6]). We measured some
of these cytokines in both biological fluids in our experimental models at an advanced
state of disease progression. As shown in Figure 2, as compared to healthy wild-type mice,
proinflammatory cytokine levels increase. As introduced above, IL6 signaling, in particular,
could play a role in increasing the release of liver GSH. We tested this hypothesis in the ALS
models (at an advanced state of progression) by administering anti-IL6 mAbs or anti-IL6R
mAbs in vivo. As compared to controls treated with physiological saline, both types of
antibodies decreased the rate of GSH efflux from hepatocytes (Table 3), thus proving, in
two different models, that IL6 is a main cytokine responsible for the increase in hepatic
GSH efflux during ALS progression. In parallel experiments, we found that treatment
with anti-IL6 mAbs is also associated with an increase in GSH levels in the liver (Table 3).
Blood GSH levels also increased (Table 3). Therefore, either the metabolic use of circulating
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in hepatic GSH efflux during ALS progression. In parallel experiments, we found that
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Table 4. Effect of in vivo treatment with anti-IL6 mAbs on GSH levels, GCL activity and Cys/cystine uptake in kidneys and
lungs of the ALS mouse models. Antibodies were administered, as described in Methods, during the seven days prior to
assay of all parameters. Rates of Cys and cystine were calculated after administering i.v. 2.0 uCi of [**S]Cys or 10.0 uCi of
[35S]cystine (PerkinElmer, Waltham, MA, USA). Data are mean values &+ SD for n = 5-6. * p < 0.05, ** p < 0.01 comparing
data for each parameter obtained in anti-IL6R-treated mice versus controls treated with physiological saline.
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shown in Table 5, GSH levels in astrocytes decrease at an advanced state of progression
(approx. to 50%, as compared to the levels found in astrocytes isolated from WT mice
or from ALS mice at the onset of symptomatology). Nevertheless, the decrease in GSH,
paradoxically, is associated with an increase in GCL activity, the rate-limiting step in GSH
synthesis (Table 5). GSSG levels also increase significantly, thus suggesting an increase in
oxidative stress within astrocytes (Table 5). Since GSH synthesis is highly dependent on the
availability of free Cys (the levels of which are extremely low inside and outside cells) [29],
we also measured GGT activity and rates of Cys and cystine uptake. As shown in Table 6B,
advanced ALS progression is associated with an increase in GGT activity, no changes in
the rate of extracellular Cys uptake and a decrease in cystine uptake. Cells do not transport
intact GSH from the extracellular space [30]. GGT is the only enzyme that cleaves the
v-glutamyl-cysteine peptide bond in GSH [31], thus releasing y-Glu and cysteinylglycine,
which is further cleaved into Cys and Gly by plasma-membrane-bound dipeptidases [32].
Free y-glutamyl amino acids Cys and Gly can serve as GSH precursors [33]. Hence, our data
suggest that extracellular GSH is the main source of Cys for astrocytes during advanced
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ALS progression. To further test this postulate, we investigated the effect on astrocyte GSH
levels of specific inhibitors of GGT activity (acivicin) [34], Cys uptake by the ASC transport
system for neutral amino acids [(1)-amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-1H-pyrazol-
4-yl)acetic acid, ACPP] [35] or cystine uptake by the Xc cystine/glutamate antiporter
(sulfasalazine, SSZ) [36]. These are the main carriers of Cys and cystine in mammalian cells
(see Obrador [37]). As shown in Table 7, GSH depletion in astrocytes is more profound in
the presence of specific inhibitors of GGT or ASC-mediated Cys transport.

Table 5. GSH/GSSG levels and GCL activity in astrocytes isolated from wild-type and ALS mice. Data
are mean values & SD for n = 9. * p < 0.01 comparing values obtained in ALS models versus the wild-
type controls. * p < 0.01 comparing advanced state of progression versus onset of symptomatology.

WT SOD16%A FUS-R521C
Onset Adv. Onset Adv.
GSH (nmol/lO6 cells) 23.1+3.1 245 +27 129 +£1.8%* 223+25 13.7 £29%*
GSSG (nmol/10° cells) 0.7 +0.2 0.8+0.2 1.9 £04%* 0.7+0.3 1.6 £ 0.5**
GCL (mU/106 cells) 68 + 17 75+ 14 123 £ 25 ** 65 + 12 117 £ 31 %+

Table 6. Supply of amino-acid precursors for GSH synthesis, GGT activity and cyst(e)ine uptake in
astrocytes isolated from wild-type and ALS mice at an advanced state of progression. (A) Amino-acid
levels in circulating blood. (B) GGT activity and rates of Cys and cystine uptake. To measure Cys
and cystine uptake, astrocytes were incubated in the presence of 0.2 uCi/mL of [35S]Cys and 10 uM
Cys or 0.5 uCi/mL of [33S]cystine and 100 uM cystine (labeled amino acids were obtained from
PerkinElmer, Waltham, MA, USA). Maximum rates of Cys and cystine uptake were reached at approx.
2 and 20 min of incubation, respectively. Data are mean values & SD forn =7. * p < 0.01 comparing
values obtained in ALS models versus wild-type controls.

A Amino Acid Concentration (uM) in Whole Blood
WT SOD16%A FUS-R521C
GIn 510 + 63 493 + 29 455 + 55
Glu 123 + 36 136 + 21 115 £ 29
Gly 306 + 77 277 + 45 285 + 53
Ser 151 + 27 140 + 31 130 + 20
Meth 55 + 12 50 &+ 10 46 +9
Cyst(e)ine 18 +3 14+2 15+3
B GGT Activity and Cyst(e)ine Uptake
WT SOD16%A FUS-R521C
GGT . .
(mU/10° cells) 153 +24 25.7 +3.9 232 +4.0
Cys uptake 21+05 20403 22403
(nmol/mg prot-min)
Cystine uptake 245+ 35 1064+ 1.7* 11.7 +22%

(nmol/mg prot-min)

3.5. In Astrocytes, Advanced ALS Progression Is Associated with an Increase in GSH Efflux and
ROS Generation

As described in Table 5, at an advanced state of progression, GSH levels in astrocytes
decrease in the two models of ALS studied, whereas GSSG levels increase, facts suggesting
an increase in oxidative stress. We further studied the underlying mechanisms, and as
shown in Table 8, ROS generation increases in astrocytes isolated from ALS mice at an
advanced state of progression compared to astrocytes from WT controls. The increase
in ROS generation is associated with an increase in O, consumption, which may reflect
the high metabolic activity associated to the reactive astrocyte phenotype linked to the
progression of the disease. However, in the group of enzymes studied, only SOD1 activity
was found to be significantly higher in the astrocytes of the ALS mice compared to WT
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controls (Table 8, Figure 4). GSH efflux was also found to increase in both models, as
compared to WT controls (Table 8). This increase in GSH efflux may also be facilitated by
IL6 in astrocytes (as in hepatocytes), given that we observed that anti-IL6R mAbs prevents
GSH depletion in perifused astrocytes (results not shown). This all indicates that the
increase in ROS generation is not counteracted within the astrocytes. It is obvious that
an increase in ROS generation by reactive astrocytes may cause damage to neighboring
MNs. In a previous report, we observed that cytosolic GSH levels in MNs isolated from
SOD15%34 mice do not change as the disease progresses [6], which means that an increase
in GSH efflux from astrocytes does not necessarily imply an increase in MNs.

Table 7. Effect of inhibition of GGT activity or Cys/cystine uptake on GSH levels in astrocytes. As-
trocytes isolated from wild-type and ALS mice at an advanced state of progression were incubated in
the absence or presence of acivicin (0.05 mM), ACPP [(1)-amino(1-(3,5-dichlorophenyl)-3,5-dimethyl-
1H-pyrazol-4-yl)acetic acid, 0.1 mM] or SSZ (sulfasalazine, 0.2 mM) during a 24 h-time period before
measuring GSH levels. The culture medium contained extracellular GSH and cyst(e)ine at a concen-
tration of 10 a 1 mM, respectively. Data are mean values + SD for n = 5-6. * p < 0.01 comparing values
obtained in ALS models versus wild-type controls. * p < 0.01 comparing the different inhibitors
versus controls.

GSH (nmol/10° Cells)

WT SOD16%3A FUS-R521C

Control 22.7 + 34 132 +£2.0% 14.1+24*
Acivicin 75+17% 31+1.1%* 3.0+ 0.7 **
ACPP 80+19* 35+ 12%* 3.14+09%*
SSZ 16.6 £2.3* 102 +1.8*% 113 +15*

Table 8. ROS generation and GSH efflux in astrocytes isolated from wild-type and ALS mice. All
parameters (see Methods) were determined in astrocytes isolated from wild-type or ALS mice at an
advanced state of progression. Data are mean values + SD for n =9. * p < 0.01 comparing values
obtained in ALS models versus wild-type controls.

WT SOD16%A FUS-R521C
ROS
H,0, (nmol/10° cells-min) 0.69 £+ 0.08 1.38 £0.29 % 1.16 £0.24*
0O, (nmol/lO6 cells-min) 0.30 £ 0.05 0.77 £0.12 % 0.63 £0.17*
ROS and GSH metabolism
SOD1 (U/106 cells) 0.81 + 0.14 1.62 +0.15 * 1.74 + 0.28 *
SOD2 (U/lO6 cells) 0.23 £ 0.05 0.31 £ 0.07 0.29 £ 0.05
CAT (mU/lO6 cells) 1.50 £0.24 1.85 £ 0.36 2.14 £ 0.51
GPX (mU/lO6 cells) 3.06 £ 0.84 4.25 £+ 0.96 5.06 £0.71*
GSR (mU/lO6 cells) 5.22 +0.53 770 £1.25*% 720 £ 1.46
GSH efflux (nmol/10° cells-h) 53+0.8 94+13* 102 £15*
O consumption (pmol /10° 483 + 63 725 + 84 * 667 + 75 *

cells-min)
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of the mutant SOD1 and/or the mutant FUS is unknown and should be investigated. What
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is remarkable is the fact that despite the different phenotypes of the two ALS models, the
effect of anti-IL6 treatment on GSH levels is quite similar (Table 3).

It has been demonstrated that astrocytes provide Cys to neurons by releasing GSH [13]
via the multi-drug-resistant protein 1 [50]. Astrocytes can degrade extracellular GSH via
GGT and release Cys-Gly, which is broken down by the action of a plasma-membrane-
bound dipeptidase [37]. Then, free Cys, which is rate-limiting for GSH synthesis, can be
taken up through the ASC system [37] (Table 7). The blood supply of all other amino-acid
precursors for GSH synthesis is not limited in ALS mice (Table 6A). Importantly, although
the rate of cystine uptake by astrocytes decreases as the disease progresses, the rate of
Cys uptake is not affected (Table 6B). The effect of the inhibitors (Table 7) seems to be
relative to the initial control GSH levels in each case. What is important is the fact that
inhibition of GGT activity or Cys uptake causes a higher GSH depletion than inhibition of
cystine uptake. Cys levels are extremely low (outside and inside cells), and consequently;
Cys uptake is highly dependent on the generation of Cys from extracellular GSH (via
the reaction catalyzed by GGT). GGT activity in astrocytes was found to increase, as
compared to WT controls, in ALS mice (Table 6B). However, GGT activity in MNs isolated
from SOD15%4 mice at an advanced state of progression is lower than its equivalent in
astrocytes [6]. Since astrocytes outnumber neurons by over fivefold [51], it is obvious that
astrocytes have the highest capacity to metabolize extracellular GSH. Taken together, these
experimental facts indicate that GSH synthesis in MNs is highly dependent on GSH supply
from astrocytes, which, in turn, depends on the interorgan flow from the liver controlled
by IL6.

As shown in Table 8, in both ALS models, generation of ROS by astrocytes increases
at an advanced state of disease progression. Previously, we found that GSH levels in MNs
isolated from SOD1%%3A mice at an advanced state of progression are slightly higher than
the levels measured in MNs from WT control mice [6]. However, GSSG levels (which
indirectly reflect a higher exposure to ROS) increase by approx. 100% [6]. An increase
in O, consumption and GSH efflux (Table 8), as well as the consequent decrease in GSH
levels (Table 5), may explain the increase in ROS generation by astrocytes. ROS could
be a direct cause of oxidative damage in neighboring MNs. The fact that SOD1 and
SOD2, two key antioxidant enzyme activities, decrease in MNs of SOD15%34 mice as the
disease progresses [6] sets up a cumulative-damage scenario. As shown in Table 5, GSH
levels decrease in astrocytes isolated from ALS mice at an advanced state of progression,
compared to onset or WT. However, GCL activity increases (Table 5), and Cys uptake
remains unchanged (Table 6B). Nevertheless, the increases in GSSG (Table 5) and ROS
generation (both indicating more oxidative stress), as well as the increase in GSH efflux
(Table 8), explain why GSH decreases. An increase in ROS exposure and a decrease in its
antioxidant-defense capacity may be key factors in the death of MNs.

5. Conclusions

An increase in circulating levels of IL6 (released by glial and inflammatory cells)
promotes the release of GSH from the liver (a physiological reservoir of this tripeptide).
The increased availability of extracellular GSH facilitates its transfer, via astrocytes, to MNs
and favor its antioxidant defense. However, in advanced stages of the disease, this process
is associated with an increase in ROS generation by astrocytes. Oxidative stress can cause
cumulative damage to MNs, as well as their death. From the results described herein, it
seems obvious that maintaining GSH levels in astrocytes, and consequently in MNs, can
help to slow down the progression of the disease. Since the availability of Cys is a limiting
factor for the synthesis of GSH, a direct donor of Cys, e.g., N-acetylcysteine, which easily
crosses the plasma membrane, could be a direct drug solution. Nevertheless, maintenance
of GSH homeostasis in ALS is only part of the potential benefits of combined strategies
targeting different pathways/molecules at the same time [52].
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